(完整版)高中数学向量汇总归纳,推荐文档
高中向量知识点归纳总结

高中向量知识点归纳总结一、向量的概念与表示1. 向量的定义与概念向量是具有大小和方向的物理量,表示为有向线段。
向量的大小称为模,通常用|a|表示;向量的方向用一个角度或者与坐标轴的夹角表示。
2. 向量的表示向量可以通过不同方式进行表示,常见的表示方法有点表示法、坐标表示法和分解成分表示法。
其中点表示法是指用起点和终点的坐标表示向量,坐标表示法是指用向量的坐标来表示向量,分解成分表示法是指将一个向量分解为与坐标轴平行的分向量。
二、向量的运算1. 向量的加法向量的加法满足三角形法则,即两个向量相加的结果是以它们为两边的平行四边形的对角线。
2. 向量的数乘向量的数乘是指一个向量与一个实数相乘,结果是一个大小变为原来的倍数,方向不变的新向量。
3. 向量的减法向量的减法即将一个向量减去另一个向量,可以理解为向量的加法的逆运算。
4. 向量的线性运算线性运算是指向量的加法和数乘运算满足分配律、结合律和交换律。
5. 向量的数量积向量的数量积又称为点积,表示为a·b,定义为|a|·|b|·cos(θ),其中|a|和|b|分别是向量a 和b的模,θ是两个向量的夹角。
6. 向量的数量积的性质向量的数量积具有交换律、分配律和可能与零向量数量积为零等性质。
7. 向量的向量积向量的向量积又称为叉积,定义为一个向量与另一个向量在夹角方向上的投影的大小。
8. 已知向量的坐标求向量大小通过向量的坐标可以利用勾股定理求出向量的大小。
9. 用向量表示物理问题在物理问题中,可以利用向量的运算来描述力的合成、速度方向以及几何问题等。
三、平面向量1. 平面向量的模和方向平面向量的模指向量的大小,平面向量的方向指向量的方向。
2. 平面向量共线与定比分点若有两个向量a和b,则a与b共线的充分必要条件是存在实数λ,使得a=λb或者b=λa;定比分点是指分点m将向量a和b分成λ:1-λ的两部分。
3. 平面向量共面若有三个向量a、b、c,则a、b、c共面的充分必要条件是它们的数量积为零。
高中数学向量知识点总结大全

一、向量的基本概念向量:既有大小又有方向的量叫做向量。
物理学中又叫做矢量,如力、速度、加速度、位移就是向量。
向量可以用一条有向线段(带有方向的线段)来表示,用有向线段的长度表示向量的大小,用箭头所指的方向表示向量的方向。
向量也可以用一个小写字母a,b,c表示,或用两个大写字母加表示(其中前面的字母为起点,后面的字母为终点)。
向量的表示方法:几何表示法、字母表示法。
模的概念:向量的大小(长度)称为向量的模。
记作:|ab|。
零向量:长度(模)为0的向量叫做零向量,记作0。
平行向量(共线向量):方向相同或相反的非零向量叫做平行向量或共线向量。
若向量a,b平行,记作a∥b。
规定0与任一向量平行。
相等向量:长度相等且方向相同的向量叫做相等向量。
向量a,b相等记作a=b。
零向量都相等。
任何两个相等的非零向量,都可用同一有向线段表示,但特别要注意向量相等与有向线段起点、终点位置无关。
二、向量的运算向量的加法:两个向量相加的结果是以这两个向量为邻边的平行四边形的对角线(注意起点和方向)。
也可以先作出其中一个向量,然后将另一个向量的起点平移到第一个向量的终点上,最后以第一个向量的起点为起点,以平移后得到的向量的终点为终点作出结果向量。
这种加法称为三角形法则。
向量的减法:两个向量相减的结果是将第一个向量的起点平移到第二个向量的终点上,然后以第二个向量的起点为起点,以平移后得到的向量的终点为终点作出结果向量。
这种减法称为三角形法则的逆运算。
向量的数乘:实数与向量的乘积是一个新的向量,其模等于原向量的模乘以实数的绝对值,其方向与原向量的方向相同或相反(取决于实数的正负)。
向量的点乘:两个向量的点乘结果是一个实数,等于这两个向量的模的乘积再乘以它们之间的夹角的余弦值。
如果两个向量的夹角为90度,则它们的点乘结果为0;如果两个向量的夹角为0度或180度,则它们的点乘结果分别为它们模的乘积的正值和负值。
向量的叉乘:两个三维向量的叉乘结果是一个新的三维向量,其模等于这两个向量的模的乘积再乘以它们之间的夹角的正弦值,其方向垂直于这两个向量所构成的平面,符合右手定则。
向量知识点总结高一

