牛顿动力学方程
动力学三大基本公式

动力学三大基本公式
1动力学三大基本公式
动力学是力学的一个分支,旨在探讨受力系统中物体运动的原理,是现代物理学中很重要的一环。
动力学有三大基本公式,即经典动力学三大定律,即牛顿运动定律、牛顿第二定律和拉普拉斯定律。
2牛顿运动定律
牛顿运动定律,又称牛顿第一定律,是运动学中最基本的定律。
是由英国物理学家、数学家牛顿提出的,也是动力学中三大基本定律中最为重要的定律。
牛顿运动定律包括物体静止定律和物体运动定律,即:物体处于静止状态时,其受力和外力的总和为零;物体处于运动状态时,其受力和外力的总和为物体的质量乘以加速度。
3牛顿第二定律
牛顿第二定律即牛顿定理,也叫受力定律,牛顿第二定律的内容是:物体受外力的作用时,物体产生的力与外力成正比,而力的方向与外力方向相反;物体受外力的作用时,产生的力称为反作用力。
特殊地,当物体在接触面上产生摩擦力时,反作用力与外力并不成正比,而是根据摩擦力大小而有所不同。
4拉普拉斯定律
拉普拉斯定律是法国物理学家、数学家拉普拉斯提出的,又被称为拉普拉斯补偿定律,是力学中的基本定律。
拉普拉斯定律的内容
是:受外力作用的物体,其偶合外力的效果是可以引起物体的动量平衡的趋向的,即物体的动量守恒的原理。
以上就是动力学中三大基本公式的内容,这三大公式对经典运动学的研究有重要的意义,包括受力系统的运动、物体动量的守恒、外力对物体产生力的效果等等都是基于这三条定理来研究的。
理论力学 牛顿动力学方程

3,一般曲线坐标系中的速度,速率,加速度公式 一般曲线坐标系中的速度,速率, y q2 q3 e3 o e1 q1 e2
x
z
x = x(q1, q2 , q3 ), y = y(q1, q2 , q3 ), z = z(q1, q2 , q3 ) r r r r r r = r (q 1 , q 2 , q 3 ) = x i + y j + z k r r x r y r z r i+ j+ k ( i = 1,, ) 2 3 = q i q i q i q i 2 2 2 r x y z r 拉密系数 : H i = = q + q + q q i i i i r r r Q 与 q i 坐标线在 P 点的切线单位向量 ei 同向 q i r r r r 1 r r ∴ = H i ei 或 ei = H i q i q i
& a r = && r φ 2 r && a = 2 r φ + r && φ
φ
(3) ( ax , ay ) → ( ar , aφ)
作 业
已知球坐标系与直角坐标系关系: 已知球坐标系与直角坐标系关系 x = r sinθ cos θ y = r sinθ sin θ z = r cos θ 推导球坐标系( , 推导球坐标系(r,θ,φ)中的 ) (1)速度分量( v r ,vθ,vφ ); )速度分量( (2)加速度分量( a r ,aθ,aφ ) . )加速度分量(
理论力学
何国兴
东华大学应用物理系
第一章 牛顿动力学方程
§1.1 经典力学基础——《原理》 经典力学基础——《原理》 牛顿三大定律 §1.2 牛顿第二定律在常用坐标系中的表达式 牛顿第二定律矢量表达式 F = dP/dt = d(mv)/dt 为常数, 若m 为常数, F = mdv /dt = ma 1,直角坐标系 Fx = mdvx /dt = max Fy = mdvy /dt = may Fz = mdvz /dt = maz
动力学三大观点

二、力学的知识体系
这里涉及的力有:重力(引力)、弹力、摩擦力、 浮力等;涉及的运动形式有:静止(F=0)、匀 速直线运动(F=0)、匀变速直线运动(F=恒量)、 匀变速曲线运动(F=恒量)、匀速圆周运动(|F|= 恒量)、简谐运动(F=-kx等.
三、三大观点选用的原则
力学中首先考虑使用两个守恒定律.从两个守恒定 律的表达式看出多项都是状态量(如速度、位置),所 以守恒定律能解决状态问题,不能解决过程(如位移 x,时间t)问题,不能解决力(F)的问题. (1)若是多个物体组成的系统,优先考虑使用两个守 恒定律. (2)若物体(或系统)涉及到速度和时间,应考虑使用 动量 定理. (3)若物体(或系统)涉及到位移和时间,且受到恒 力作用,应考虑使用牛顿运动定律.
