XXXX版滚动轴承故障诊断案例 2 2003

合集下载

滚动轴承引起的故障事故案例

滚动轴承引起的故障事故案例

滚动轴承引起的故障事故案例滚动轴承是机械设备中常见的部件,但如果使用不当或者出现问题,可能会导致故障事故。

以下是一些可能由滚动轴承引起的故障案例:
1.轴承损坏:如果滚动轴承受到过大的负荷、振动或者温度过高,可能会导致轴承损坏。

例如,轴承过载或不正确的安装可能会导致轴承内部零件断裂或损坏,进而引发设备停机或者事故。

2.轴承磨损:长时间的运行或者不及时的维护保养可能会导致轴承磨损。

磨损轴承可能会导致设备运行不稳定、噪音增加以及性能下降,进而影响设备的正常运行。

3.轴承过热:轴承过热可能会由于润滑不足、轴承内部有异物、轴承密封不良等原因引起。

过热的轴承可能会造成润滑脂老化、轴承材料硬化,甚至引发润滑脂着火,造成设备损坏或者火灾事故。

4.轴承卡滞:如果轴承受到严重的污染或者润滑不良,可能会导致轴承卡滞。

轴承卡滞可能会导致设备运转不畅,增加摩擦力,最终引发设备故障或者事故。

5.轴承断裂:轴承断裂通常是由于过载、冲击负荷或者材料缺陷等原因引起的。

轴承断裂可能会造成设备停机、部件损坏甚至危及人身安全。

这些故障案例都说明了滚动轴承在机械设备中的重要性,以及在使用过程中需要进行适当的维护保养和监测,以确保设备的安全运行。

定期检查和维护轴承,保持良好的润滑状态,以及根据实际情况调整负荷和运行参数,都是预防轴承故障的关键措施。

滚动轴承故障诊断实例

滚动轴承故障诊断实例

滚动轴承故障诊断实例
滚动轴承故障诊断实例可以包括以下几种情况:
1. 声音异常:当滚动轴承出现故障时,可能会出现异常的噪音,如嘶嘶声、刮擦声或者咔咔声等。

这种情况下,可以通过听觉判断故障的类型和位置。

噪音一般源于滚珠或滚道表面的损伤或者磨损。

2. 振动异常:故障的滚动轴承会导致轴承运行不稳定,产生过大的振动。

可以通过振动传感器来检测振动的频率和幅度,进而判断故障的严重程度和位置。

振动异常可能是由于轴承内部松动、滚子损伤或滚道不平整等问题引起的。

3. 温度异常:滚动轴承运行时,由于磨擦和摩擦产生的热量,轴承温度会有所上升。

但是,如果滚动轴承的温度明显高于正常值,可能表明存在故障。

可以通过红外测温仪或接触式温度计来测量轴承的温度,判断是否存在异常。

4. 润滑问题:滚动轴承需要得到正确的润滑以保持正常运行。

如果滚动轴承出现故障,润滑不足或者污染等问题,会导致滚动轴承的寿命缩短。

可以通过观察润滑脂或润滑油的颜色、黏度以及滚动轴承周围是否有渗漏等来判断润滑是否正常。

上述实例中的故障诊断需要依靠专业的设备和工具,同时需要具备相应的专业知识和经验,建议请专业人士进行诊断和修复。

滚动轴承故障及其诊断方法

滚动轴承故障及其诊断方法
轴承因受到过大的冲击载荷、静载荷、落入硬质异物等 在滚道表面上形成凹痕或划痕。
而一旦有了压痕,压痕引起的冲击载荷会进一步引起附近 表面的剥落。
这样,载荷的累积作用或短时超载就有可能引起轴承塑性 变形。
1滚动轴承异常的基本形式
(4).腐蚀
润滑油、水或空气水分引起表 面锈蚀(化学腐蚀)
