2.3.1 几种常见的晶体结构

合集下载

三种晶体结构的最密排晶面和最密排晶向

三种晶体结构的最密排晶面和最密排晶向

三种晶体结构的最密排晶面和最密排晶向1.引言1.1 概述晶体是具有长程有序排列的原子、离子或分子的固体物质。

晶体的结构是由最密排列的晶面和晶向构成的。

最密排晶面是指在晶体结构中,原子、离子或分子最紧密地靠近的面,而最密排晶向则指的是在晶体中最紧密地排列的方向。

本文将分析三种不同的晶体结构,探讨它们各自的最密排晶面和最密排晶向。

通过深入研究这些结构的排列方式,可以更好地理解晶体的性质和行为。

第一种晶体结构是立方晶系,也是最简单的晶体结构之一。

它的最密排晶面是(111)晶面,最密排晶向则是[110]晶向。

这些晶面和晶向在晶体中具有紧密的排列,使晶体的结构呈现出高度的对称性。

第二种晶体结构是六方晶系,它相对于立方晶系而言稍复杂一些。

在六方晶系中,最密排晶面是(0001)晶面,最密排晶向是[10-10]晶向。

与立方晶系不同,六方晶系具有六方对称性,呈现出更复杂的晶体结构。

第三种晶体结构是四方晶系,它也是一种常见的晶体结构。

在四方晶系中,最密排晶面是(100)晶面,最密排晶向是[110]晶向。

四方晶系的晶体结构与立方晶系相似,但具有更多的对称性和排列方式。

通过对这三种晶体结构的最密排晶面和最密排晶向进行研究,我们可以更好地理解晶体的基本结构和性质。

这对于材料科学、凝聚态物理和相关领域的研究具有重要意义,同时也有助于开发新材料和改进现有材料的性能。

1.2文章结构文章结构部分的内容可以包括以下几个方面的介绍:1.2 文章结构本文主要分为引言、正文和结论三个部分。

引言部分概述了晶体结构和最密排晶面、最密排晶向的研究背景和重要性,并提出了本文研究的目的和意义。

正文部分分为三个小节,分别介绍了三种晶体结构的最密排晶面和最密排晶向。

每个小节将首先介绍该种晶体结构的一般特点和常见应用,然后详细讨论最密排晶面和最密排晶向的确定方法和规律,并给出具体的实例和数据进行说明。

结论部分对于每种晶体结构的最密排晶面和最密排晶向进行总结和回顾,并指出各种晶体结构最密排晶面和最密排晶向的综合特点和应用前景。

压电材料的晶体结构

压电材料的晶体结构

压电材料的晶体结构1. 引言压电材料是一类具有压电效应的材料,能够在受到外力作用时产生电荷分离,从而产生电压。

压电效应广泛应用于传感器、声学器件、振动能量收集等领域。

压电材料的晶体结构对其压电性能具有重要影响。

本文将对压电材料的晶体结构进行全面详细、完整且深入的介绍。

2. 压电材料的晶体结构分类压电材料的晶体结构可以分为以下几类:2.1 离子型压电材料离子型压电材料的晶体结构由阳离子和阴离子构成。

常见的离子型压电材料有氧化锆(ZrO2)、氧化铅(PbO)等。

这些材料的晶体结构通常为立方晶系或四方晶系,晶格常数较大。

2.2 极化型压电材料极化型压电材料的晶体结构具有非零的极化矢量,其中极化矢量在外电场作用下发生反转。

常见的极化型压电材料有二氧化钛(TiO2)、硅酸铅(PbZrO3)等。

这些材料的晶体结构通常为钙钛矿结构,具有较高的压电性能。

2.3 复合型压电材料复合型压电材料是指由两种或两种以上的晶体结构组成,具有复合的压电性能。

常见的复合型压电材料有铅锆钛酸铅(PZT)、铅镁酸铌(PMN)等。

这些材料的晶体结构由多种晶体相组成,具有较高的压电性能和优良的机械性能。

3. 压电材料的晶体结构特点压电材料的晶体结构具有以下几个特点:3.1 极化方向压电材料的晶体结构中存在一个或多个极化方向,即在外力作用下产生电荷分离的方向。

不同的晶体结构具有不同的极化方向,极化方向的选择对材料的压电性能具有重要影响。

3.2 晶格畸变压电材料的晶体结构中常常存在晶格畸变,即晶格的周期性不完全。

晶格畸变会导致晶体结构的非对称性增强,从而增强材料的压电效应。

3.3 电荷分离压电材料的晶体结构在受到外力作用时,会导致晶体内部电荷的分离,形成电偶极子。

