高考数学考点《圆与方程》

合集下载

高考数学4.1圆的方程专题2

高考数学4.1圆的方程专题2

高考数学4.1圆的方程专题22020.031,求以(1,2),(5,6)A B --为直径两端点的圆的方程. 2,椭圆的一焦点与两顶点为等边三角形的三个顶点,则长轴是短轴长的 []A .3倍B .2倍C .2倍D .32倍3, 曲线92522y x +=1与k y k x -+-92522=1(k <9)有相同的( )A .短轴B .焦点C .准线D .离心率4,21,F F 分别是椭圆2212x y +=的左右焦点,过1F 作倾斜角为4π的直线与椭圆交于P,Q两点,则PQ F 2∆的面积为 . 5,已知F 1,F 2为椭圆12222=+b y a x (a >b >0)的两个焦点,过F 2作椭圆的弦A B ,若△A F 1B 的周长为16,椭圆离心率 e =23,则椭圆的方程为 A .13422=+y xB .131622=+y xC .1121622=+y xD .141622=+y x6,圆06522=++++m y x y x 与直线032=++y x 相交于P 、Q 两点,若OQ OP ⊥,求实数m 的值7,圆x 2+y 2=1与圆(x -1)2+y 2=4的位置关系是 (A )相交 (B )内切 (C )外切 (D )内含8,椭圆⎩⎨⎧==ϕϕsin 3cos 2y x (ϕ为参数)的离心率为 [ ] A .32B .135C .35D .1329,对于椭圆122=-my x )1(<m ,给出下列命题:①焦点在x 轴上;②长半轴的长是m 1;③短半轴的长是1;④焦点到中心的距离是mm +-1;⑤准线方程是)1(1+-±=m m x ;⑥离心率m e +=1;其中正确命题的序号是 .10,已知椭圆1522=+m y x 的离心率λ=510,则m 的值为[]A .3 B .3或325C .15D . 15或315511,若直线4x-3y-2=0与圆01242222=-++-+a y ax y x 相交,则实数a 满足( ) (A) -3<a <7 (B )-6<a <4 (C )-7<a <3 (D )-21<a <1912,已知x 、y 满足191622=+y x ,求x + y 的取值范围13,圆22(2)5x y ++=关于原点(0,0)P 对称的圆的方程为 ( ) A.22(2)5x y -+=B.22(2)5x y +-= C.22(2)(2)5x y +++=D.22(2)5x y ++= 14,设AB是过椭圆左焦点的弦,那么以AB为直径的圆与椭圆的左准线(A)相切 (B)相交 (C) 相离 (D) 相交或相切15,圆M :02422=++-+a y x y x 与y 轴相交于A 、B 两点,若ο90=∠AMB ,则a = 。