轴承内部有较大的电流通过造 成的电腐蚀
2.3 滚动轴承的振动及其故障特征
2. 幅值域中的概率密度特征 滚动轴承正常时和
发生剥落损伤时的轴 承振动信号的幅值概 率密度分布如图。
轴承振动的概率密度分布
从图中可以看出,轴承发生剥落时,幅值分布的幅 度广,这是由于存在剥落的冲击振动。这样,从概率 密度分布的形状,就可以进行异常诊断。
3 滚动轴承故障诊断方法
2.2 滚动轴承的特征频率
➢ 为分析轴承各部运动参数,先做如下假设: (1)滚道与滚动体之间无相对滑动; (2)每个滚道体直径相同,且均匀分布在内外滚道之间 (3)承受径向、轴向载荷时各部分无变形;
方法: 研究出不承受轴向力时轴承缺陷特征频率,进而,推导出 承受轴向力时轴承缺陷特征频率
1. 不承受轴向力时 轴承缺陷特征频率
d Dm
)
fr
滚动轴承的特征频率
➢ (3) 轴承内外环有缺陷时的特征频率:
➢ 如果内环滚道上有缺陷时,则Z个滚动体滚过该缺陷时的
频率为
fi
f Bi Z
1 (1 2
d Dm
) frZ
➢ 如果外环滚道上有缺陷时,则Z个滚动体滚过该缺陷时的
频率为
fo
f Bo Z
1 (1 2
d Dm
)
f
r
Z
➢ (4) 单个滚动体有缺陷时的特征频率:如果单个有缺陷的 滚动体每自传一周只冲击外环滚道(或外环)一次,则其 相对于外环的转动频率为

轴承跑内圈故障案例分析

轴承跑内圈故障案例分析

轴承跑内圈故障案例分析该文章取自网络,分享给大家者供参考,在此谈一点关于轴承跑内圈的个人体会,曾多次在现场遇到轴承跑内圈故障,振动特征也不尽相同,但也有共同之处。

不同之处为频谱形态,最常见的是工频及大量谐波,大部分谐波幅值接近于基频的1/3~1/2,且3X明显高于其他谐波,甚至超过基频的1/2,但也有个别频谱如文中所示基本为基频振动,这也是转发该文的主要原因;所遇跑内套故障共同特点是,振动不稳定,特别是停启设备后振幅大概率会发生突变,相位无规律变化大约在0~60度范围变化。

轴承跑内圈故障案例分析1、设备问题运行期间,发现风机轴承处的振动强度明显增大,振动的速度值超过10㎜/s。

而通过近几次的监测结果来看,其相位并不稳定。

并且,在停机时进行的实时跟踪监测结果表明:在降速时,振动强度并没有降低,反而进一步增加。

遂进行停车处理。

对设备检查时发现:定位侧轴承座上半体出现两条尚未贯穿的轴向裂纹。

由于缺乏备件,当时对轴承座进行了简单的加固处理,用夹具以及底部焊接在基础上的4条M18的锚螺栓将轴承座加固。

经过上述处理后,振动强度有所下降。

在接下来的几天中,由于锚螺栓因振动而导致螺母松动,使振动强度又有所回升。

在此期间,只要重新紧固锚螺栓。

振动的强度就会有一定程度的下降。

问题的关键是:究竟是什么原因使转子振动强度增加,并且能够达到如此高的峰值,导致轴承座损坏。

只有找到引起振动的主要因素,然后进行针对性的整改,才能从根本上解决这个设备故障。

2、设备结构轴功率: 400kW;吸入压力: 常压;排出压力: 5200 Pa;排出温度: 20~45ºC;吸入/排出流量:1593m³/min;转速为1490r/min 该风机采用悬臂式结构,使用两个独立的轴承座支承转子。