物体 A 经过圆弧时克服阻力做的功 1 Wf=1×10×(5+1) J- ×1×102 J=10 J 2
答案 (1)100 N (2)1.25 m (3)10 J
例 题 讲 解
例4
如图 4 所示,abc 是光滑的轨道,其中 ab 是水平的,
bc 是位于竖直平面内与 ab 相切的半圆, 半径 R =0.40 m . 质 量 m = 0.30 kg 的小球 A 静止在水平轨道上,另一质量 M =0.50 kg 的小球 B 以 v 0=4 m/s 的初速度与小球 A 发生正 碰.已知碰后小球 A 经过半圆的最高点 c 后落到轨道上距 b 点为 L =1.2 m 处, 重力加速度 g=10 m/s2.求碰撞结束后:
0.2×1×10 μmCg aB= = m/s2=0.5 m/s2 (mA+mB) 1+ 3 由速度公式得木板刚开始运动时的速度 vB1=vB2+aBt=(2+0.5×1)m/s=2.5 m/s vB1+vB2 2+2.5 木板 B 运动的距离 sB= t= ×1 m=2.25 m 2 2 长木板 B 的长度 L=sB-sC=1.25 m (3)物体 A 与长木板 B 碰撞过程中动量守恒 mAvA2=(mA+mB)vB1 (1+3)×2.5 vA2= m/s=10 m/s 1 物体 A 从静止释放到与长木板 B 碰撞前,由动能定理 1 mAg(h+R)-Wf= mAvA22-0 2
动力学基本定律(牛顿定律)

1.第⼀定律——惯性定律
任何质点如不受⼒的作⽤,则将保持静⽌或匀速直线运动状态。
这个定律表明了任何质点都有保持静⽌或匀速直线运动状态的属性。
这种属性称为该质点的惯性。
所以第⼀定律叫做惯性定律。
⽽质点作匀速直线运动称为惯性运动。
由惯性定律可知.如果质点的运动状态(静⽌或匀速直线状态)发⽣改变,即有了加速度,则质点上必受到⼒的作⽤。
因此,⼒是物体运动状态改变的原因。
2.第⼆定律——⼒与加速度的关系定律
质点受⼀⼒F作⽤时所获得的加速度a的⼤⼩与⼒F的⼤⼩成正⽐,⽽与质点的质量成反⽐;加速度的⽅向与作⽤⼒⽅向相同,即
ma=F (4-3-1)
如果质点同时受⼏个⼒的作⽤,则上式中的F应理解为这些⼒的合⼒,⽽a应理解为这些⼒共同作⽤下的质点的加速度,这样式(4—3—1)可写为
ma=ΣFi (4-3-2)
式(4—3—1)或式4—3—2)称为质点动⼒学基本⽅程。
3.第三定律——作⽤与反作⽤定律
两质点相互作⽤的⼒总是⼤⼩相等,⽅向相反,沿同⼀直线,并分别作⽤在两质点上。
这些定律是古典⼒学的基础,它们不仅只适⽤于惯性坐标系,且只适⽤于研究速度远少于光速的宏观物体。
由于⼀般⼯程问题中,⼤多问题都属于上述的适⽤范围,因此以基本定律为基础的古典⼒学在近代⼯程技术中仍占有很重要的地位。
动力学的基本原理与运动方程推导

动力学的基本原理与运动方程推导动力学是物理学中研究物体运动的学科,它的基本原理和运动方程推导是了解和掌握动力学的关键。
本文将介绍动力学的基本原理,并推导出运动方程,以帮助读者更好地理解这一领域的知识。
一、动力学的基本原理动力学的基本原理包括牛顿三定律和能量守恒定律。
1. 牛顿第一定律:物体在没有外力作用下,将保持静止或匀速直线运动。
这意味着物体的速度只有在受到外力作用时才会改变。
2. 牛顿第二定律:物体的加速度与作用在其上的力成正比,与物体的质量成反比。
数学表达式为F=ma,其中F是物体所受的力,m是物体的质量,a是物体的加速度。
3. 牛顿第三定律:任何两个物体之间的相互作用力大小相等、方向相反。
这意味着物体之间的相互作用力总是成对出现的。
4. 能量守恒定律:在一个封闭系统中,能量的总量保持不变。
能量可以在不同形式之间相互转化,但总能量保持恒定。
二、运动方程的推导在了解了动力学的基本原理之后,我们可以推导出物体的运动方程。
假设一个物体在一维空间中运动,且只受到一个力的作用。
根据牛顿第二定律,我们知道物体的加速度与作用在其上的力成正比,与物体的质量成反比。
可以将牛顿第二定律表示为:F = ma其中,F是物体所受的力,m是物体的质量,a是物体的加速度。
根据运动学的定义,加速度可以表示为速度的变化率。
假设物体的初始速度为v0,加速度为a,时间为t,物体的速度可以表示为:v = v0 + at同样地,速度的变化率就是位移的变化率。
假设物体的初始位移为x0,位移为x,时间为t,物体的位移可以表示为:x = x0 + v0t + 1/2at^2这就是物体的运动方程,它描述了物体在给定时间内的位移。
通过上述推导,我们可以看到物体的运动方程与物体的质量、加速度、速度和位移之间的关系。
在实际应用中,我们可以通过测量物体的运动参数,来计算物体的质量或者力的大小。
三、动力学的应用动力学的原理和运动方程在很多领域都有广泛的应用。
理论力学

相对坐标
r r01 r02 r1 r2
01 02 1 2
与坐标系无关
B、 两粒子体系拉格朗日函数 体系动能 体系势能
L T V 1 2 m 1 ( r0 C
T
1 2
m 1r
(e )
2 01
1 2
m 2 r02
(i)
x
(2)平面极坐标
m ( r 2 ) F r r m ( r 2 r ) F
(3)球坐标
m ( r 2 r 2 sin 2 ) F r , r 2 m ( r 2 r r sin cos ) F , m ( r sin 2 r sin 2 r cos ) F .