向量知识点总结高一一、向量的定义和性质1. 向量的定义在数学中,向量是有大小和方向的量。
向量用箭头表示,箭头的长度表示向量的大小,箭头的方向表示向量的方向。
2. 向量的性质(1)向量的大小和方向唯一确定一个向量。
(2)同一向量的不同表示叫做向量的等价表示。
(3)向量的等价表示之间可以互相转换。
(4)向量与数的乘积可以用数的乘法来定义。
(5)向量之间可以进行加法运算和减法运算。
二、向量的基本运算1. 加法和减法(1)向量的加法:两个向量的和等于它们的尾部相连形成的新向量。
(2)向量的减法:两个向量的差是指把减数的向量的起点与被减数的向量的终点相连成新向量。
2.数乘(1)向量的数乘:一个向量与一个实数相乘是指该向量的长度乘以这个实数,并且方向不变。
3.数量积(内积)(1)数量积的定义:设两个向量a,b之间的夹角为θ,那么向量a与向量b之间的数量积为一个数abcosθ。
(2)数量积的性质:a·b=|a|·|b|cosθ。
(3)数量积的应用:计算向量的模、求向量的夹角、求向量的投影等。
4.向量积(外积)(1)向量积的定义:设有向量a,b,它们的向量积a×b是一个向量,它的大小等于|a|·|b|·sinθ,它的方向垂直于a和b所在的平面,满足右手定则。
5.混合积(1)混合积的定义:设有三个向量a,b,c,它们的混合积为|a×b·c|。
三、向量的基本定理1. 平行四边形法则对于平行四边形abcd,向量a,b的和是向量a+c,且a+c=b+d。
2. 三角形法则对于三角形abc,向量a+b+c=0。
3. 余弦定理对于三角形abc,有c²=a²+b²-2abcosC,其中C为角c所对的边。
4. 已知(a1,b1),(a2,b2)的数量积等于0的条件两个向量的数量积等于0,表示这两个向量垂直。
四、向量的常用技巧1. 向量的模向量a的模表示为|a|,表示向量a的大小。
高中数学向量知识点归纳

高中数学向量知识点归纳
1. 向量的定义和表示
- 向量是具有大小和方向的量,可以用有向线段来表示。
- 向量的表示方法有坐标表示法和向量符号表示法。
2. 向量的加法和减法
- 向量的加法:将两个向量的对应方向上的分量相加,得到新的向量。
- 向量的减法:将被减向量取反,然后进行加法操作。
3. 向量的数量积和向量积
- 向量的数量积(又称点积或内积):用数值表示两个向量的乘积,结果是一个标量。
- 向量的数量积公式:a·b = |a| |b| cosθ。
- 向量的向量积(又称叉积或外积):用一个新的向量表示两个向量的乘积,结果是一个向量。
- 向量的向量积公式:c = a×b,其中 c 的模长等于|a| |b| sinθ。
4. 直线和平面向量的应用
- 在平面上,可以根据向量的性质求解直线的方程、判断点与直线的位置关系等。
- 在空间中,可以根据向量的性质求解平面的方程、判断点与平面的位置关系等。
5. 向量的线性运算
- 向量的线性运算包括数乘和线性组合。
- 数乘:将向量的每个分量都乘以一个实数。
- 线性组合:将多个向量以一定比例加和。
6. 向量的模和单位向量
- 向量的模是指向量的长度,可以用勾股定理求解。
- 单位向量是指模为1的向量,可以通过向量除以模长求得。
以上是高中数学中向量知识点的归纳。
希望对你有所帮助!。
向量高数知识点总结

向量高数知识点总结一、向量的概念向量是指既有大小又有方向的量。
在数学上,向量可以用有序数对表示,这个有序数对就是向量的坐标表示。
例如,一个二维向量可以表示为(a,b),其中a和b分别代表向量在x轴和y轴上的分量;一个三维向量可以表示为(a,b,c),类似地,a、b、c分别代表向量在x、y、z轴上的分量。
在物理学中,向量的概念也是非常重要的,比如力、速度等都是向量。
二、向量的基本运算1. 向量的加法向量的加法是指两个向量相加的运算。
如果有两个向量a和b,它们的加法运算可以表示为a+b,即将a和b的对应分量相加得到新的向量。
2. 向量的数乘向量的数乘是指一个向量与一个标量相乘的运算。
如果有一个向量a和一个实数k,它们的数乘运算可以表示为ka,即将a的每个分量都乘以k得到新的向量。
3. 向量的减法向量的减法可以通过向量的加法和数乘来表示,即a-b = a+(-1)*b。