高三数学圆的标准方程与一般方程试题答案及解析

高三数学圆的标准方程与一般方程试题答案及解析

高三数学圆的标准方程与一般方程试题答案及解析1.以点为圆心且与直线相切的圆的方程是()A.B.C.D.【答案】C【解析】由已知,,故选.【考点】1.圆的方程;2.直线与圆的位置关系;3.点到直线的距离.2.某圆的圆心在直线上,并且在两坐标轴上截得的弦长分别为4和8,则该圆的方程为()A.B.C.或D.或【答案】C【解析】由已知分析可设圆心为,半径为,则有或,解得,故选C.【考点】圆的标准方程以及弦长的基本知识.3.设点,若在圆上存在点N,使得,则的取值范围是( ) A.B.C.D.【答案】A【解析】过M作⊙O切线交⊙O于R,根据圆的切线性质,有∠OMR≥∠OMN=30°.反过来,如果∠OMR≥30°,则⊙O上存在一点N使得∠OMN=30°.∴若圆O上存在点N,使∠OMN=30°,则∠OMR≥30°.∵|OR|=1,∴|OM|>2时不成立,∴|OM|≤2,即=≤4,解得,≤≤,故选A. 考点:直线与圆的位置关系4.若圆C:关于直线对称,则由点向圆所作的切线长的最小值是()A.2B.4C.3D.6【答案】B【解析】由题知圆C的圆心C(-1,2),半径为,因为圆C关于直线对称,所以圆心C在直线上,所以,即,所以由点向圆所作的切线长为===,当时,切线长最小,最小值为4,故选B.【考点】圆的标准方程,圆的切线问题,二次函数最值5.已知M(-2,0),N(2,0),则以MN为斜边的直角三角形的直角顶点P的轨迹方程为() A.x2+y2=2B.x2+y2=4C.x2+y2=2(x≠±2)D.x2+y2=4(x≠±2)【答案】D【解析】MN的中点为原点O,易知|OP|=|MN|=2,∴P的轨迹是以原点O为圆心,以r=2为半径的圆,除去与x轴的两个交点.6.已知圆C:x2+y2+mx-4=0上存在两点关于直线x-y+3=0对称,则实数m的值为() A.8B.-4C.6D.无法确定【答案】C【解析】圆上存在关于直线x-y+3=0对称的两点,则x-y+3=0过圆心(-,0),即-+3=0,∴m=6.7.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是()A.(x-2)2+(y-1)2=1B.(x-2)2+(y-3)2=1C.(x-3)2+(y-2)2=1D.(x-3)2+(y-1)2=1【答案】A【解析】设圆心坐标为(a,b),由题意知a>0,且b=1.又∵圆和直线4x-3y=0相切,∴=1,即|4a-3|=5,∵a>0,∴a=2.所以圆的方程为(x-2)2+(y-1)2=1.8.已知圆C的圆心在曲线y=上,圆C过坐标原点O,且与x轴、y轴交于A、B两点,则△OAB的面积是()A.2 B.3 C.4 D.8【答案】C【解析】设圆心C的坐标是(t,).∵圆C过坐标原点,∴|OC|2=t2+,设圆C的方程是(x-t)2+(y-)2=t2+.令x=0,得y1=0,y2=,故B点的坐标为(0,).令y=0,得x1=0,x2=2t,故A点的坐标为(2t,0),∴S△OAB=|OA|·|OB|=×||×|2t|=4,即△OAB的面积为4.故选C.9.若圆的半径为1,其圆心与点关于直线对称,则圆的标准方程为_______.【答案】【解析】因为圆心与点关于直线对称,所以圆心坐标为,所以圆的标准方程为:,故答案为【考点】圆的标准方程.10.已知直线与圆心为的圆相交于两点,且,则实数的值为_________.【答案】0或6【解析】圆的标准方程为:所以圆的圆心在,半径又直线与圆交于两点,且所以圆心到直线的距离所以,,整理得:解得:或所以答案应填:0或6.【考点】1、圆的标准方程;2、直线与圆的位置关系;3、点到直线的距离公式.11.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是()A.(x-2)2+(y-1)2=1B.(x-2)2+(y+1)2=1C.(x+2)2+(y-1)2=1D.(x-3)2+(y-1)2=1【答案】A【解析】设圆心为,半径为,则=1,解得,所以,解得,故圆心坐标为(2,1),所以该圆的标准方程是(x-2)2+(y-1)2=1,选A.12.若圆x2+y2-2kx+2y+2=0(k>0)与两坐标轴无公共点,那么实数k的取值范围为( ) A.-1<k<1B.1<k<C.1<k<2D.<k<2【答案】B【解析】圆的方程为(x-k)2+(y+1)2=k2-1,圆心坐标为(k,-1),半径r=,若圆与两坐标无公共点,即,解得1<k<.故选B.13.若圆的半径为1,圆心在第一象限,且与直线和轴相切,则该圆的标准方程是________.【答案】【解析】由于圆的半径为1且与轴相切,所以可以假设圆心.又圆与直线相切.所以可得.解得,由圆心在第一象限.所以.所以圆的方程为.【考点】1.直线与圆的位置关系.2.直线与圆相切的判定.3.圆的标准方程.14.方程x2+y2-6x=0表示的圆的圆心坐标是________;半径是__________.【答案】(3,0),3【解析】(x-3)2+y2=9,圆心坐标为(3,0),半径为3.15.方程x2+y2+4mx-2y+5m=0表示圆的充要条件是________.【答案】m<或m>1.【解析】由(4m)2+4-4×5m>0得m<或m>1.16.圆心在y轴上,半径为1,且过点(1,2)的圆的方程为______________.【答案】x2+(y-2)2=1【解析】设圆的方程为x2+(y-b)2=1,此圆过点(1,2),所以12+(2-b)2=1,解得b=2.故所求圆的方程为x2+(y-2)2=1.17.如图,已知直角坐标平面上点Q(2,0)和圆C:x2+y2=1,动点M到圆C的切线长与|MQ|的比等于.求动点M的轨迹方程,并说明它表示什么.【答案】(x-4)2+y2=7.它表示圆,【解析】设直线MN切圆于N,则动点M组成的集合是P={M||MN|=|MQ|}.因为圆的半径|ON|=1,所以|MN|2=|MO|2-1.设点M的坐标为(x,y),则,整理得(x-4)2+y2=7.它表示圆,该圆圆心的坐标为(4,0),半径为.18. P(x,y)在圆C:(x-1)2+(y-1)2=1上移动,试求x2+y2的最小值.【答案】3-2【解析】由C(1,1)得OC=,则OPmin =-1,即()min=-1.所以x2+y2的最小值为(-1)2=3-2.19.已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与直线x+y+3=0相切,则圆C的方程为()A.(x+1)2+y2=2B.(x-1)2+y2=2C.(x+1)2+y2=4D.(x-1)2+y2=4【答案】A【解析】直线x-y+1=0,令y=0得x=-1,所以直线x-y+1=0与x轴的交点为(-1,0),因为直线x+y+3=0与圆相切,所以圆心到直线的距离等于半径,即r==,所以圆C的方程为(x+1)2+y2=2.20.求圆心在抛物线x2=4y上,且与直线x+2y+1=0相切的面积最小的圆的方程.【答案】(x+1)2+=【解析】设圆心坐标为,半径为r.根据已知得r== (t2+2t+2)= [(t+1)2+1]≥,当t=-1时取等号,此时r最小为,圆心坐标为(-1,),故所求的圆的方程是(x+1)2+=.21.已知点A(-3,0),B(3,0),动点P满足|PA|=2|PB|.(1)若点P的轨迹为曲线C,求此曲线的方程;(2)若点Q在直线l1:x+y+3=0上,直线l2经过点Q且与曲线C只有一个公共点M,求|QM|的最小值.【答案】(1)(x-5)2+y2=16(2)4【解析】(1)设点P的坐标为(x,y),且|PA|=2|PB|,则=2,化简得曲线C:(x-5)2+y2=16.(2)曲线C是以点(5,0)为圆心,4为半径的圆,如图.是此圆的切线,连接CQ,由直线l2则|QM|=,时,|CQ|取最小值,|CQ|=,此时|QM|的最小值为=4.当CQ⊥l122.已知圆C经过A(5,1),B(1,3)两点,圆心在x轴上,则圆C的方程为________.【答案】(x-2)2+y2=10【解析】依题意设所求圆的方程为(x-a)2+y2=r2,把所给两点坐标代入方程,得解得所以所求圆的方程为(x-2)2+y2=10.23.已知半径为2,圆心在直线上的圆C.(Ⅰ)当圆C经过点A(2,2)且与轴相切时,求圆C的方程;(Ⅱ)已知E(1,1),F(1,-3),若圆C上存在点Q,使,求圆心的横坐标的取值范围.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)因为原心在直线上故可设原心为,则可根据圆心和圆上的点的距离为半径列出方程。

高考数学专题突破教师版-圆的方程(考点讲析)

高考数学专题突破教师版-圆的方程(考点讲析)

22
2
②若 D 2 E 2 4F 0 ,则方程只表示一个点 ( D , E ) ; 22
③若 D 2 E 2 4F 0 ,则方程不表示任何图形.
4.点 A(x0,y0 ) 与⊙C 的位置关系
(1)|AC|<r⇔点 A 在圆内⇔ (x0-a)2+( y0-b)2 r 2 ;
(2)|AC|=r⇔点 A 在圆上⇔ (x0-a)2+( y0-b)2 r 2 ;
.
【解析】
AOB 120 , OA OB 2
PO
AO cos 60
4 ,即 x02
y02
16
6
又 PC x0 82 y02 且 PO PC
解得:
x0
5 2 1 2
5
1 2
2
x0
82
y02
16