电荷分离使得晶体产生电压,从而实现压电效应。

4. 压电材料的晶体结构与压电性能的关系压电材料的晶体结构对其压电性能具有重要影响。

晶体结构的特点决定了材料的极化方向、晶格畸变和电荷分离等性质,进而影响材料的压电性能。

第二章晶体结构与常见晶体结构类型

第二章晶体结构与常见晶体结构类型
2.2.1 对称性的基本概念
对称就是物体相同部分有规律的重复。
对称不仅针对几何形态,还有更深和更广的含义,它包含了自然 科学、社会科学、文学艺术等各领域的对称性,如战争中的非对称 战略。
晶体对称的特点
1)由于晶体内部都具有格子构造,通过平移,可使相同质点重 复,因此所有的晶体结构都是对称的。
2)晶体的对称受格子构造规律的限制,它遵循“晶体对称定 律” 。
4 平行六面体(parallelepiped)
平行六面体:结点在三维空间的分布构成空间格子。 特点:任意三个相交且不在同一个平面的行列构成一个空间点阵。 根据基矢的不同选择可以得到不同的平行六面体。
计算由基矢构成的平行六面体点阵点数量时 必须考虑: (1)在平行六面体顶角上的点阵点时由8 个相邻平行六面体所共有的; (2)位于平行六面体棱上的点阵点是由4 个相邻平行六面体所共有的; (3)位于平行六面体面上的点阵点时2个 相邻平行六面体所共有的; (4)位于平行六面体内部的点阵点完全属 于该平行六面体。
1 结点(node):点阵中的点。 结点间距:相邻结点间的距离。
空间点阵几何要素(点线面)
2 行列(row) :结点在直线上的排列。 特点:平行的行列间距相等。
3 面网(net)
面网:由结点在平面上分布构成的平面。 特点:任意两个相交行列便可以构成一个面网。
面网密度:面网上单位面积内的结点数目。 面网间距:两个相邻面网间的垂直距离,平行面网间距相等。
三轴定向通式为[uvw],四轴定向通式为[uvtw], 晶向符号的确定步骤:
①选定坐标系,以晶轴x、y、z为坐标轴,轴单位分别是a、b和c; ②通过原点作一直线,使其平行于待标定晶向AB; ③在直线上任取一点P,求出P点在坐标轴上的坐标xa、yb、zc; ④xa/a:yb/b:zc/c=u:v:w应为整数比,去掉比号,以方括号括之,

常见晶体结构

常见晶体结构
(5)FCC和HCP的两种间隙的相对大小相等。(原因见堆垛方式)
常见晶体结构
FCC和HCP ➢配位数是一样的 ➢间隙相对大小是一样的 ➢间隙数和原子数比是一样的 ➢堆垛密度(致密度)是一样的
0.155R<100>
常见晶体结构
三、常见晶体结构及其几何特征
4 常见晶体的堆垛方式 任何晶体都可以看成由任给的{hkl}原子面一层一层堆垛而成的。 主要讨论FCC和HCP的密排面的堆垛次序。
➢这里,“最邻近”是就同种元素的原子 相比较而言,而配位数则是一个原子周 围的各元素的最近邻原子数之和。 ➢ 配位数通常用 CN 表示。例如, CN 12 表示配位数为12。
体心立方结构 CN8常见晶 Nhomakorabea结构四 面 体 配 位4
立方 体配
位 8
常见晶体结构
八 面 体 配 位6
十 四 面 体 配 位 12
体中的原子看成是有一定直径的刚球,则紧密系 数可以用刚球所占空间的体积百分数来表示。
以一个晶胞为例,致密度就等于晶胞中原子所 占体积与晶胞体积之比 即: 致密度 =晶胞中原子所占体积之和/晶胞的体积。
=nv/V n: 晶胞原子数 v:每个原子所占的体积 V: 晶胞的体积
常见晶体结构
三、常见晶体结构及其几何特征
1 常见晶体结构 (1)体心立方结构 简写为BCC 例如:V Nb Ta Cr Mo W (2)面心立方结构 简写为FCC 例如:Al Cu Ag Au (3)密排六方结构 简写为HCP 例如:-Ti -Zr -Hf
常见晶体结构
2 几何特征 2.1 配位数 简写CN 一个原子周围最邻近的原子数 ➢ 纯元素金属 这些最邻近的原子到所论原子的距离是相等的 ➢ 多元素晶体 不同元素的最邻近原子到所论原子的距离不一定相等