三、线性相关与线性无关1. 线性相关如果存在不全为零的实数k1、k2、...、kn,使得向量组中的向量v1、v2、...、vn满足关系式k1*v1+k2*v2+...+kn*vn=0,那么称向量组v1、v2、...、vn是线性相关的。
这就意味着向量组中的某一个向量可以表示为其他向量的线性组合。
2. 线性无关如果向量组中的向量v1、v2、...、vn不是线性相关的,即不存在不全为零的实数k1、k2、...、kn,使得k1*v1+k2*v2+...+kn*vn=0,那么称向量组v1、v2、...、vn是线性无关的。
线性相关与线性无关是线性代数中非常重要的概念,它和矩阵的秩有关系,而矩阵的秩又在模型拟合、降维处理等领域有着重要的应用。
四、向量的线性组合和向量空间1. 向量的线性组合如果有向量组v1、v2、...、vn和实数k1、k2、...、kn,那么k1*v1+k2*v2+...+kn*vn就是向量v1、v2、...、vn的线性组合。
线性组合可以用来表示向量的线性关系,它在数学建模中有着重要的应用。
向量知识点总结大全

向量知识点总结大全1. 向量的定义向量是指具有大小和方向的量,通常用箭头表示。
在数学中,向量可以用来表示力、速度、位移、电场、磁场等物理量。
向量通常用坐标或分量来表示,也可以用一点表示。
向量的模长是其大小,方向是指向量所指方向。
2. 向量的表示(1) 点表示法:用起始点为O,终点为A的箭头表示向量,记作→OA。
(2) 分量表示法:以向量所在的坐标系中的原点O为出发点,A(x, y)为终点,表示向量为→OA = x→i + y→j。
其中,→i和→j是标准基向量,它们的方向分别是x轴和y轴的正方向,长度为1。
(3) 等价向量:长度和方向都相同的向量称为等价向量,用→AB = →CD 表示。
3. 向量的运算(1) 向量的加法:若有两个向量→a 和→b,它们的和记作→c,即→c = →a + →b。
向量的加法满足交换律和结合律,即→a + →b = →b + →a,(→a + →b) + →c = →a + (→b + →c)。
(2) 向量的数量积(点积):若两个向量→a 和→b 的夹角为θ,则它们的数量积定义为→a·→b = |→a|·|→b|·cosθ。
(3) 向量的矢量积(叉积):对于三维向量→a = (a1, a2, a3) 和→b = (b1, b2, b3),它们的矢量积定义为:→a × →b = (a2b3 - a3b2)→i - (a1b3 - a3b1)→j + (a1b2 - a2b1)→k,其中→i、→j、→k 分别是x、y、z轴的单位向量。
(4) 向量的数量积和矢量积的关系:→a·→b = |→a|·|→b|·cosθ,其中θ为夹角;|→a × →b| = |→a|·|→b|·sinθ,即矢量积的模长等于两个向量模长的乘积再乘以它们夹角的正弦值。
4. 向量的相等两个向量相等的充分必要条件是它们的大小和方向都相等。
(完整版)高中数学平面向量知识点总结

高中数学必修4之平面向量知识点归纳一.向量的基本概念与基本运算1、向量的概念:①向量:既有大小又有方向的量向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行③单位向量:模为1个单位长度的向量④平行向量(共线向量):方向相同或相反的非零向量⑤相等向量:长度相等且方向相同的向量2、向量加法:设,ABa BCb uu u ru uu r r r ,则a +b r =AB BC u u u r u u u r =ACuu u r (1)a a a 00;(2)向量加法满足交换律与结合律;AB BCCDPQQRAR u u u r u u u r u uu r u u u r u u u r u u u rL,但这时必须“首尾相连”.3、向量的减法:①相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量②向量减法:向量a 加上b 的相反向量叫做a 与b 的差,③作图法:b a可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点)4、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下:(Ⅰ)a a ;(Ⅱ)当0时,λa 的方向与a 的方向相同;当时,λa 的方向与a 的方向相反;当0时,0a,方向是任意的5、两个向量共线定理:向量b 与非零向量a 共线有且只有一个实数,使得b =a6、平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21,使:2211e ea,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底二.