第三章 静电场的边值问题

合集下载

第3章 边值问题及静电场的求解

第3章 边值问题及静电场的求解

r r

Q Q
const.
若镜像位置满足
OQ ~ P OPQ

r r

R0 a
const .
由三角形相似,
b R0 R0 a

2 R0 b a Q R0 Q a
导体球外部空间的电势为
Q R 0Q 4 0 r ar 1 4 0 1 Q R a 2 Ra cos
sin d
(sin
sin
0
该方程的解有两种情况

1 d
2
d
2
m
2
的解
0,
当电位与方位角无关时,
2 即: m 0
( ) A

1 d R dr
(r
2
2
dR dr
) n ( n 1) 的解
1
(1) n 0 时, R ( r ) A0 B 0 r
n
|S f 2 ( S )
称为第二类边界条件或“诺伊曼”条件。 这类问题称为第 二类边值问题。 (3)已知场域边界面S上各点电位和电位法向导数的线性 组合值, 即给定
( N ) |S f 3 ( S )
称为第三类边界条件或“混合边界条件”。 这类问题称为 第三类边值问题。
P
Q Q 4 0 r r 1
考察空间:导体球外部空间。 镜像电荷:用位于对称轴上的等效代
替导体球面上的感应电荷。
球面上任意点P 的电势
Q Q ( P) 0 4 0 r r 1

r r

Q Q
镜像电荷不应随P 变化,

静电场的边值问题-03-1。

静电场的边值问题-03-1。

D1n D2n
8. 电容
C
q U
9. 电场能量
1 We i Qi i 1 2
We 1 1 1 (r ) (r ) dV (r ) S (r ) dS (r ) l ( r ) dl V 2 S 2 l 2
n
1 We we dV ( D E ) dV V V 2
Solution:
1. Choose an appropriate coordinate system for the given geometry 2. Governing equation for problems and boundary condition.
2 2 1 V V 2 =0 2 2 z r 轴对称的场,且忽略边缘效应(无限长圆柱体)V r
用电位函数
表示分界面上的衔接条件
设点1与点2分别位于分界面的两侧,其间 距为d,d→0 ,则
1 2 lim E dl lim( E1n
2
电位的衔接条件
1 2
1 2
1
d 0
d d E2 n ) 0 2 2
表明: 在介质分界面上,电位是连续的。 1 2 D1n 1 E1n 1 , D2 n 2 E2 n 2 n n
对于无源区, 0 ,上式变为
2
2 0
拉普拉斯方程
已知分布在V 中的电荷 (r ) 在无限大的自由 空间产生的电位为
1 (r ) 4π

V
dV | r r |
(r )
上式为泊松方程在自由空间的特解。
利用格林函数可以求出泊松方程在有限空间的 通解。

第三章 静电场的边值问题

第三章 静电场的边值问题

u (1 2 ) 0
积分后 , 1 - 2 C, 该式既满足场域 , 又满足边界 , 故 C 0,1 2 ,得证
若导体边界为第二类边 界条件 , 即已知电荷面密度

1 2 , n n

(1 -2 ) u 0 n n
q
1 2 q 1 2
q
2 2 q 1 2
0
( y 0 ,b x a )
0
例 设有电荷均匀分布在半径为a的介质球型区域中,电荷体密度
为 ,试用解微分方程的方法求球体内、外的电位及电场。
解: 采用球坐标系,分区域建立方程 1 d d 21 2 (r 2 1 ) (0 r a ) r dr dr 0
2u 21 2 2
利用矢量恒等式
0 (uu) u2u (u) 2 ( u )2
对场域求体积分, 并利用高斯散度定理

V
(uu )dV uu dS (u ) 2 dV
s V
S为体积 V的边界面 ,即S S0 S , S S1 S2 Sn , 由于在无穷远 S0处电位为零 ,因此有
静电场的边值问题 数学物理方程定解条件通常分为初始条件和边界条件。 静电场与时间无关,因此电位所满足的泊松方程及拉普拉斯
方程的解仅决定于边界条件。根据给定的边界条件求解泊松方程
或拉普拉斯方程就是静电场的边值问题。
边值问题 微分方程
边界条件
2 2 0