H
s
p q L
1
H T V
(2) 正则方程
H q , p . 1, 2 , , s . H p , q
H t
L t
C、哈密顿作用量及哈密顿原理
(1) 哈密顿作用量: (2) 哈密顿原理: D. 正则变换 (1) F1(q,Q,t)称为第一类正则变换母函数
(2) 主动力为保守力时:
V q 0 , 1 ,2 , , s.
(3) 虚功原理 理想约束力学体系处于平衡状 态,则主动力在任意虚位移中所做 的虚功之和等于零。
n
F i ri 0
i 1
E、 对称性和守恒定律 在运动过程中保持不变的广义坐标和广义速度的 函数叫做运动积分.
(4)柱坐标
m (R R 2 ) FR , m ( R 2 R ) F , m F . z z
机器人动力学牛顿欧拉方程课件

PART 04
机器人动力学实例
两连杆机器人的动力学分析
01
02
03
连杆的惯性
需要考虑连杆的惯性,包 括质量、质心位置和惯性 张量。
关节约束
需要考虑关节的约束,包 括关节类型、关节角度范 围和关节刚度。
3
牛顿-欧拉方程推导
通过将牛顿第二定律和欧拉第一定律结合,可以 得到牛顿-欧拉方程,它描述了刚体在运动过程 中的动力学行为。
PART 03
牛顿-欧拉方程的应用
两刚体系统的动力学分析
两刚体系统的定义
两刚体系统是指由两个刚体组成的系统,每个刚体具有自己的质 量、位置和速度。
牛顿-欧拉方程的建立
根据牛顿第二定律和欧拉方程,可以建立两刚体系统的动力学方程。
03
多刚体系统的动力学特性包括角动量守恒、动量守恒、能量守
恒等,同时还存在各个刚体之间的相互作用力。
机器人运动学与动力学的关系
运动学与动力学的区别
运动学主要研究机器人的位置、姿态和速度等几何特征,而动力学则研究机器人的力、力矩和加速度等物理特征。
运动学与动力学的联系
机器人的运动学和动力学是相互联系的,运动学可以提供机器人的运动状态信息,而动力学则可以提供机器人的运动 控制信息。
描述刚体在空间中的位置需要使用矢量,矢量中包含了物体的位置、方向和大 小等信息。
运动描述
描述刚体的运动需要使用速度和加速度等运动学量。
牛顿-欧拉方程的建立过程
1 2
牛顿第二定律 对于一个物体,其受到的力等于其质量与加速度 的乘积,即F=ma。
欧拉第一定律 对于一个刚体,其受到的力矩等于其角动量与角 加速度的乘积,即τ=Iα。
动力学方程

动力学方程简介动力学方程是描述物体或系统运动的数学表达式。
它基于牛顿第二定律,即力等于质量乘以加速度。
动力学方程在物理学、工程学、生物学等领域起着重要作用,可以用来研究运动的特性以及对系统的控制。
动力学方程的基本概念动力学方程由一组微分方程组成,描述了物体或系统随着时间的变化而发生的运动。
一般来说,动力学方程的形式为:m*a = ΣF其中,m表示物体的质量,a表示物体的加速度,ΣF表示作用在物体上的力的合力。
动力学方程的推导根据牛顿第二定律,物体的加速度与作用在物体上的力成正比。
根据这个基本原理,我们可以推导出物体的动力学方程。
首先,我们考虑一个简单的情况:只有一个力作用在物体上。
假设这个力的大小为F,方向与物体的加速度相同。
根据牛顿第二定律,我们可以得到: m*a = F这就是物体的动力学方程。
这个方程可以描述物体的运动情况。
当有多个力作用在物体上时,我们需要将所有力的大小和方向都考虑进去。
我们可以将所有力的合力表示为ΣF。
这样,物体的动力学方程可以表示为:m*a = ΣF这个方程可以描述物体在多个力作用下的运动情况。
动力学方程包括了物体的质量、加速度以及力的合力。
动力学方程的应用举例自由落体自由落体是动力学方程的一个重要应用。
假设一个物体在重力作用下自由下落。
根据牛顿第二定律,我们可以得到:m*a = m*g其中,m是物体的质量,g是重力加速度。
这个方程描述了物体在自由落体过程中的运动情况。
弹簧振子弹簧振子也是动力学方程的一个典型应用。
考虑一个质点通过弹簧与固定点相连,质点的运动受到弹簧的弹力作用。