0
x02 y02 16
4 x0 4
4
5
1 2
4 ,解得:
1 3
【典例 12】(江苏高考真题)在平面直角坐标系 xOy 中,圆 C 的方程为 x2 y2 8x 15 0 ,若直线 y kx 2
上至少存在一点,使得以该点为圆心,1 为半径的圆与圆 C 有公共点,则 k 的最大值为__________. 【答案】 4
3
【解析】 ∵圆 C 的方程为 x2+y2-8x+15=0,整理得:(x-4)2+y2=1,即圆 C 是以(4,0)为圆心,1 为半径的圆;又直 线 y=kx-2 上至少存在一点,使得以该点为圆心,1 为半径的圆与圆 C 有公共点,∴只需圆 C′:(x-4)2+y2=4
中,

故答案为 4
【典例 11】(2019·江苏高三)已知圆 O:x2+y2=4 和圆 O 外一点 P( x0 , y0 ),过点 P 作圆 O 的两条切线, 切点分别为 A,B,且∠AOB=120°.若点 C(8,0)和点 P 满足 PO= PC,则 的范围是_______.

高考数学复习考点题型归类解析39圆与方程(解析版)

高考数学复习考点题型归类解析39圆与方程(解析版)

高考数学复习考点题型归类解析专题39圆与方程一、关键能力1.掌握确定圆的几何要素,掌握圆的标准方程与一般方程.2.能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.3.能用直线和圆的方程解决一些简单的问题,初步了解用代数方法处理几何问题的思想.二、教学建议1.处理解决几何问题时,主要表现在两个方面:(1)根据曲线的性质,建立与之等价的方程;(2)根据方程的代数特征洞察并揭示曲线的性质.要重视坐标法,体会用坐标法研究平面几何问题的解析思想.2.帮助学生经历如下的过程:首先将几何问题代数化,用代数的语言描述几何要素及其关系,进而将几何问题转化为代数问题;处理代数问题;分析代数结果的几何含义,最终解决几何问题.学会借助于坐标系,用代数方法研究几何问题,感受“数”与“形”的对应和统一,不断地体会“数形结合”的思想方法.三、自主梳理1.圆的方程:(1)圆的标准方程:(x-a)2+(y-b)2=r2(r>0)是以点(a,b)为圆心,r为半径的圆的方程,叫做圆的标准方程.(2)圆的一般方程:当D 2+E 2-4F >0时,二元二次方程x 2+y 2+Dx +Ey +F =0叫做圆的一般方程. 圆心为⎝ ⎛⎭⎪⎫-D2,-E 2,半径长为12D 2+E 2-4F .2.直线与圆的位置关系(半径为r ,圆心到直线的距离为d )Δ<0 Δ=0 Δ>0 (1)圆的切线方程常用结论①过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.②过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.③过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2.(2)有关弦长问题的2种求法3.圆与圆的位置关系(两圆半径为r1,r2,d=|O1O2|)|r-r|<d(1)判断两圆的位置关系时常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.(2)若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差消去x2,y2项得到.四、高频考点+重点题型考点一、圆的方程、轨迹方程例1-1.已知圆C的圆心在直线x﹣2y﹣3=0上,且过点A(2,﹣3),B(﹣2,﹣5),则圆C的标准方程为.【解答】解:根据题意,圆C的圆心在直线x﹣2y﹣3=0上,设圆心的坐标为(2t+3,t),圆C经过点A(2,﹣3),B(﹣2,﹣5),则(2t+3﹣2)2+(t+3)2=(2t+3+2)2+(t+5)2,解可得t=﹣2,则2t+3=﹣1,即圆心C的坐标为(﹣1,﹣2),圆的半径为r,则r2=|CA|2=(﹣1﹣2)2+(﹣2+3)2=10,故圆C的标准方程为(x+1)2+(y+2)2=10;故答案为:(x+1)2+(y+2)2=10.例1-2.如图,已知圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A 的上方),且|AB|=2.(Ⅰ)求圆C的标准方程;【解答】解:(1)由题意,圆的半径为√1+1=√2,圆心坐标为(1,√2),∴圆C的标准方程为(x﹣1)2+(y−√2)2=2;例1-3.在平面直角坐标系xOy中,O为坐标原点,动点P与两个定点M(1,0),N(4,0)的距离之比为12.(Ⅰ)求动点P的轨迹W的方程;【解答】解:(Ⅰ)设点P坐标为(x,y),依题意得:|PM||PN|=12,又M(1,0),N(4,0),∴2√(x−1)2+y2=√(x−4)2+y2,化简得:x 2+y 2=4,则动点P 轨迹W 方程为x 2+y 2=4;例1-4.已知Rt △ABC 的斜边为AB ,且A (-1,0),B (3,0).求: (1)直角顶点C 的轨迹方程; (2)直角边BC 的中点M 的轨迹方程.解 (1)方法一 设C (x ,y ),因为A ,B ,C 三点不共线,所以y ≠0. 因为AC ⊥BC ,且BC ,AC 斜率均存在, 所以k AC ·k BC =-1,又k AC =y x +1,k BC =y x -3,所以y x +1·y x -3=-1,化简得x 2+y 2-2x -3=0.因此,直角顶点C 的轨迹方程为x 2+y 2-2x -3=0(y ≠0).方法二 设AB 的中点为D ,由中点坐标公式得D (1,0),由直角三角形的性质知CD =12AB =2.由圆的定义知,动点C 的轨迹是以D (1,0)为圆心,2为半径的圆(由于A ,B ,C 三点不共线,所以应除去与x 轴的交点).所以直角顶点C 的轨迹方程为(x -1)2+y 2=4(y ≠0).