场域 边界条件
分界面 衔接条件
S f1 (s)
已知场域边界 上各点电位 的法向导数
布或边界是电力线的条 件是等价的? 边值问题框图

第3章---- 静电场及其边值问题的解法--4

第3章----  静电场及其边值问题的解法--4

电磁场
第3章 静电场及其边值问题的解法
结论:

由两个半无限大接地导体平面形成角形边界,当其夹角 , n
π n
为整数时,该角域中的点电荷将有(2n-1)个镜像电荷,该角 域中的场可以用镜像法求解;
当n=3时:

/3
q


/3
q


电磁场
第3章 静电场及其边值问题的解法
q
q

当n=3时:
r


r
S
衔接条件
----不同媒质分界面上的边界条件,如
1 2 1 2 , 1 2 n n
1 2
1
2
电磁场
第3章 静电场及其边值问题的解法
例:
b
y
U0
2 2 2 0 2 x y (0, y) 0, (a, y) 0
1
d1

q d2 2 q1 d2
d1 R1
d1 R
q
d2
d2
q3
R3
d1
R2
d1
d2
q2
电位函数 q 1 1 1 1 ( ) 4π R R1 R2 R3
镜像电荷q1=-q,位于(-d1, d2 ) 镜像电荷q3 = q , 位于(-d1, -d2 )
镜像电荷q2=-q,位于( d1, -d2 )
(第三类边值问题)
§3.5 电磁场
静电场边值问题,唯一性定理
第3章 静电场及其边值问题的解法
3. 边值型问题的解法
解析法
镜像法
分离变量法
复变函数法 格林函数法 计算法

有限差分法 有限元法 数值法 边界元法 矩量法

第3章---- 静电场及其边值问题的解法 (1)

第3章----  静电场及其边值问题的解法  (1)

积分形式:
∫ D ⋅ dS = q ∫ E ⋅ dl = 0
S l
微分形式:
∇⋅D = ρ ∇× E = 0
D = εE
静电场:无旋有散场
本构关系:
线形、各向同性媒质
电磁场
第3章 静电场及其边值问题的解法
二、静电场的无旋性与电位
一 、静电场的无旋性
试验电荷q0位移dl时,电场力作功:
dA= F ⋅ dl = q0E ⋅ dl
从A点移到B点:
A = ∫ q0 E ⋅ dl
A
B
定义: A、B点间电压:
U AB
A = = ∫ E ⋅ dl q A
B
(2 - 19)
电磁场
第3章 静电场及其边值问题的解法
∫ E ⋅ dl = ∫ E ⋅ dl + ∫ E ⋅ dl = ∫ E ⋅ dl − ∫ E ⋅ dl = 0
_____ _____
电磁场
第3章 静电场及其边值问题的解法
均匀电场中带电粒子的 轨迹
阴极射线示波器原理
电磁场
第3章 静电场及其边值问题的解法
磁分离器 回旋加速器
电磁场
第3章 静电场及其边值问题的解法
磁悬浮列车
电磁场
第3章 静电场及其边值问题的解法
磁录音原理:
电磁场
第3章 静电场及其边值问题的解法
§3.1 静电场基本方程与电位方程 一、静电场的麦克斯韦方程组