平面向量的坐标表示1平面向量的坐标表示:平面内的任一向量a r可表示成axi yj r rr ,记作a r=(x,y)。
2平面向量的坐标运算:(1)若1122,,,ax y bx y rr ,则1212,a bx x y y r r (2)若2211,,,y x B y x A ,则2121,AB x x y y u u u r(3)若a r =(x,y),则a r =(x, y)(4)若1122,,,a x y b x y r r ,则1221//0a b x y x y rr (5)若1122,,,ax y bx y rr ,则1212a bx x y y r r 若ab rr ,则02121y y x x 三.平面向量的数量积1两个向量的数量积:已知两个非零向量a r 与b r,它们的夹角为,则a r ·b r =︱a r︱·︱b r ︱cos 叫做a r与b r 的数量积(或内积)规定00ar r 2向量的投影:︱b r ︱cos =||a b a r r r ∈R ,称为向量b r 在a r方向上的投影投影的绝对值称为射影3数量积的几何意义:a r ·b r 等于a r 的长度与b r 在a r方向上的投影的乘积4向量的模与平方的关系:22||a a a a r r r r 5乘法公式成立:2222a b ab a b a b r r r r r r r r ;2222abaa bb r r r r r r 222aa bbr r r r 6平面向量数量积的运算律:①交换律成立:a bb arr r r ②对实数的结合律成立:a b a b a bRr r r r r r ③分配律成立:abca cb c r r r r r r r ca br r r 特别注意:(1)结合律不成立:ab ca b c r r r r r r ;(2)消去律不成立a ba cr r r r 不能得到bc rr (3)a b r r =0不能得到a r =0r或b r =0r 7两个向量的数量积的坐标运算:已知两个向量1122(,),(,)ax y b x y rr,则a r ·b r=1212x x y y 8向量的夹角:已知两个非零向量a r与b r ,作OA u u u r =a r , OB uuu r =b r ,则∠AOB=(01800)叫做向量a r 与b r 的夹角cos =cos,a b a ba b??r r r r r r =222221212121y x y x y y x x 当且仅当两个非零向量a r 与b r 同方向时,θ=00,当且仅当a r与b r 反方向时θ=1800,同时0r与其它任何非零向量之间不谈夹角这一问题9垂直:如果a r 与b r 的夹角为900则称a r 与b r 垂直,记作a r⊥br 10两个非零向量垂直的充要条件:a ⊥ba ·b =O02121y y x x 平面向量数量积的性质一、选择题1.在△ABC 中,AB =AC ,D ,E 分别是AB ,AC 的中点,则().A .AB 与AC 共线B .DE 与CB 共线C .AD 与AE 相等D .AD 与BD 相等2.下列命题正确的是().A .向量AB 与BA 是两平行向量B .若a ,b 都是单位向量,则a =bC .若AB =DC ,则A ,B ,C ,D 四点构成平行四边形D .两向量相等的充要条件是它们的始点、终点相同3.平面直角坐标系中,O 为坐标原点,已知两点A(3,1),B(-1,3),若点C满足OC =OA +OB ,其中,∈R ,且+=1,则点C 的轨迹方程为().A .3x +2y -11=0B .