(2)设M (x ,y ),C (x 0,y 0),因为B (3,0),M 是线段BC 的中点,由中点坐标公式得x =x 0+32,y =y 0+02,所以x 0=2x -3,y 0=2y .由(1)知,点C 的轨迹方程为(x -1)2+y 2=4(y ≠0), 将x 0=2x -3,y 0=2y 代入得(2x -4)2+(2y )2=4, 即(x -2)2+y 2=1.因此动点M 的轨迹方程为(x -2)2+y 2=1(y ≠0).例1-5.设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM ,ON 为两边作平行四边形MONP ,求点P 的轨迹方程. 解 如图,设P (x ,y ),N (x 0,y 0),则线段OP 的中点坐标为⎝ ⎛⎭⎪⎫x 2,y 2,线段MN 的中点坐标为 ⎝ ⎛⎭⎪⎫x 0-32,y 0+42. 因为平行四边形的对角线互相平分, 所以x 2=x 0-32,y 2=y 0+42, 整理得⎩⎨⎧x 0=x +3,y 0=y -4,又点N (x 0,y 0)在圆x 2+y 2=4上, 所以(x +3)2+(y -4)2=4.所以点P 的轨迹是以(-3,4)为圆心,2为半径的圆,直线OM 与轨迹相交于两点⎝ ⎛⎭⎪⎫-95,125和⎝ ⎛⎭⎪⎫-215,285,不符合题意,舍去,所以点P 的轨迹为(x +3)2+(y -4)2=4,除去两点⎝ ⎛⎭⎪⎫-95,125和⎝ ⎛⎭⎪⎫-215,285.例1-6.点P (4,-2)与圆x 2+y 2=4上任一点连线的中点轨迹方程是________________. 答案 (x -2)2+(y +1)2=1解析 设圆上任一点坐标为(x 0,y 0),x 20+y 20=4,连线中点坐标为(x ,y ),则⎩⎨⎧ 2x =x 0+42y =y 0-2⇒⎩⎨⎧x 0=2x -4y 0=2y +2, 代入x 20+y 20=4中得(x -2)2+(y +1)2=1.例1-7.若AB =2,AC =√2BC ,则S △ABC 的最大值. 【解答】解:设BC =x ,则AC =√2x ,根据面积公式得S △ABC =12AB •BC sin B =12×2x ×√1−cos 2B , 又根据余弦定理得cos B =AB 2+BC 2−AC 22AB⋅BC =4+x 2−(√2x)24x=4−x 24x,代入上式得: S △ABC =x √1−(4−x 24x)2=√128−(x 2−12)216,由三角形三边关系有:{√2x +x >2x +2>√2x,解得:2√2−2<x <2√2+2.所以当x =2√3时,x 2﹣12=0,此时S △ABC 取得最大值√12816=√8=2√2. 故答案为:2√2例1-8.(多选)设有一组圆C :(x -1)2+(y -k )2=k 4(k ∈N *),下列四个命题正确的是( ) A .存在k ,使圆与x 轴相切 B .存在一条直线与所有的圆均相交 C .存在一条直线与所有的圆均不相交 D .所有的圆均不经过原点 答案 ABD解析对于A,存在k,使圆与x轴相切⇔k=k2(k∈N*)有正整数解⇔k=1,故A正确;对于B,因为圆心(1,k)恒在直线x=1上,故B正确;对于C,当k取无穷大的正数时,半径k2也无穷大,因此所有直线与圆都相交,故C不正确;对于D,将(0,0)代入得1+k2=k4,即1=k2(k2-1),因为右边是两个相邻整数相乘为偶数,而左边为奇数,故方程恒不成立,故D正确.考点二. 直线与圆的位置关系例2-1.已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是()A.相切B.相交C.相离D.不确定【解答】解:∵M(a,b)在圆x2+y2=1外,∴a2+b2>1,∴圆O(0,0)到直线ax+by=1的距离d=√a2+b21=r,则直线与圆的位置关系是相交.故选:B.例2-2.若过点A(4,0)的直线l与曲线(x﹣2)2+y2=1有公共点,则直线l的斜率的取值范围为[−√33,√33].【解答】解:设直线l的方程为y=k(x﹣4),即kx﹣y﹣4k=0 ∵直线l与曲线(x﹣2)2+y2=1有公共点,∴圆心到直线l的距离小于等于半径即|2k−4k|√k2+1≤1,解得−√33≤k≤√33∴直线l的斜率的取值范围为[−√33,√33]故答案为[−√33,√33]例2-3.若无论实数a取何值时,直线ax+y+a+1=0与圆x2+y2-2x-2y+b=0都相交,则实数b的取值范围为( )A.(-∞,2)B.(2,+∞)C.(-∞,-6)D.(-6,+∞)解析:选C ∵x2+y2-2x-2y+b=0表示圆,∴8-4b>0,即b<2.∵直线ax+y+a+1=0过定点(-1,-1),∴点(-1,-1)在圆x2+y2-2x-2y+b=0的内部,∴6+b<0,解得b<-6,∴b的取值范围是(-∞,-6).故选C.例2-4.圆(x-3)2+(y-3)2=9上到直线3x+4y-11=0的距离等于1的点的个数为( )A.1B.2C.3D.4解析:选C 由圆的方程知圆心坐标为(3,3),半径为3,如图所示,因为圆心到直线的距离为|9+12-11|5=2,又因为圆的半径为3,所以直线与圆相交,故圆上到直线的距离为1的点有3个.题型三切线问题例3-1.已知圆C:(x﹣1)2+(y﹣2)2=2,点P坐标为(2,﹣1),过点P作圆C的切线,切点为A,B.(1)求切线PA,PB的方程;(2)求过P点的圆的切线长;(3)求直线AB的方程.【解答】解:(1)根据题意,分析易得切线斜率存在,则设切线的斜率为k,又由切线过点P(2,﹣1),则切线方程为:y+1=k(x﹣2)即:kx﹣y﹣2k﹣1=0,又圆C:(x﹣1)2+(y﹣2)2=2的圆心坐标为(1,2),半径r=√2,=√2,则有√1+k2解可得k=7或k=﹣1,则所求的切线方程为:x+y﹣1=0和7x﹣y﹣15=0;(2)根据题意,圆心C到P的距离d=√(2−1)2+(2+1)2=√10,则切线长为√(√10)2−(√2)2=√8=2√2,(3)以P为圆心,切线长为半径的圆的方程为:(x﹣2)2+(y+1)2=8…①由圆C:(x﹣1)2+(y﹣2)2=2,…②②﹣①可得AB的方程:(x﹣1)2+(y﹣2)2﹣(x﹣2)2﹣(y+1)2=﹣6,可得x﹣3y+3=0.