r
ρ 0a ρ 0a dr = 2 3ε 0 r 3ε 0 r
3
3
当r<a时,
ϕ = ∫ Er dr = ∫ Er dr + ∫
r r

a

第三章 静电场边值关系

第三章 静电场边值关系

电位所满足的拉普拉斯方程在圆柱坐标系
中的展开式只剩下包含变量r 的一项,即电 位微分方程为
2 1 d d r 0 r dr dr
求得
C1 ln r C 2
利用边界条件:
V r a
C1 ln a C 2 V C1 ln b C 2 0
q q 4 π r 4 π r
可见,为了保证球面上任一点电位为零,必须选择镜像电荷为
r q q r
上任一点均具有同一数值。由上图可见,若要求三角形 △OPq
r 为了使镜像电荷具有一个确定的值,必须要求比值 对于球面 r
r a 与 △ OqP 相似,则 常数。由此获知镜像电荷应为 r f
代入上述边界条ห้องสมุดไป่ตู้,求得镜像电荷如下:
q
1 2 q 1 2
q
2 2 q 1 2
例 已知同轴线的内导体半径为a,电位为V,外导体接地,其
内半径为b。试求内外导体之间的电位分布函数以及电场强度。

V a b
O
对于这种边值问题,镜像法不适
用,只好求解电位方程。为此,选用圆柱 坐标系。由于场量仅与坐标 r 有关,因此,
以格林函数表示的积分解。
数学物理方程是描述物理量随空间和时间的变化规律。对于某 一特定的区域和时刻,方程的解取决于物理量的初始值与边界值, 这些初始值和边界值分别称为初始条件和边界条件,两者又统称为 该方程的定解条件。静电场的场量与时间无关,因此电位所满足的 泊松方程及拉普拉斯方程的解仅决定于边界条件。根据给定的边界 条件求解空间任一点的电位就是静电场的边值问题。
q q
电场线与等位面的分布特性与第二章所述的电偶极子的上半

第三章作业答案

第三章作业答案

μ0
μ0
ˆx 10 + e ˆy 20 + e ˆz 20 V / m ,试问该电场能否表示匀强电场?为什么?电场 7、已知电场 A = e ˆx 20 − e ˆy 5 − e ˆz 5 V / m , 大小是多小?方向余弦?如果有另一电场 B = e 试问这两个矢量是否
垂直?为什么?
G
G
ˆx 10 + e ˆy 20 + e ˆz 20 是匀强电场,电场的大小是 答:矢量 A = e G 1 2 2 E = 102 + 202 + 202 = 30 V / m ,方向余弦为 cos α = , cos β = , cos γ = ; 3 3 3 G G 两矢量垂直,因为 A ⋅ B = 0 。
μ0
2
c b
(
I 2 c2 − ρ 2 2 μ I2 ) ( 2 2 ) 2 πρ dρ = 0 2 πρ c − b 4π
单位长度内总的磁场能量为
Wm = Wm1 +Wm2 + Wm3
b μ0 I 2 ln + = + 16 Βιβλιοθήκη 4π a 4πμ0 I 2
μ0 I 2
15、 一个点电荷 q 与无限大接地导体平面距离为 d, 如果把它移至无穷远处, 需要做多少功? 解:由镜像法,感应电荷可以用像电荷-q 替代。当电荷 q 移至 x 时,像电荷 q 应位于-x, 则像电荷产生的电场强度
G ˆx 2 + e ˆz 4 ,求电介质中的电场? E =e
解:由在介质表面处 z = 0 , E1t = E2t 即 E1x = E2x = 2 , z = 0 时, D1n = D2 n 即 D1z = D2 z

第三章静电场边值问题

第三章静电场边值问题

第三章 静电场边值问题在上一章中,我们已经知道了几种从电荷分布求静电场的问题。

一种是直接积分式(2-2-1)求得已知电荷分布情况下的电场;另一种是利用式(2-2-4)高斯定理求解某些具有对称性电荷分布的静电场问题;再一种就是由式(2-2-10)求出静电势,再利用关系式ϕ=-∇E求出电场,这些问题一般都不存在边界。

然而,对于许多实际静电问题,电荷的分布是复杂的,计算积分很困难,甚至是不能积分,有些静电问题只给出了边界上的面电荷或电势。

在这种情况下,需有其它有效的方法求解静电问题,这种方法就是求解静电势所满足的偏微分方程。

这偏微分方程就是由式(2-2-10)给出的方程:2ρϕε∇=-因此,对于有边界存在的情况下,我们不得不求解给定边界条件下静电势微分方程,然后求出静电场,这一问题称为静电场边值问题错误!未找到引用源。