(x -1)2+(y -1)2=5C .2x -y =0D .x +2y -5=04.已知a 、b 是非零向量且满足(a -2b)⊥a ,(b -2a)⊥b ,则a 与b 的夹角是A .6B .3C .23D .565.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C ),则AP =A .λ(AB +AD ),λ∈(0,1)B .λ(AB +BC ),λ∈(0,22)C .λ(AB -AD ),λ∈(0,1)D .λ(AB -BC ),λ∈(0,22)6.△ABC 中,D ,E ,F 分别是AB ,BC ,AC 的中点,则DF =().(第1题)A.EF+ED B.EF-DE C.EF+AD D.EF+AF7.若平面向量a与b的夹角为60°,|b|=4,(a+2b)·(a-3b)=-72,则向量a的模为().A.2 B.4 C.6 D.128.点O是三角形ABC所在平面内的一点,满足OA·OB=OB·OC=OC·OA,则点O是△ABC的().A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点9.在四边形ABCD中,AB=a+2b,BC=-4a-b,DC=-5a-3b,其中a,b不共线,则四边形ABCD为().A.平行四边形B.矩形C.梯形D.菱形10.如图,梯形ABCD中,|AD|=|BC|,EF∥AB∥CD则相等向量是().A.AD与BC B.OA与OBC.AC与BD D.EO与OF二、填空题11.已知向量OA=(k,12),OB=(4,5),OC=(-k,10),且A,B,C三点共线,则k=.12.已知向量a=(x+3,x2-3x-4)与MN相等,其中M(-1,3),N(1,3),则x=.13.已知平面上三点A,B,C满足|AB|=3,|BC|=4,|CA|=5,则AB·BC +BC·CA+CA·AB的值等于.14.给定两个向量a=(3,4),b=(2,-1),且(a+mb)⊥(a-b),则实数m 等于.15.已知A,B,C三点不共线,O是△ABC内的一点,若OA+OB+OC=0,则O是△ABC的.16.设平面内有四边形ABCD和点O,OA=a,OB=b,OC=c, OD=d,若a+c=b+d,则四边形ABCD的形状是.三、解答题17.已知点A(2,3),B(5,4),C(7,10),若点P满足AP=AB+λAC(λ∈R),试求λ为何值时,点P在第三象限内?(第10题)18.如图,已知△ABC,A(7,8),B(3,5),C(4,3),M,N,D分别是AB,AC,BC的中点,且MN与AD交于F,求DF.(第18题)19.如图,在正方形ABCD中,E,F分别为AB,BC的中点,求证:AF⊥DE(利用向量证明).(第19题) 20.已知向量a=(cos θ,sin θ),向量b=(3,-1),则|2a-b|的最大值.一、选择题1.B 解析:如图,AB 与AC ,AD 与AE 不平行,AD 与BD 共线反向.2.A解析:两个单位向量可能方向不同,故B 不对.若AB =DC ,可能A ,B ,C ,D 四点共线,故C 不对.两向量相等的充要条件是大小相等,方向相同,故D 也不对.3.D解析:提示:设OC =(x ,y),OA =(3,1),OB =(-1,3),OA =(3,),OB =(-,3),又OA +OB =(3-,+3),∴(x ,y)=(3-,+3),∴33+=-=y x ,又+=1,由此得到答案为D .4.B解析:∵(a -2b)⊥a ,(b -2a)⊥b ,∴(a -2b)·a =a 2-2a ·b =0,(b -2a)·b =b 2-2a ·b =0,∴a 2=b 2,即|a|=|b|.∴|a|2=2|a||b|cos θ=2|a|2cos θ.解得cos θ=21.∴a 与b 的夹角是3π.5.A解析:由平行四边形法则,AB +AD =AC ,又AB +BC =AC ,由λ的范围和向量数乘的长度,λ∈(0,1).6.D解析:如图,∵AF =DE ,∴DF =DE +EF =EF +AF .7.C解析:由(a +2b)·(a -3b)=-72,得a 2-a ·b -6b 2=-72.