例3-2.直线l1和l2是圆x2+y2=2的两条切线.若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于.【解答】解:设l 1与l 2的夹角为2θ,由于l 1与l 2的交点A (1,3)在圆的外部, 且点A 与圆心O 之间的距离为OA =√10, 圆的半径为r =√2, ∴sin θ=√2√10, ∴cos θ=√2√10,tan θ=12,∴tan2θ=11−14=43,故答案为:43.例3-3.设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是( )A .[﹣1,1]B .[−12,12]C .[−√2,√2]D .[−√22,√22] 【解答】解:由题意画出图形如图:点M (x 0,1),要使圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则∠OMN 的最大值大于或等于45°时一定存在点N ,使得∠OMN =45°, 而当MN 与圆相切时∠OMN 取得最大值, 此时MN =1,图中只有M ′到M ″之间的区域满足MN =1, ∴x 0的取值范围是[﹣1,1]. 故选:A .例3-4.在平面直角坐标系xOy 中,已知圆C :x 2+(y ﹣3)2=2,点A 是x 轴上的一个动点,AP ,AQ 分别切圆C 于P ,Q 两点,则线段PQ 长的取值范围是( ) A .[2√73,2√2)B .[2√143,2√2)C .[2√53,2√3)D .[2√33,2√5) 【解答】解:设AC =x ,则x ≥3,由PC ⊥AP 可知AP =√AC 2−PC 2=√x 2−2, ∵AC 垂直平分PQ , ∴PQ =2PC⋅AP AC=2•√2⋅√x 2−2x=2√2•√1−2x 2.∴当x =3时,PQ 取得最小值2√2•√1−29=2√143. 又√1−2x 2<1, ∴PQ <2√2. ∴2√143≤PQ <2√2.故选:B .例3-5.已知P是直线3x+4y+8=0上的动点,PA,PB是圆x2+y2﹣2x﹣2y+1=0的两条切线,A,B是切点,C是圆心,那么四边形PACB面积的最小值为.【解答】解:∵圆的方程为:x2+y2﹣2x﹣2y+1=0∴圆心C(1,1)、半径r为:1根据题意,若四边形面积最小当圆心与点P的距离最小时,距离为圆心到直线的距离时,切线长PA,PB最小圆心到直线的距离为d=3∴|PA|=|PB|=√d2−r2=2√2|PA|r=2√2∴s PACB=2×12故答案为:2√2考点四直线与圆相交的弦长问题例4-1.直线l:kx+y+4=0(k∈R)是圆C:x2+y2+4x﹣4y+6=0的一条对称轴,过点A(0,k)作斜率为1的直线m,则直线m被圆C所截得的弦长为()A.√2B.√2C.√6D.2√62【解答】解:∵圆C:x2+y2+4x﹣4y+6=0,即(x+2)2+(y﹣2)2 =2,表示以C (﹣2,2)为圆心、半径等于√2的圆.由题意可得,直线l :kx +y +4=0经过圆C 的圆心(﹣2,2), 故有﹣2k +2+4=0,∴k =3,点A (0,3). 直线m :y =x +3,圆心到直线的距离d =√2=√2,∴直线m 被圆C 所截得的弦长为2√2−12=√6. 故选:C .例4-2.直线y =kx +3与圆(x ﹣3)2+(y ﹣2)2=4相交于M ,N 两点,若MN <2√3,则k 的取值范围是.【解答】解:设圆心(3,2)到直线y =kx +3的距离为d ,则d =√k 2+12,由于(MN 2)2=4﹣d 2,且MN <2√3,求得 d ≥1,∴1≤d <2,即√k 2+1∈[1,2),由d ≥1求得k ≤−34,k ≥0,由d <2 求得 −3−2√65<d <−3+2√65, 即k 的取值范围是{k |−3−2√65<k ≤−34,或0≤k <−3+2√65}, 故答案为:{k |−3−2√65<k ≤−34,或0≤k <−3+2√65}. 例4-3.已知圆C :(x ﹣1)2+(y ﹣2)2=25,直线l :(2m +1)x +(m +1)y ﹣7m ﹣4=0,则直线l 被圆C 截得的弦长的最小值为( ) A .2√5B .4√5C .6√3D .8√3【解答】解:圆C :(x ﹣1)2+(y ﹣2)2=25的圆心坐标为C (1,2),半径为5. 由直线l :(2m +1)x +(m +1)y ﹣7m ﹣4=0,得m (2x +y ﹣7)+x +y ﹣4=0, 联立{2x +y −7=0x +y −4=0,解得{x =3y =1.∴直线l 过定点P (3,1),点P(3,1)在圆内部,则当直线l与线段PC垂直时,直线l被圆C截得的弦长最小.此时|PC|=√(1−3)2+(2−1)2=√5.∴直线l被圆C截得的弦长的最小值为2√52−(√5)2=4√5.故选:B.例4-4.已知AC、BD为圆O:x2+y2=4的两条相互垂直的弦,垂足为M(1,√2),则四边形ABCD的面积的最大值为5.【解答】解:如图连接OA、OD作OE⊥ACOF⊥BD垂足分别为E、F∵AC⊥BD∴四边形OEMF为矩形已知OA=OC=2 OM=√3,设圆心O到AC、BD的距离分别为d1、d2,则d12+d22=OM2=3.•|AC|(|BM|+|MD|),四边形ABCD的面积为:s=12从而:s=1|AC|⋅|BD|=2√(4−d12)(4−d22)≤8−(d12+d22)=5,2当且仅当d12=d22时取等号,故答案为:5.考点五、直线与圆的交点问题例5-1.在平面直角坐标系中,已知圆:,过点且斜率为的直线与圆相交于不同的两点,线段的中点为。