盐型 晶型-概念解析以及定义

盐型 晶型-概念解析以及定义

盐型晶型-概述说明以及解释1.引言1.1 概述概述部分是对整篇文章进行一个简要介绍,主要概括了盐型和晶型的相关内容。

在这篇长文中,我们将讨论盐型晶体和晶型晶体的定义、特点以及它们在科学领域和实际应用中的重要性。

我们将深入探讨盐型晶体和晶型晶体的结构和特性,以及它们在材料科学、化学、生物学等领域的广泛应用。

此外,我们还将研究盐型晶体和晶型晶体之间的关系,包括它们的区别、相互转化以及应用比较。

最后,我们将总结盐型晶体和晶型晶体的重要性以及它们在未来的研究中的潜在前景。

通过对这些内容的深入研究,我们可以更好地理解盐型晶体和晶型晶体,并为未来的科学研究和技术应用提供重要的参考。

1.2文章结构2. 正文2.1 盐型2.1.1 定义和特点盐型是一种晶体结构类型,其特点是由离子网状结构构成。

在盐型晶体中,正离子和负离子以离子键的形式相互吸引,形成稳定的晶格结构。

正离子和负离子的比例通常是1:1,所以盐型晶体也被称为化合物型晶体。

2.1.2 盐型晶体结构盐型晶体由正离子和负离子以无序排列的方式组成。

正离子和负离子通过离子键相互连接,共享和交换电子,形成离子化合物的晶体结构。

在盐型晶体中,正负离子形成紧密堆积的晶格,其排列方式和距离取决于离子尺寸和电荷。

2.1.3 盐型晶体的应用盐型晶体在化学、材料科学和生命科学等领域具有广泛的应用。

由于盐型晶体具有稳定的结构和独特的性质,可以用于储能材料、光电器件、催化剂以及药物控释等方面。

盐型晶体还可以作为反应物、催化剂和电解质,在化学反应和电化学过程中具有重要作用。

2.2 晶型2.2.1 定义和特点晶型是指晶体的几何形状和结构特征。

不同的晶体材料具有不同的晶型,晶型决定了晶体的物理和化学性质。

晶体的晶型包括晶体的对称性、晶胞参数和晶体的晶面排布等方面。

2.2.2 晶型的分类晶型可以根据晶格结构和晶体对称性进行分类。

常见的晶型包括立方晶系、四方晶系、正交晶系、单斜晶系、三斜晶系、菱面晶系和六方晶系等。

上海交大材基-第二章晶体结构--复习提纲讲解

上海交大材基-第二章晶体结构--复习提纲讲解

第2章晶体结构提纲:2.1 晶体学基础2.2 金属的晶体结构2.3 合金相结构2.4 离子晶体结构2.5 共价晶体结构2.6 聚合物的晶态结构2.7 非晶态结构学习要求:掌握晶体学基础及典型晶体的晶体结构,了解复杂晶体(包括合金相结构、离子晶体结构,共价晶体的结构,聚合物的晶态结构特点)、准晶态结构、液晶结构和非晶态结构。

1.晶体学基础(包括空间点阵概念、分类以及它与晶体结构的关系;晶胞的划分,晶向指数、晶面指数、六方晶系指数、晶带和晶带定律、晶面间距的确定、极射投影);2.三种典型金属晶体结构(晶胞中的原子数、点阵常数与原子半径、配位数与致密度、堆垛方式、间隙类型与大小);3.合金相结构(固溶体、中间相的概念、分类与特征);4.离子晶体的结构规则及典型晶体结构(AB、AB2、硅酸盐);5、共价晶的结构规则及典型晶体结构体(金刚石)6、聚合物的晶态结构、准晶态结构、液晶结构和非晶态结构。

重点内容1.选取晶胞的原则;Ⅰ) 选取的平行六面体应与宏观晶体具有同样的对称性;Ⅱ)平行六面体内的棱和角相等的数目应最多;Ⅲ)当平行六面体的棱角存在直角时,直角的数目应最多;Ⅳ)在满足上条件,晶胞应具有最小的体积。

2.7个晶系,14种布拉菲空间点阵的特征;(1)简单三斜(2)简单单斜底心单斜(3)简单正交底心正交体心正交面心正交(4)简单六方(5)简单四方体心四方(6)简单菱方(7)简单立方体心立方面心立方3.晶向指数与晶面指数的标注,包括六方体系,重要晶向和晶面需要记忆。