而|b|=4,a ·b =|a||b|cos 60°=2|a|,∴|a|2-2|a|-96=-72,解得|a|=6.8.D 解析:由OA ·OB =OB ·OC =OC ·OA ,得OA ·OB =OC ·OA ,即OA ·(OC -OB )=0,故BC ·OA =0,BC ⊥OA ,同理可证AC ⊥OB ,∴O 是△ABC 的三条高的交点.9.C解析:∵AD =AB +BC +D C =-8a -2b =2BC ,∴AD ∥BC 且|AD |≠|BC |.∴四边形ABCD 为梯形.10.D解析:AD 与BC ,AC 与BD ,OA 与OB 方向都不相同,不是相等向量.(第1题)二、填空题11.-32.解析:A ,B ,C 三点共线等价于AB ,BC 共线,AB =OB -OA =(4,5)-(k ,12)=(4-k ,-7),BC =OC -OB =(-k ,10)-(4,5)=(-k -4,5),又A ,B ,C 三点共线,∴5(4-k)=-7(-k -4),∴k =-32.12.-1.解析:∵M(-1,3),N(1,3),∴MN =(2,0),又a =MN ,∴=4-3-2=3+2x x x 解得4=1=-1=-x x x 或∴x =-1.13.-25.解析:思路1:∵AB =3,BC =4,CA =5,∴△ABC 为直角三角形且∠ABC =90°,即AB ⊥BC ,∴AB ·BC =0,∴AB ·BC +BC ·CA +CA ·AB=BC ·CA +CA ·AB =CA ·(BC +AB )=-(CA )2=-2CA =-25.思路2:∵AB =3,BC =4,CA =5,∴∠ABC =90°,∴cos ∠CAB =CAAB =53,cos ∠BCA =CABC=54.根据数积定义,结合图(右图)知AB ·BC =0,BC ·CA =BC ·CA cos ∠ACE =4×5×(-54)=-16,CA ·AB =CA ·AB cos ∠BAD =3×5×(-53)=-9.∴AB ·BC +BC ·CA +CA ·AB =0―16―9=-25.14.323.解析:a +mb =(3+2m ,4-m),a -b =(1,5).∵(a +mb)⊥(a -b),∴ (a +mb)·(a -b)=(3+2m)×1+(4-m)×5=0m =323.15.答案:重心.解析:如图,以OA ,OC 为邻边作□AOCF交AC 于点E ,则OF =OA +OC ,又OA +OC =-OB ,(第15题)D(第13题)∴OF =2OE =-OB .O 是△ABC 的重心.16.答案:平行四边形.解析:∵a +c =b +d ,∴a -b =d -c ,∴BA =CD .∴四边形ABCD 为平行四边形.三、解答题17.λ<-1.解析:设点P 的坐标为(x ,y),则AP =(x ,y)-(2,3)=(x -2,y -3).AB +λAC =(5,4)-(2,3)+λ[(7,10)-(2,3)]=(3,1)+λ(5,7)=(3+5λ,1+7λ).∵AP =AB +λAC ,∴ (x -2,y -3)=(3+5λ,1+7λ).∴713532yx 即7455yx 要使点P 在第三象限内,只需74055解得λ<-1.18.DF =(47,2).解析:∵A(7,8),B(3,5),C (4,3),AB =(-4,-3),AC =(-3,-5).又D 是BC 的中点,∴AD =21(AB +AC )=21(-4-3,-3-5)=21(-7,-8)=(-27,-4).又M ,N 分别是AB ,AC 的中点,∴F 是AD 的中点,∴DF =-FD =-21AD =-21(-27,-4)=(47,2).19.证明:设AB =a ,AD =b ,则AF =a +21b ,ED =b -21a .∴AF ·ED =(a +21b)·(b -21a)=21b 2-21a 2+43a ·b .又AB ⊥AD ,且AB =AD ,∴a 2=b 2,a ·b =0.∴AF ·ED =0,∴AF ⊥ED .本题也可以建平面直角坐标系后进行证明.20.分析:思路1:2a -b =(2cos θ-3,2sin θ+1),∴|2a -b|2=(2cos θ-3)2+(2sin θ+1)2=8+4sin θ-43cos θ.又4sin θ-43cos θ=8(sin θcos3π-cos θsin3π)=8sin(θ-3π),最大值为8,∴|2a -b|2的最大值为16,∴|2a -b|的最大值为4.思路2:将向量2a ,b 平移,使它们的起点与原点重合,则|2a -b|表示2a ,b终点间的距离.|2a|=2,所以2a 的终点是以原点为圆心,2为半径的圆上的动点P ,b 的终点是该圆上的一个定点Q ,由圆的知识可知,|PQ|的最大值为直径的长为4.(第18题)(第19题)。