高考数学专题《圆与方程》训练试题含答案

高考数学专题《圆与方程》训练试题含答案

高考数学专题《圆与方程》一、单选题1.若,,a b c 是ABC ∆的三边,直线0ax by c 与圆221x y +=相离,则ABC ∆一定是 A .直角三角形B .等边三角形C .锐角三角形D .钝角三角形2.直线210kx y -+=与圆22(1)1y x +-=的位置关系是A .相交B .相切C .相离D .不确定 3.已知圆22220x y x y a ++-+=截直线20x y ++=所得弦的长度为4,则实数a 的值是( )A .2-B .4-C .6-D .8- 4.圆22460x y x y ++-=和圆2260x y x +-=交于A 、B 两点,则AB 的垂直平分线的方程是( )A .3590x y ++=B .3590x y --=C .3590x y -+=D .3590x y +-= 5.已知圆C :()()22114x y -+-=,过直线l :()0y m m =>上一点Р作圆C 的切线,切点依次为A ,B ,若直线l 上有且只有一点Р使得2PC AC =,O 为坐标原点.则OP PC ⋅=( ) A .-20 B .20或12 C .-20或-12 D .12 6.已知圆C :221x y +=,则圆上到直线l :34120x y +-=距离为3的点有 A .0个B .1个C .2个D .4个 7.已知圆C :()()22261x y ++-=,直线l :3450x y -+=,则圆C 关于直线对称的圆是( ) A .()()22421x y ++-=B .()()22421x y -+-= C .()()22421x y +++= D .()()22421x y -++= 8.已知点(1,0)P -,过点(1,0)Q 作直线2()20ax a b y b +++=(a ,b 不同时为0)的垂线,垂足为H ,则PH 的最小值为A B 1 C .1 D 9.已知圆22:9O x y +=,过点()2,1C 的直线l 与圆O 交于,A B 两点,则当OAB 的面积最大时,直线l 的方程为( )A .30x y --=或7150x y --=B .30x y ++=或7150x y +-=C .30x y +-=或7150x y -+=D .30x y +-=或7150x y +-= 10.若过点()4,3A 的直线l 与曲线22231x y 有公共点,则直线l 的斜率的取值范围为( )A .⎡⎣B .(C .⎡⎢⎣⎦D .⎛ ⎝⎭11.若圆224x y +=上恰有2个点到直线y =x +b 的距离等于1,则b 的取值范围是A .((2,22-B .(()2,32-C .(D .(-12.若直线y x b =+与曲线2y =b 的取值范围是A .2⎡⎤--⎣⎦B .(2⎤--⎦C .(-D .2,⎡⎣ 13.若直线l :1y kx =+被圆22:230C x y x +--=截得的弦最短,则直线l 的方程是 A .0x = B .1y = C .10x y +-= D .10x y -+= 14.在Rt ABO 中,90BOA ∠=︒,8OA =,6OB =,点P 为Rt ABO 内切圆C 上任一点,则点Р到顶点A ,B ,O 的距离的平方和的最小值为( )A .68B .70C .72D .7415.一束光线从点()2,3A 射出,经x 轴上一点C 反射后到达圆22(3)(2)2x y ++-=上一点B ,则AC BC +的最小值为( )A .B .C .D .16.已知点P 是直线:260l x y +-=上的动点,过点P 作圆222:(2)C x y r ++=(0)r >的两条切线PM ,PN ,M ,N 为切点.若MPN ∠的最大值为60︒,则r 的值为( )A .2B .1C .D 17.已知直线:10l x y -+=,则“21a =”是“直线l 与圆22210x y ay +--=相切”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件18.圆22(2)(3)9x y ++-=上到直线0x y +=的距离等于2的点有A .4个B .3个C .2个D .1个19.已知两圆相交于()()A 1,3B ,1m -,,两圆的圆心均在直线0x y c -+=上,则2m c +的值为A .1B .1-C .3D .020.如图,在正方形ABCD 中,E 为BC 的中点,P 是以AB 为直径的半圆弧上任意一点,设(,)AE xAD y AP x y =+∈R ,则2x y +的最小值为( )A .1-B .1C .2D .321.设定点()3,4M -,动点N 在圆224x y +=上运动,以,OM ON 为领边作平行四边形MONP ,则点P 的轨迹为( )A .以()3,4-为圆心,2为半径的圆B .以()3,4-为圆心,2为半径的圆C .以()3,4-为圆心,2为半径的圆,除去点91255⎛⎫- ⎪⎝⎭,和点212855⎛⎫- ⎪⎝⎭, D .以()3,4-为圆心,2为半径的圆,除去点91255⎛⎫- ⎪⎝⎭,和点212855⎛⎫- ⎪⎝⎭, 22.在平面直角坐标系中,已知定点()0,4A ,()2,0B ,若在圆22:245M x y x y m ++++=上存在点P ,使得APB ∠为直角,则实数m 的最大值是( )A .15B .25C .35D .4523.(2016·葫芦岛高一检测)已知圆C 的方程是x 2+y 2+4x -2y -4=0,则x 2+y 2的最大值为( )A .9B .14C .14-D .14+24.若直线l 将圆22(2)(1)9x y ++-=平分,且在两坐标轴上的截距相等,则直线l 的方程为( )A .10x y +-=B .10x y ++=C .20x y -=或10x y +-=D .20x y +=或10x y ++=25.如图,在平行四边形ABCD 中,22AD AB ==,120BAD ∠=︒,动点M 在以点C 为圆心且与BD 相切的圆上,则AM BD ⋅的最大值是( )A .3B .3C .5+D .5+26.若圆22:5C x y m +=-与圆22:(3)(4)16E x y -+=-有三条公切线,则m 的值为A .2BC .4D .627.一束光线从点(1,1)A -出发,经x 轴反射到圆22:(2)(3)1C x y -+-=上的最短路程是( )A.4 B .5 C .1 D .28.曲线1:sin 20C ρθ-=,曲线2:4cos 0C ρθ-=,则曲线12C C 、的位置关系是 A .相交 B .相切 C .重合 D .相离29.已知(),,0A B C ABC ≠成等差数列,直线0Ax By C ++=与圆22260x y tx ty +++-=的位置关系是( )A .相交B .相切C .相离D .随着t 的变化而变化 30.已知直线:3l y x =+与x 轴的交点为()30A -,,P 是直线l 上任一点,过点P 作圆()22:14E x y -+=的两条切线,设切点分别为C 、D ,M 是线段CD 的中点,则AM 的最大值为( )A .B .CD .31.直线3490x y --=与圆224x y +=的位置关系是A .