4.晶向指数,晶面指数,晶向族,晶面族,晶带轴,共带面,晶面间距5.8种,即1,2,3,4,6,i,m,。

或C1,C2,C3,C4,C6 ,C i,C s,S4。

微观对称元素6.极射投影与Wulff网;标hkl直角坐系d4⎧⎨⎩微观11213215243滑动面 a,b,c,n,d螺旋轴 2;3,3;4,4,4;6,6,6,6,67.三种典型金属晶体结构的晶体学特点;在金属晶体结构中,最常见的是面心立方(fcc)、体心立方(bcc)和密排六方(hcp)三种典型结构,其中fcc和hcp系密排结构,具有最高的致密度和配位数。

机械工程材料 第二章 金属的晶体结构与结晶

机械工程材料 第二章 金属的晶体结构与结晶

均匀长大
树枝状长大
2-2
晶粒度
实际金属结晶后形成多晶体,晶粒的大小对力学性能影响很大。 晶粒细小金属强度、塑性、韧性好,且晶粒愈细小,性能愈好。
标准晶粒度共分八级, 一级最粗,八级最细。 通过100倍显微镜下的 晶粒大小与标准图对 照来评级。
2-2
• 影响晶粒度的因素
• (1)结晶过程中的形核速度N(形核率) • (2)长大速度G(长大率)
面心立方晶 格
912 °C α - Fe
体心立方晶 格
1600
温 度
1500 1400
1300
1200
1100
1000
900
800
700 600 500
1534℃ 1394℃
体心立方晶格
δ - Fe
γ - Fe
γ - Fe
912℃
纯铁的冷却曲线
α – Fe
体心立方晶 格
时间
由于纯铁具有同素异构转变的特性,因此,生产中才有可能通过 不同的热处理工艺来改变钢铁的组织和性能。
2-3
• 铁碳合金—碳钢+铸铁,是工业应用最广的合金。 含碳量为0.0218% ~2.11%的称钢 含碳量为 2.11%~ 6.69%的称铸铁。 Fe、C为组元,称为黑色金属。 Fe-C合金除Fe和C外,还含有少量Mn 、Si 、P 、 S 、 N 、O等元素,这些元素称为杂质。
2-3
• 铁和碳可形成一系列稳定化合物: Fe3C、 Fe2C、 FeC。 • 含碳量大于Fe3C成分(6.69%)时,合金太脆,已无实用价值。 • 实际所讨论的铁碳合金相图是Fe- Fe3C相图。
2-2
物质从液态到固态的转变过程称为凝固。 材料的凝固分为两种类型:

ch2-2 金属的晶体结构

ch2-2 金属的晶体结构

(4)致密度
0.74 (74%)
(5)空隙半径 ●四面体空隙半径: r四=0.225r原子 ●八面体空隙半径: r八=0.414r原子
(6)配位数 12
3. 密排六方晶格(胞) ( HCP 晶格) 12个金属原子分布在六方体的12个角 上, 在上下底面的中心各分布1个原子, 上下底面之间均匀分布3个原子。 具有这种晶格的金属有镁(Mg)、镉 (Cd)、锌(Zn)、铍(Be)等。
1.晶胞中的原子数 立方结构
Nc N=Ni 2 8
Nf
面心立方结构:n=8×1/8+6×1/2=4 体心立方结构:n=8×1/8+1=2 密排六方结构:n=12×1/6+2×1/2+3=6
2.2 金属的晶体结构
2.点阵常数与原子半径 若把原子看成等径的刚性小球, 其半径r称为原子半径。
对于1g碳,当它为金刚石结构时的体积
(cm3)
当它为石墨结构时的体积
(cm3) 故由金刚石转变为石墨结构时其体积膨胀
E.g. Mn的同素异构体有一为立方结构,其晶格常 数为0.6326nm,ρ为7.26g/cm3,r为0.112nm,问 Mn晶胞中有几个原子,其致密度为多少? Solution:
每单位晶胞内20个原子
单胞原子数 摩尔质量 单胞体积 阿佛伽德罗常数
例题:计算晶格常数为0.2866nm的BCC铁的密度.
对于BCC铁单胞, 单胞原子数= 2
a0 = 0.2866nm = 2.866×10-8cm 摩尔质量 = 55.847g/mol 单胞体积 = a03 = 23.54×10 -24cm3/cell 密度:
plane indices
BCC
FCC
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档