风机侧轴承座为转子定位端,电机侧为转子自由端,这样,转子热膨胀就是以风机侧轴承座为零点向两端发生。

两支承轴承型号为22222CK + H322为锥孔双列向心球面滚子轴承,具有承受一定的轴向力。

11种轴承损伤的典型案例,原因分析及解决方案

11种轴承损伤的典型案例,原因分析及解决方案

11种轴承损伤的典型案例,原因分析及解决方案轴承在各个领域各个行业应用都非常广泛,今天为大家带来轴承损伤的经典案例,希望大家能有所收获!高质量的轴承在正确的使用下,可以使用很长一段时间,如果过早的出现损伤,很可能是因为选型错误,使用不当或润滑不良造成的。

因此,在安装轴承时,我们需要记录机器种类,安装部位,使用条件及周围配合。

通过研究总结轴承损伤的类型,发生问题时的使用环境,以避免类似情况再次发生。

轴承损伤方式按下述图片分类,我们可以图片中显示的主要特征来判断轴承损伤形式。

裂纹缺陷,部分缺口有裂纹。

原因:主机的冲击负荷过大,主轴与轴承配合过盈量大;也有较大的剥离摩擦引起裂纹;安装时精度不良;使用不当(用铜锤、卡入大异物)和摩擦裂纹。

解决措施:应检查使用条件,同时设定适当过盈及检查材质,改善安装及使用方法,检查润滑剂以防止摩擦裂纹。

滚道表面金属剥离运转面剥离。

剥离后呈明显凹凸状。

原因:轴承滚动体和内、外圈滚道面上均承受周期性脉动载荷作用,产生周期变化的接触应力。

当应力循环次数达到一定数值后,在滚动体或内、外圈滚道工作面上就产生疲劳剥离。

如果轴承的负荷过大,会使这种疲劳加剧。

另外,轴承安装不正、轴弯曲也会产生滚道剥离现象。

解决措施:应重新研究使用条件和选择轴承及游隙,并检查轴和轴承箱的加工精度、安装方法、润滑剂及润滑方法。

烧伤轴承发热变色,进而烧伤不能旋转。

原因:一般是润滑不足,润滑油质量不符合要求或变质,以及轴承装配过紧等。

另外游隙过小和负荷过大(预压大),滚子偏斜。

解决措施:选择适当的游隙(或增大游隙),要检查润滑剂的种类,确保注入量,检查使用条件,以防定位误差,改善轴承组装方法。

保持架碎裂铆钉松动或断裂,滚动体破碎。

原因:力矩负荷过大,润滑不足,转速变动频繁、振动大,轴承在倾斜状态下安装,卡入异物。

解决措施:要查找使用条件和润滑状态是否适宜,注意轴承的使用,研究保持架的选择是否合适和轴承箱的刚性是否负荷要求。

滚动轴承的故障诊断

滚动轴承的故障诊断

滚动轴承的故障诊断一、滚动轴承的常见故障滚动轴承是转动设备中应用最为广泛的机械零件,同时也是最容易产生故障的零件。

据统计,在使用滚动轴承的转动设备中,大约有30%的机械故障都是由于滚动轴承而引起的。

滚动轴承的常见故障形式有以下几种。

1. 疲劳剥落(点蚀)滚动轴承工作时,滚动体和滚道之间为点接触或线接触,在交变载荷的作用下,表面间存在着极大的循环接触应力,容易在表面处形成疲劳源,由疲劳源生成微裂纹,微裂纹因材质硬度高、脆性大,难以向纵深发展,便成小颗粒状剥落,表面出现细小的麻点,这就是疲劳点蚀。