相切B .相离C .相交但不过圆心D .相交且过圆心32.圆221:(1)(3)1C x y ++-=,圆222:(5)(5)4C x y -+-=,M ,N 分别是圆1C ,2C 上的动点,P 为x 轴上的动点,则||||PM PN +的最小值( )A .6B .C .7D .1033.设双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为12,F F ,O 为坐标原点.以12F F 为直径的圆与双曲线的右支的一个交点为P ,且以2OF 为直径的圆与直线1PF 相切,若18PF =,则双曲线的焦距等于( )A.B .6 C .D .334.已知椭圆22:11612x y C +=的左焦点为F ,点P 是椭圆C 上的动点,点Q 是圆()22:21T x y -+=上的动点,则PF PQ 的最小值是( )A .12 B .27 C .23 D 35.已知圆224x y +=和圆224440x y x y ++-+=关于直线l 对称,则直线方程为( ) A .1y x =-+B .1y x =+C .2y x =-+D .2y x =+36. 实数,a b 满足22220a b a b +++=,实数,c d 满足2c d +=,则22()()a c b d -+-的小值是A .2BC .8D .37.已知棱长为2的正方体1111ABCD A B C D -,棱1DD 中点为M ,动点P 、Q 、R 分别满足:点P 到异面直线BC 、11C D 的距离相等,点Q 使得异面直线1A Q 、BC 所成角正弦值为定值,点R 使得134A RB π∠=.当动点P 、Q 两点恰好在正方体侧面11CDD C 内时,则多面体1RMPC Q 体积最小值为( )A B C D 38.在平面内,6AB AC BA BC CA CB ⋅=⋅=⋅=,动点P ,M 满足2AP =,PM MC =,则BM 的最大值是() A .3 B .4 C .8D .16 39.已知点P 为直线1y x =+上的一点,,M N 分别为圆1C ()()22:414x y -+-=与圆2C :()2221x y +-=上的点,则PM PN -的最大值为A .4B .5C .6D .7 40.过点()1,2总可以作两条直线与圆2222150x y kx y k ++++-=相切,则k 的取值范围是A .()()32,-∞-+∞,B .()8332,⎛⎫-∞- ⎪ ⎪⎝⎭,C .()32,⎛⎫-+∞ ⎪ ⎪⎝⎭D .8332,⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭二、填空题41.中心在原点,对称轴为坐标轴的双曲线C 与圆O :225x y +=有公共点(1,2)P -,且圆O 在点P 处的切线与双曲线C 的一条渐近线平行,则该双曲线的实轴长为________. 42.已知圆22:4O x y +=与曲线:3C y x t =-,曲线C 上两点(),A m n ,(),B s p ,(m 、n 、s 、p 均为正整数),使得圆O 上任意一点到点A 的距离与到点B 的距离之比为定值()1k k >,则s p m n -=______.43.平面区域321047020y x y x y x +-≥⎧⎪+-≤⎨⎪--≤⎩的外接圆的方程是____________.44.圆C 经过点(3,1)M -与圆22(1)(3)5x y ++-=相切于点(1,2)N ,则圆C 的方程为____________.45.过圆2225x y +=上一点P 作圆222(05)x y m m +=<<的两条切线,切点分别为A 、B ,若120AOB ∠=︒,则实数m 的值为______.46.已知圆C :22810x y x m ++-+=与直线10x +=相交于A ,B 两点.若2AB =,则实数m 的值为______.47.已知点B 在圆O :2216x y +=上,()2,2,A OM OA OB =+,若存在点N 使得MN 为定长,则点N 的坐标是______.48.已知圆E :2220x y x +-=,若A 为直线l :0x y m ++=上的点,过点A 可作两条直线与圆E 分别切于点B ,C ,且ABC 为等边三角形,则实数m 的取值范围是________. 49.如图,在多面体ABC DEF -中,已知棱,,AE BD CF 两两平行,AE ⊥底面DEF ,DE DF ⊥,四边形ACFE 为矩形,23AE DE DF BD ====,底面△DEF 内(包括边界)的动点P 满足,AP BP 与底面DEF 所成的角相等.记直线CP 与底面DEF 的所成角为θ,则tan θ的取值范围是___________.50.在平面直角坐标系xoy 中,已知点(3,0)P 及圆22:24270C x y x y +---=,动直线AB 过点P 且交圆C 于A ,B 两点,则ABC ∆的面积的最大值为________.51.对任意的实数k ,直线1y kx =+与圆222x y +=的位置关系一定是________. 52.在平面直角坐标系xOy 中,若圆1C :2220x y y +-=与圆2C:220x y ax ++-=上分别存在点P ,Q ,使POQ △为以O 为直角顶点的等腰直角三角形,且斜边长为实数a 的值为___________.53.若圆22211()()x y R -++=上有且仅有三个点到直线4311x y +=的距离等于1,则半径R 的值为______.54.已知圆M 与直线0x y -=及40x y -+=都相切,圆心在直线2y x =-+上,则圆M 的标准方程为__________.55.22sin )x dx -+=⎰___________56.若直线y x t =+被圆228x y +=,则实数t 的取值范围为______. 57.直线20ax y +-=与圆22:4C x y +=相交于,A B 两点,若2CA CB ⋅=-,则a =__________. 58.设0m >,点(4,)A m 为抛物线22(0)y px p =>上一点,F 为焦点,以A 为圆心||AF 为半径的圆C 被y 轴截得的弦长为6,则圆C 的标准方程为__________.59.已知圆C 的方程是x 2+y 2-8x -2y +8=0,直线y =a (x -3)被圆C 截得的弦最短时,直线方程为________.60.若直线l :2y x =+与圆C :224x y +=相交于A ,B 两点,则线段AB 中点的坐标为_____.61.把半椭圆()221043x y x +=≥与圆弧22(1)4(0)x y x -+=<合成的曲线称作“曲圆”,其中F 为半椭圆的右焦点,A 是圆弧22(1)4(0)x y x -+=<与x 轴的交点,过点F 的直线交“曲圆”于P ,Q 两点,则APQ 的周长取值范围为______62.动圆C 经过点(1,0)F ,并且与直线1x =-相切,若动圆C 与直线1y x =+总有公共点,则圆C 的面积的取值范围为__________.63.在平面直角坐标系xOy 中,若与点A (2,2)的距离为1且与点B (m ,0)的距离为3的直线恰有两条,则实数m 的取值范围为______.64.