高中数学向量知识点总结

高中数学向量知识点总结一、基础概念向量是由大小和方向两个方面表示的量,可以用有向线段表示。
向量的模(长度)是一个标量,用||a||表示,其中a为向量。
模为0的向量称为零向量。
向量的方向由其符号决定,同方向向量与相反方向向量称为“对向向量”。
二、向量的加法向量加法:向量加上另一个向量就是在另一个向量的末端从起点开始画一个同样大小的向量。
可加性:若a、b、c为向量,那么a+b=c,即a+b=c-b。
交换律:一个向量加上另一个向量等于另一个向量加上第一个向量。
结合律:(a+b)+c=a+(b+c)三、向量的减法向量减法:一个向量减上另一个向量等于另一个向量的相反数加上第一个向量。
四、向量的数量积向量的数量积:向量 a 与标量 k 的积乘积表示为ka 。
向量 a 与向量 b 的数量积表示为a·b 。
夹角公式:a·b=|a||b|cosθ。
五、向量的叉积向量的叉积可以得到一个新的向量,叉积符号为叉乘号-×。
向量的叉积表示为a×b,结果垂直于a和b所在的平面,方向通过右手定则判断。
六、平面向量平面向量:一个平面向量的模表示这个向量所代表的有向线段的长度,而朝向的方向则由向量的起点指向终点。
标准单位向量i、j 满足|i|=|j|=1,同时是相互垂直的。
平面向量加减的公式与三维向量相同。
七、空间向量空间向量:空间向量是三维向量,定义为一个向量的起点和终点可以在三维空间中的任意两个点之间往返移动。
空间向量加减的公式与平面向量相同。
空间向量的数量积:a·b=|a||b|cosθ。
八、向量的应用平移变换:平移是向量应用最广泛的变换之一,在2D空间或3D空间中使用相同的基础技巧。
投影:当我们需要在三维空间中绘制3D图像时,我们经常需要计算平行于某个坐标轴的投影。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 / 10
由 cos a,b = 1 得: a,b = ;
2
3
由 cos a,b =- 1 得: a,b = 2 .
2
3
(4)令 p·q=0 得:(3a-b)·(λa+17b)=0 3λ|a|2-17|b|2+(51-λ)a·b=0
①
将|a|=2,|b|=5,a·b=|a|·|b|·cos 2 代入①得 3λ·4-17×25+(51-λ)·(-5)=0 解之:λ=40. 3
1 / 10
|a1+a2+…+an|≤|a1|+|a2|+…+|an|.
【例 1】 计算下列各题:
小练习一
(1)已知等边三角形 ABC 边长为 1,且 BC =a, CA =b, AB =c,求 a·b+b·c+c·a;
(2)已知 a、b、c 是空间中两两垂直的向量,且|a|=1,|b|=2,|c|=3,求 r=a+b+c 的长度以及它和 a,b,c 的夹角;
33
2
【例 4】 已知平行四边形以 a=(2,1),b=(1,-3)为两邻边.
(1)求它的边长和内角;
(2)求它的两对角线的长和夹角.
【解前点津】 利用内积的有关运算性质.
【规范解答】 (1)|a|= 22 12 5 ,|b|= 12 (3) 2 10
cosα= a b (211 3) 2 ,
| a || b | 5 10
10
∴α=π-arccos 2 . 10
(2)|a+b|= (a b) 2 a 2 b 2 2ab 5 10 2(1) 13 ,
|a-b|= a 2 b 2 2ab 5 10 2 (1) 17 .
3 / 10
1 (a b) 1 (a b)
2
(2)cos r,a = r a ,∵|r|= r 2 且
| r || a | r2=(a+b+c)2=a2+b2+c2-2(a·b+b·c+c·a)=14-2(a·b+b·c+c·a)=14.