假设质点的质量为m,弹簧的劲度系数为k,质点的位移为x,我们可以得到动力学方程:m*a = -k*x这个方程描述了弹簧振子在弹力作用下的运动情况。
当质点受到弹力作用时,它的加速度与位移成反比关系。
结论动力学方程是描述物体或系统运动的数学表达式,它基于牛顿第二定律。
动力学方程可以用来研究运动的特性以及对系统的控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1.28)
a表示速度大小随时间的变化率,
an 表示速度方向随时间的变化率。
主动力 约束力 自然坐标中: 解线性约束问题 对非自由质点, 约束运动:m F ( r , r , t ) R r
dv 法向平面 m dt F f ( f R ) 主法线 2 v 密切平面 Fn R n m R (b τ n) 0 Fb Rb n 2 2 R R n Rb
· 运动观.内容包括 ①力学的最高原理——牛顿三定律和 力学相对性原理的确立;②万有引力定律的发现。 · 简单性原理.凡科学上正确的东西都是简单的,因此, 力求用简单的方法和形式解决科学问题,表述科学结论。
· 因果性原理.即决定论。
· 绝对性原理.指物质观、时空观、运动观对整个自然 都是普遍适用的,是自然哲学的根本所在。
r
e
N
er
y
d ( e e ) sin e cos e r e r dt
x
(1.18)
e
图1.6
位矢
速度
r re r
re r e r sin e r r
· 真理性原理.既承认客观真理的存在,同时又承认人们 在一定认识阶段的认识只能接近真实,即承认相对真理的存 在。真理性原理是绝对真理与相对真理结合的观点。 四条哲学推理规则是自然科学认识论、方法论的准则, 是学习、研究自然科学强大的思想武器。 1.2 牛顿第二定律的数学表达 m
O
设质量为m的物体(质点)沿曲线C运 动,所受到的力为,当物体的质量不变时, 牛顿第二定律的表示为
动点
S系
S 系
动系 牵连运动 演示 r r0 r 平动时: v v 0 v ( 牵连 速度 相对 速度 ) a a a (牵连 加速度 相对 加速度) 0 位矢 位移 速度
,即 d e 指向轨道的凹向,可见
d e dt
与法线 e n 同向,
所以加速度为
d 2 a e en dt
a d dt
,
(1.27)
2 an
,
ab 0
则牛顿第二定律为
d m dt F 2 Fn m 0 Fb
r
C
m
d dt
图1.3
F
F F (r , r , t )
(1.1)
力 F
一般是位矢 r
速度
r 和时间t的函数:
(1.2)
(1.3)
则式(1.1)可写为
F (的分量式分别为:
理论力学
主讲:黎明 单位:西安理工大学理学院 应用物理系
第一章 牛顿动力学方程
内容: ·经典力学立论的理论基础 ·牛顿力学的基本定律和定理 ·牛顿动力学方程及其应用 ·解题指导 重点: 牛顿动力学方程及其应用 难点: 角动量概念和角动量定理 牛顿在伽利略、开普勒工作的基础上建立了完整的经 典力学理论,这是现代意义下的物理学的开端。经典力学理 论的基础是质点运动三条定律,其核心是牛顿动力学方程。
位矢和速度为
r
(1.22)
z Y
O
R
x 牛顿第二定律为 (1.23) (1.24)
图1.7
r R e R Zk
e r e Z k R R
m ( R R 2 ) FR m ( R 2 R ) F (1.25) z m Fz
(4)球坐标系
空间一点P的位置坐标及其单位矢量分别为 r、θ、φ和 e r 、 e 、 e
e r sin cos i sin sin j cos k e cos cos i cos sin j sin k e e r e sin i cos j
如图1.9所示: 由弧度的定义知
(1.26)
de
e
y ds
de
e
d
de e d d de d d ds dt dt ds dt
e
d
e
P
ds d
P O
x
图1.9
因
de e
轨道约束:仅有一个变量 s(t). 定义:切线方向 i 质点运动方向;
法线方向 j 轨道法线并指向
j
i
副法线方向 b i j n, a b 0 .