严重时,表面成片状剥落,形成凹坑;若轴承继续运转,将形成大面积的剥落。

疲劳点蚀会造成运转中的冲击载荷,使设备的振动和噪声加剧。

然而,疲劳点蚀是滚动轴承正常的、不可避免的失效形式。

轴承寿命指的就是出现第一个疲劳剥落点之前运转的总转数,轴承的额定寿命就是指90%的轴承不发生疲劳点蚀的寿命。

2. 磨损润滑不良,外界尘粒等异物侵入,转配不当等原因,都会加剧滚动轴承表面之间的磨损。

磨损的程度严重时,轴承游隙增大,表面粗糙度增加,不仅降低了轴承的运转精度,而且也会设备的振动和噪声随之增大。

3. 胶合胶合是一个表面上的金属粘附到另一个表面上去的现象。

其产生的主要原因是缺油、缺脂下的润滑不足,以及重载、高速、高温,滚动体与滚道在接触处发生了局部高温下的金属熔焊现象。

通常,轻度的胶合又称为划痕,重度的胶合又称为烧轴承。

胶合为严重故障,发生后立即会导致振动和噪声急剧增大,多数情况下设备难以继续运转。

4. 断裂轴承零件的裂纹和断裂是最危险的一种故障形式,这主要是由于轴承材料有缺陷和热处理不当以及严重超负荷运行所引起的;此外,装配过盈量太大、轴承组合设计不当,以及缺油、断油下的润滑丧失也都会引起裂纹和断裂。

5. 锈蚀锈蚀是由于外界的水分带入轴承中;或者设备停用时,轴承温度在露点以下,空气中的水分凝结成水滴吸附在轴承表面上;以及设备在腐蚀性介质中工作,轴承密封不严,从而引起化学腐蚀。

滚动轴承故障诊断分析全解

滚动轴承故障诊断分析全解

滚动轴承故障诊断分析全解
滚动轴承是机械设备中的重要元件,也是故障率最高的构件。

其突发的故障可能会严重影响机械设备的正常运行,即使是轻微的故障,也会降低设备的使用寿命。

因此,对滚动轴承的故障进行及时诊断和维修,是确保轴承的正常运行的关键。

本文将对滚动轴承故障诊断进行全面阐述,以便于有助于轴承的可靠运行。

一般来讲,滚动轴承的故障可以归结为以下几类:
(1)疲劳损坏:由于长期的使用,滚动轴承中的滚动体和锥形齿轮等内部零件可能会因疲劳而损坏,最终导致轴承的故障;
(2)腐蚀破坏:由于设备运行时的温度、湿度及磨损较大,滚动轴承容易受到空气、油品及其他化学性腐蚀剂的作用,从而造成内部零件的磨损;
(3)水分侵入:滚动轴承组装后,如果存在漏油现象,则滚动轴承内部容易污染,从而导致滚动体及锥形齿轮等内部零件受损;
(4)润滑油工作性能不佳:润滑油在机械设备运行时,若由于品质或温度等原因,润滑油的性能不佳,轴承容易受到损坏;
(5)安装不良:滚动轴承安装后,若没有正确地调整轴的负荷和动转瞬间,将会对轴承组件产生振动和噪音,从而导致故障。

滚动轴承故障诊断

滚动轴承故障诊断

滚动轴承故障诊断滚动轴承故障诊断初步1、故障原因滚动轴承的早期故障是滚⼦和滚道剥落、凹痕、破裂、腐蚀和杂物嵌⼊。

即主要故障形式:疲劳剥落、磨损、塑性变形、锈蚀、断裂、胶合、保持架损坏。

产⽣主要原因包括搬运粗⼼、安装不当、不对中、轴承倾斜、轴承选⽤不正确、润滑不⾜或密封失效、负载不合适以及制造缺陷。

2、频谱和波形特征滚动轴承它是由内圈、外圈、滚动体和保持架四部分组成。

当滚动体和滚道接触处遇到⼀个局部缺陷时,就有⼀个冲击信号产⽣。

缺陷在不同的元件上,接触点经过缺陷的频率是不相同的,这个频率就称为滚动轴承的特征频率。

滚动轴承的故障特征频率的数值⼀般在⼏赫兹到⼏百赫兹之间,在频谱图中的1000Hz以内的低频区域轴承故障特征频率如下:1、滚动轴承故障特征频率(外圈静⽌)式中:Z——滚动体个数fr——转频(Hz)D——轴承节径(mm)d——滚动体直径(mm)α——接触⾓(1)滚动轴承内圈故障特征频率(2)滚动轴承外圈故障特征频率(3)滚动轴承滚动体特征频率(4)滚动轴承保持架特征频率2、滚动轴承故障特征频率的计算经验公式:⼆、滚动轴承故障诊断的要素滚动轴承由内圈、外圈、滚动体和保持架四部分组成,每个轴承部件对应⼀个轴承故障特征频率。