即求出满足给定边界条件的泊松方程的解。

在这一章中,我们首先介绍静电唯一性定理,它是解决静电场边值问题的基础。

基于静电唯一性定理,我们主要介绍两种求解静电场边值问题的方法:电像法和分离变量法。

当然,求解边值问题还有其它的方法。

值得一提的是,本章所介绍的方法不仅仅适用于静电场,它同样适用于静磁场和时变电磁场。

3-1 静电唯一性定理我们将证明,如果我们得到了满足给定边界条件的泊松方程的解,那么,这个解是唯一的。

这就是静电唯一性定理错误!未找到引用源。

下面我们证明这一定理并初步介绍它的应用。

在由边界面s 包围的求解区域V 内,若: 1) 区域V 内的电荷分布给定;2) 在边界面s 上各点,给定了电势s ϕ,或给定了电势法向偏导数snϕ∂∂,则V 内的电势唯一确定。

以上的表述就是静电唯一性定理。

下面,我们用反证法证明静电唯一性定理。

证: 假定在区域V 内的电荷密度分布为ρ(r ),且有两个不同的解φ1和φ2满足泊松方程及给定边界条件(给定的电势值s ϕ或电势法向偏导数snϕ∂∂)。

即:2212,ρρϕϕεε∇=-∇=-并有12sssϕϕϕ==或12sssnnnϕϕϕ∂∂∂==∂∂∂式中s ϕ和snϕ∂∂为给定的边界条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
半空间等效:上述等效性仅对于导体平面的上半空间成立,因 为在上半空间中,源及边界条件未变。
对于半无限大导体平面形成的劈形边界也可应用镜像法。但是
仅当这种导体劈的夹角等于 的整数分之一时,才可求出其镜像电 荷。为了保证这种劈形边界的电位为零,必须引入几个镜像电荷。 例如,夹角为 π 的导电劈需引入 5 个镜像电荷。
面将产生异性的感应电荷,因此,上半空间的电场取决于原先的点 电荷及导体表面上的感应电荷。可见,上述镜像法的实质是以一个 异性的镜像点电荷代替导体表面上异性的感应电荷的作用。根据电 荷守恒原理,镜像点电荷的电量应该等于这些感应电荷的总电量, 读者可以根据导体表面电荷密度与电场强度或电位的关系证明这个 结论。
及 q' 共同产生,即
q q 4π r 4π r
考虑到无限大导体平面的电位为零,求得 q q
电场线与等位面的分布特性与第二章所述的电偶极子的上半 部分完全相同。
z