∴|r|= 14
cos r,a = (a b c) a | a |2 14 ;
14 | a |
4.向量的模及三角不等式 |a|2=a·a 或|a|= a a ;|a·b|≤|a|·|b|;|a|2-|b|2=(a+b)·(a-b);|a±b|=
a 2 b 2 2 | a | | b | cos
(θ 为 a,b 夹角);||a|-|b||≤|a±b|≤|a|+|b|.
5.三角不等式的推广形式
平面向量的数量积及平面向量的应用
1.定义及运算律. 两个向量的内积(即数量积),其结果是一个实数,而不是向量.其定义源于物理学中
“力所做的功”. 设 a 及 b 是具有共同始点的两个非零向量,其夹角 θ 满足:0°≤θ≤180°,我们把
|a|·|b|·cosθ 叫做 a 与 b 的数量积,记作 a·b 若 a=(x1,y1),b=(x2,y2),则 a·b= x1x2 y1 y2 .
14 | a | 14
cos r,b = (a b c) b | b |2 14 ;
14 | b |
14 | b | 7
cos r,c = (a b c) c | c |2 3 .
14 | c |
14 | c | 14
(3)由条件:(a+3b)·(7a-5b)=7|a|2-15|b|2+16a·b=0,(a-4b)·(7a-2b)=7|a|2+8|b|2-30a·b=0 |a|2=|b|2=2a·b (|a|·|b|)2=4(a·b)2 a b 1 .
【解后归纳】 综合利用内积的定义及运算律,内积运算形式与实数运算形式的相互转化,是 计算的一项基本功.
【例 2】 在△ABC 中, AB =(2,3), AC =(1,k),且△ABC 的一个内角为直角,求 k 的值. 【解前点津】 因谁是直角,尚未确定,故必须分类讨论.
【规范解答】 ①当∠A=90°时,因为 AB · AC =0, ∴2×1+3·k=0,∴k=- 2 .
|a||b|
时取等号.
②设 a=(x1,y1),b=(x2,y2),则:|a|= x12 y12 ;cosθ= (x1x2 y1 y2 ) ;|x1x2+y1y2|≤
x12 y12
x
2 2
y
2 2
Байду номын сангаас
x12 y12
x
2 2
y
2 2
3.两向量垂直的充要条件 若 a,b 均为非零向量,则:a⊥b a·b=0. 若 a=(x1,y1),b=(x2,y2),则 a⊥b x1x2+y1y2=0.
3
②当∠B=90°时, BC = AC - AB =(1-2,k-3)=(-1,k-3)
∵ AB · BC =0,∴2×(-1)+3×(k-3)=0 k= 11 . 3
③当∠C=90°时,∵ AC · BC =0,∴-1+k·(k-3)=0,k2-3k-1=0 k= 3 3 . 2
∴k 的取值为:- 2 , 11 或 3 3 .
cosβ= 2
2
1 (a b) 1 (a b)
2
2
其运算满足“交换律”“结合律”以及“分配律”,即:
a·b=b·a,(λ·a)·b=λ(a·b),(a±b)·c=a·c±b·c.
2.平面向量数量积的重要性质. ①|a|= a a = | a | | a | cos | a |2 ;cosθ= (a b) ;|a·b|≤|a|·|b|,当且仅当 a,b 共线
(3)已知(a+3b)与(7a-5b)垂直,且(a-4b)与(7a-2b)垂直,求 a、b 的夹角; (4)已知|a|=2,|b|=5,a,b 的夹角是 2 π,p=3a-b,q=λa+17b,问系数 λ 取向值时,p⊥q.
3 【解前点津】 (1)利用 x2=x·x,通过对(a+b+c)2 的计算得出结论;(2)运用公式及运算律;(3)利用 两向量垂直的充要条件;(4)利用两向量垂直的充要条件,运算律以及内积定义.构造关于 λ 的方程, 解之即得. 【规范解答】 (1)∵(a+b+c)2=a2+b2+c2-2(a·b+b·c+c·a)=3-2(a·b+b·c+c·a)=0 a·b+b·c+c·a= 3 .