滚动轴承的故障频率分布有⼀个明显的特点,往往在低频和⾼频两个频段内都有表现。

所以在频率分析时,可以选择在这两个频段进⾏分析。

根据滚动轴承的故障形式在频域中的表现形式,将整个频域分为三个频段,既⾼频段、中频段和低频段。

l ⾼频阶段指频率范围处于2000-5000Hz 的频段,主要是轴承固有频率,在轴承故障的早期,⾼频段反映⽐较敏感;中频阶段指频率范围处于800-1600Hz 的频段,⼀般是由于轴承润滑不良⽽引起碰磨产⽣的频率范围;l 低频阶段指频率范围处于0-800Hz 的频段,基本覆盖轴承故障特征频率及谐波;在⾼频段和低频段中所体现的频率是否为轴承故障频率,还要通过其他⽅法进⾏印证加以确认。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
117.188 117.188
0
0
1.508
锥箱 I轴转频二倍频
3
180.664 175.782 4.882 2.8%
2.458 锥箱I轴转频的三倍频
4
239.258 234.376 4.882 2.1%
0.908 锥箱I轴转频的四倍频
?3) 趋势分析:
300 250 200 150 100
50 0
2.频(同时也是该轴轴承内圈旋 转频率)及大量谐波,达5000Hz以上,这是典型的部件松动特征。 b) 58.59Hz的振幅已经超过10m/s2;(图7-11)
3.该齿轮箱可能存在两种故障隐患: a)I轴轴承损坏(可能性较大); b)26架底座刚度弱(有松动、裂纹等),有被外力所激起的振动。
实际情况
厂方接到报告后,立即组织检修。开箱后发现1轴 MRC—7126 KRD4S轴承损坏。
(注:这个诊断报告中 将锥箱 I 轴的转动频率 及大量谐波解释成典型 的部件松动特征,实际 是因为 轴承破损 ,造成 I轴定心失效所致)
图5 破裂的 1轴轴承
例2 2005年1月5日,宣化钢铁公司高速线材轧机的 20架出现振
1 、经过初步分析该振 动成份并非轴与齿轮的故 障特征频率(轴转动频率 小于 30HZ ,齿轮啮合频 率大于2000HZ);
2、由于轴承参数不全, 无法计算精确的故障特征 频率,根据估计值计算有 轴承故障可能。
在随后的紧急检修中, 开箱发现输出高速轴联轴 节端滚动轴承内圈断裂。
图4 轴承内圈断裂
例4:
2006年6月27日,安阳钢铁公司高速线材轧制线上的吐丝机Ⅱ轴发 生轴承碎裂事故,被迫停产检修。事后检视在线故障诊断监测系统,发 现早在4月13日时域峰值指标状态监测已经发出红色警报。图1是吐 丝机传动简图。
图7-26 吐丝机传动简图
作为事后调查,欲对所有故障监测指标作一下回顾,以便认识哪些 指标对这类故障信息敏感。所以将各项时域监测指标列举分析如下:
1、时域指标趋势分析
(1) Φ6.5钢吐丝机a35测点峰值趋势图
吐丝机水平测点峰值趋势
400
300
值 峰
200
a35
100
0
月1日 2
2月15日
2月19日
月7日 3
3月11日
28日 13日 17日 3月 日4月期 4月
月6日 5
5月10日
5月26日
月7日 6
6月27日
图2 峰值指标趋势图
滚动轴承故障诊断案例-2
实例1 宣化钢铁公司高速线材轧机26架 实例2 宣化钢铁公司高速线材轧机20架 实例3 唐山钢铁公司高速线材轧机的增速箱 实例4 安阳钢铁公司高速线材轧制线上吐丝机
滚动轴承故障诊断案例-2
例1
2005年1月31日,宣化钢铁公司高速线材轧机的26架出现振动 异常。图1 为高线轧机的传动机构示意图。