电场线
等位线
由此可见,电场线处处垂直于导体平面,而零电位面与导体 表面吻合。
电荷守恒:当点电荷q 位于无限大的导体平面附近时,导体表
通常给定的边界条件有三种类型:
第一类边界条件给定的是边界上的物理量,这种边值问题又称 为狄利克雷问题。
第二类边界条件是给定边界上物理量的法向导数值,这种边值 问题又称为诺依曼问题。
第三类边界条件是给定一部分边界上的物理量及另一部分边界 上物理量的法向导数值,这种边界条件又称为混合边界条件。
对于任何数学物理方程需要研究解的存在、稳定及惟一性问题。 解的存在是指在给定的定解条件下,方程是否有解。 解的稳定性是指当定解条件发生微小变化时,所求得的解是否会 发生很大的变化。 解的惟一性是指在给定的定解条件下所求得的解是否惟一。 静电场是客观存在的,因此电位微分方程解的存在确信无疑。 由于实际中定解条件是由实验得到的,不可能取得精确的真值, 因此,解的稳定性具有重要的实际意义。
因此,对于导体边界的静电场问题,当边界上的电位,或电 位的法向导数给定时,或导体表面电荷给定时,空间的静电场即 被惟一地确定。这个结论称为静电场惟一性定理。
2. 镜像法
实质:是以一个或几个等效电荷代替边界的影响,将原来具 有边界的非均匀空间变成无限大的均匀自由空间,从而使计算过 程大为简化。
依据:惟一性定理。因此,等效电荷的引入必须维持原来的 边界条件不变,从而保证原来区域中静电场没有改变,这是确定 等效电荷的大小及其位置的依据。这些等效电荷通常处于镜像位 置,因此称为镜像电荷,而这种方法称为镜像法。
(r)
V G0 (r,
r)
( r) dV
S [G0 (r, r) (r) (r)G0 (r, r)] dS
式中格林函数 G(r, r)为
G0 (r,
r)
1 4π | r r |
对于无限大的自由空间,表面 S 趋向无限远处,由于格林函数
关键:确定镜像电荷的大小及其位置。
局限性:仅仅对于某些特殊的边界以及特殊分布的电荷才有 可能确定其镜像电荷。
(1)点电荷与无限大的导体平面。
P r q
介质
导体
P r
q
h
r 介质
h
介质
q
以一个处于镜像位置的点电荷代替边界的影响,使整个空间
变成均匀的介电常数为 的空间,则空间任一点 P 的电位由 q
3
q /3

q

/3


连续分布的线电荷位于无限大的导体平面附近时,根据叠加 原理得知,同样可以应用镜像法求解。
(2)点电荷与导体球。
P
a
r
o q
d f
若导体球接地,导体球的电位 为零。为了等效导体球边界的影响, q 令镜像点电荷q' 位于球心与点电荷 q 的连线上。那么,球面上任一点 电位为
泊松方程及拉普拉斯方程解的稳定性在数学中已经得到证明。 可以证明电位微分方程解也是惟一的。
静电场的边界通常是由导体形成的。此时,若给定导体上的 电位值就是第一类边界。 已知导体表面上的电荷密度与电位导 数的关系为 S ,可见,表面电荷给定等于给定了电位的
n
法向导数值。因此,给定导体上的电荷就是第二类边界。
q q 4π r 4π r
可见,为了保证球面上任一点电位为零,必须选择镜像电荷为
q r q r
为了使镜像电荷具有一个确定的值,必须要求比值 r 对于球面
r
上任一点均具有同一数值。由上图可见,若要求三角形 △OPq 与 △ OqP 相似,则 r a 常数。由此获知镜像电荷应为
G0 (r, r) 及电位 均与距离成反比,而 dS 与距离平方成正比,所以,
对无限远处的 S 表面,上式中的面积分为零。
若 V 为无源区,那么上式中的体积分为零。因此,第二项面积 分可以认为是泊松方程在无源区中的解,或者认为是拉普拉斯方程 以格林函数表示的积分解。
数学物理方程是描述物理量随空间和时间的变化规律。对于某 一特定的区域和时刻,方程的解取决于物理量的初始值与边界值, 这些初始值和边界值分别称为初始条件和边界条件,两者又统称为 该方程的定解条件。静电场的场量与时间无关,因此电位所满足的 泊松方程及拉普拉斯方程的解仅决定于边界条件。根据给定的边界 条件求解空间任一点的电位就是静电场的边值问题。
第三章 静电场的边值问题
主要内容 电位微分方程,镜像法,分离变量法。
1. 电位微分方程
已知,电位 与电场强度 E 的关系为
对上式两边取散度,得
E E 2
对于线性各向同性的均匀介质,电场强度 E 的散度为 E
那么,线性各向同性的均匀介质中,电位满足的微分方程式为
2
该方程称为泊松方程。

对于无源区,上式变为
2 0
上式称为拉普拉斯方程。
泊松方程的求解。
已知分布在V 中的电荷 (r)在无限大的自由空) dV
4π V | r r |
因此,上式就是电位微分方程在自由空间的解。
应用格林函数 G(r, r),即可求出泊松方程的通解为
相关文档
最新文档