曲线的凹侧;
b
质点在任意时刻(P点)的速度和加速度分别为
e
d d a e dt dt dt de ? dt
由定义 a
求出加速度 a
的表示式后,可得
m ( r r 2 sin 2 ) Fr r 2 m ( r 2 r r sin cos ) F m ( r sin 2 r sin 2 r cos ) F
都可作出这样的三条正交的直线,以、n、b为坐标轴构成空间自然坐标系。
用 e 、 e n、 e b
表示其单位矢量,显然,随着质点的运动,
e 、 e n、 e b 方向随时间t而变化。
自然坐标系―内禀(禀性,本性)方程
法向平面 主法线 密切平面 次法线
n
b
直切平面 切线
(1) 直角坐标系
x x P(x,y,z) o x 图1.4 y
r x i yj z k
x i yj z k r
(1.4)
(1.5)
方程(1.3)可表示为 m Fx ( x, y , z; x, y , z; t ) x y m Fy ( x, y , z; x, y , z; t ) z m Fz ( x, y , z; x, y , z; t )
为
r re r
(1.9)
r re r re r re r r e
(1.10)
加速度为
a
d dt
( r 2 )e r ( r 2 r )e r
(1.11)
因此,牛顿第二定律可表示为
m ( r 2 ) Fr r m ( r 2r ) F
(1.12)
(3)柱坐标
可看成是由OXY平面上的平面极坐标R、φ和直角坐标Z组合而成。 单位矢量
e R、 e 和 k 的变化率为
z
e e R e e R k 0
次法线
b
直切平面 切线
R:约束反力. 在法向平面内 . 质点在密切面内运动( n 平面), 与法向平面 ( n b 平面 ) 垂直.
*(5)曲线坐标系
定义: p点的切线单位 e3 , , 矢量 e 1 e 2 e 3 p e1 为p点的基矢,指 e2 向沿坐标的增加 方向,如柱面,球 坐标系. 若 e 1 , e 2 e 3 ,两两正交,称为正交曲线坐标系. v v v n n v b b , v v v 自然坐标系实 际上是描述空 a a a n n a b b , a a a 间曲线, 属正 交曲线坐标系.
(6) 参照系与坐标系关系: i. 描述物体的运动必须有一参照系;
ii . 参照系(体)必须是刚体(1个参照点不能描述物 体在三度空间的位置);
iii. 坐标系是参照系的数学抽象. 可固定在参照 系上(一般情况), 也可不固定在参照系上.
二、平动参照系: (§1.3)
静系: S
动系: S’ (可 以认为是刚 体的平动)
(1.19) (1.20)
加速度
a
e r sin e ) d ( rer r dt
r r 2 sin 2 ) er ( r 2 r r 2 sin cos ) e ( r ( r sin 2 r sin 2 r cos ) e
(5)自然坐标与内禀方程
设质点沿着某一空间曲线MN运 动,在轨道MN上的任意点P作密切 平面,在密切平面内过P点作切线
和法线n,再作直线b,使三者的方向关
系为 n b ,即互相⊥,b称为次法线。n 和 b 构成的平面 称为法平面, 与 b 组成的平面称为直切平面。轨道上每一点
der d de d e er
d dt d dt e e r
r
及其单位矢量
和极角θ及其单位
e
矢量
(1.7) x
de r er d de e d
(1.8)
质点的位矢
r
和速度
r
1.1
经典力学立论的理论基础
包括:三个观点(物质观、时空观、运动观)和四条推理规则(简单 性原理、因果性原理、统一性原理、真理性原理) • 物质观。所有的物质都由原子的微粒组成,原子间存在互相吸引 力和排斥力,可以凝聚分离,构成万物及运动。
• 时空观(绝对时空观)。时间是一维的、均匀的、无限的,与空 间和物质都无关——牛顿的绝对时间。可用一条长的直线表示时间:
左
右
过去
现在