建议:及时更换20#锥箱I轴轴承,以免发生故障。
20# 轧机拆检结果
图4
图5
图6
例3
2005 年 12 月 15 日,唐山 钢铁公司高速线材轧机的增速 箱振动异常升高的故障诊断。
根据系统的时域指标监测, 在12月14日发现精轧机增速箱 南侧时域指标连续呈黄色警报, 到12月15日时域指标报警值大 于150变为红色,引起技术人 员的关注,因此进一步对该设 备进行频谱分析。
动异常。图 7-10为高线轧机的传动机构示意图。 查20架的频谱变化过程,见图 1、图2、图3。
图1 12 月28日谱图锥箱 I轴转频 58Hz幅值为 0.447 m/s 2
图2 1月2日频谱图(锥箱Ⅰ轴转动频率58Hz的振幅为2.502 m/s2 图3 1月4日频谱图(锥箱Ⅰ轴转动频率58Hz的振幅为3.664 m/s2
0.537/59.13 =0.91%
100 锥箱I轴转频
2.504
118.26-117.188 =1.072
1.072/118.26 =0.91%
100
锥箱 I 轴转频 的2倍频
从2004年12月28日的频谱图到2005年1月4日的频谱图,可以看到 轴转频的振幅上升了7倍,而且频域图形中出现很多谐波并向上漂起 ,时域图形越来越混乱,呈很强的非对称形态。由此可以判断20#架 锥箱Ⅰ轴轴承出现故障.
图1 高线精轧机齿轮箱传动链图
频谱图分析 0位线
图2 增速箱 12月15日时域振动波形
在图2增速箱时域振动波形图中可以明显看到高频冲击现象,并且相对 0位线偏向上方。
图3 增速箱 12月15日频谱图
时域信号有明显下延结构是冲击类振动的表现,频域含有410HZ成份, 并伴随有高阶倍频成份。
诊断结论
图1 高线轧机的传动机构示意图
1)频谱分析图:
图2 26 架轧机振动频谱图
?2)数据分析:
表 1 数据分析表 (测量转速1100rpm;推导转速1078.2rpm)
序号
故障特征频率( Hz) 测量值 计算值
误差 绝对 相对
振幅 (m/S2)
特征描述
1
58.594 58.594
0
0
3.245
锥箱 I轴转频
数据分析
表1 数据分析表 (测量转速1088rpm;推导转速1078.2rpm)
序 故障信号 计算特征 号 频率 (Hz) 频率 (Hz)
振幅
绝对误差 (Hz)
相对误差 %
可 信 故障部位及 度 % 性质分析
1 58.594 2 117.188
59.13 118.26
2.502
59.13-58.593 =0.537
从图4 中可以看到,Ⅰ轴转频(58.59Hz)及2倍频(117.19Hz)的振 幅也是在1月29日开始上升。
?5)当时的诊断结论与处理建议
1.时域信号特征 a)26#架精轧机在1月29日柱状图(棒图a、b、c,这里未给出)峰值 开始报警,30日报警值达255; b)29日时域信号发生严重畸变,30日时域信号完全紊乱; c)时域趋势图从27日的22.6m/s2急剧上升到30日的245 m/s2(图7-12 ),突变了10倍左右。
26#趋势图
26#趋势图
图3 26架通频振动有效值趋势图
从趋势图上可以看到振动是在1月29日开始上升的,说明故障发 展很快。
?4)特征频率趋势分析
18 16 14 12 10 8 6 4 2 0
58.59 61.04 117.19 175.78 178.22 603.03 605.47
图4 26 架特征频率趋势图
相关文档
最新文档