在平面直角坐标系xOy 中,定点()2,0F -,已知点P 是直线2y x =+上一动点,过点P 作圆()22:24C x y -+=的切线,切点分别为A ,B .直线PC 与AB 交于点R ,则线段FR 长度的最大值为______.65.已知,A B 为直线l :y x =-上两动点,且4AB =,圆C :226620x y x y +--+=,圆C 上存在点P ,使22PA PB 10+=,则线段AB 中点M 的横坐标取值范围为__________.三、解答题66.已知()2,2A --,()2,6B -,()4,2C -三点,点P 在圆224x y +=上运动,求222PA PB PC ++的最大值和最小值.67.已知抛物线2:2C y x =,过点()1,0的直线l 与抛物线C 交于A ,B 两点,O 为坐标原点.(1)若||AB =AOB 外接圆的方程;(2)若点A 关于x 轴的对称点是A '(A '与B 不重合),证明:直线A B '经过定点.68.已知椭圆C :22221y x a b+=(0)a b >>过点P ,上、下焦点分别为1F 、2F , 向量12PF PF ⊥.直线l 与椭圆交于,A B 两点,线段AB 中点为13(,)22M -. (1)求椭圆C 的方程;(2)求直线l 的方程;(3)记椭圆在直线l 下方的部分与线段AB 所围成的平面区域(含边界)为D ,若曲线 2222440x mx y y m -+++-=与区域D 有公共点,试求m 的最小值.69.已知直线过点,并与直线和分别交于点A 、B ,若线段AB 被点P 平分.求:(Ⅰ)直线的方程;(Ⅱ)以O 为圆心且被l 截得的弦长为的圆的方程.70.如图,已知圆22:4O x y +=和点()2,2A ,由圆O 外一点(),P a b 向圆O 引切线PQ ,Q 为切点,且PQ PA =.(1)求证:3a b +=;(2)求PQ 的最小值;(3)以P 为圆心作圆,使它与圆O 有公共点,试在其中求出半径最小的圆的方程.71.已知直线:220l ax by -+=(0,0)a b >>,圆22:2410C x y x y ++-+=. (1)若1,2a b ==,求直线l 被圆C 截得的弦长;(2)若直线l 被圆C 截得的弦长为4,求14a b+的最小值.72.已知椭圆2222:1(0)x y E a b a b +=>>的右顶点为A ,上顶点为B ,离心率e =O 为坐标原点,圆224:5O x y +=与直线AB 相切. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)已知四边形ABCD 内接于椭圆,//E AB DC .记直线,AC BD 的斜率分别为12,k k ,试问12k k ⋅是否为定值?证明你的结论.73.已知直线l 过点()1,1且与直线210x y ++=垂直.(1)若直线l 与x 轴,y 轴分别交于,A B 两点,求AB ;(2)求圆心在直线l 上且过两点()()1,1,3,1M N 的圆的标准方程.74.在直角坐标系xOy 中,曲线1C 的参数方程为2cos 1sin x t y t αα=+⎧⎨=+⎩(t 是参数,0απ≤<),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2221cos ρθ=+. (Ⅰ)求曲线1C 的普通方程和曲线2C 的直角坐标方程;(Ⅱ)当4πα=时,曲线1C 和2C 相交于M 、N 两点,求以线段MN 为直径的圆的直角坐标方程.75.从圆C :22(2)(2)4-++=x y 外一动点P 向圆C 引一条切线,切点为M ,且PM PO =(O为坐标原点),求PM 的最小值和PM 取得最小值时点P 的坐标.76.已知圆x 2+y 2+x -6y +3=0与直线x +2y -3=0的两个交点为P 、Q ,求以PQ 为直径的圆的方程.77.已知直线l 的极坐标方程为ρcos θ﹣ρsin θ+3=0,圆M 的极坐标方程为ρ=4sin θ.以极点为原点,极轴为x 轴正半轴建立直角坐标系. (1)写出直线l 与圆M 的直角坐标方程;(2)设直线l 与圆M 交于A 、B 两点,求AB 的长.78.已知圆C 过两点()3,3M -, ()1,5N -,且圆心C 在直线220x y --=上. (Ⅰ)求圆C 的标准方程;(Ⅱ)直线l 过点()2,5-且与圆C 有两个不同的交点A , B ,若直线l 的斜率k 大于0,求k 的取值范围;(Ⅲ)在(Ⅱ)的条件下,是否存在直线l 使得弦AB 的垂直平分线过点()3,1P -,若存在,求出直线l 的方程;若不存在,请说明理由.79.在平面直角坐标系xOy 中,曲线C 的参数方程为2222111t x t t y t ⎧=⎪⎪+⎨-⎪=⎪+⎩(t 为参数).在极坐标系(与平面直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴非负半轴为极轴)中,sin 34πθ⎛⎫-= ⎪⎝⎭.(1)求曲线C 的普通方程及直线l 的直角坐标方程;(2)设P 是曲线C 上的任意一点,求点P 到直线l 的距离的最大值.80.已知圆C 的圆心坐标为(2,2)C -,且圆C 的一条直径的两个端点M ,N 分别在x 轴和y 轴上.(1)求圆C 的方程;(2)过点(2,2)P 的直线l 与圆C 交于A ,B 两点,且ABC 为直角三角形,求直线l 的方程.81.已知圆22:80C x y y +-=与动直线:22l y kx k =-+交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点. (1)求M 的轨迹方程;(2)已知点()2,2P ,当OP OM =时,求l 的方程及POM 的面积.82.已知圆C 1:x 2+y 2=4和圆C 2:x 2+(y -8)2=4,直线y x +b 在两圆之间穿过且与两圆无交点,求实数b 的取值范围.83.如图,已知圆2212x y +=与抛物线()220x py p =>相交于A 、B 两点,点B 的横坐标为F 为抛物线的焦点.(1)求抛物线的方程;(2)若过点F 且斜率为1的直线l 与抛物线和圆交于四个不同的点,从左至右依次为1P 、2P 、3P 、4P ,求:①13PP ;②1324PP P P -的值.84.已知定点F (3,0)和动点P (x ,y ),H 为PF 的中点,O 为坐标原点, (1)求点P 的轨迹方程;(2)过点F 作直线l 与点P 的轨迹交于A ,B 两点,点C (2,0).连接AC ,BC 分别交于点M ,N .试证明:以MN 为直径的圆恒过点F .85.求半径为2,圆心在直线12:l y x =上,且被直线2l :10x y --=所截弦的长为圆的方程.86.已知圆C 过点P (1,1),且与圆M :2(2)x ++22(y )+=2r (r >0)关于直线x +y +2=0对称.(1)求圆C 的方程;(2)设Q 为圆C 上的一个动点,求PQ MQ ⋅取得最小值时点Q 的坐标;(3)过点P 作两条相异直线分别与圆C 相交于A ,B ,且直线P A 和直线PB 的倾斜角互补,O 为坐标原点,试判断直线OP 和AB 是否平行?请说明理由.87.已知圆C 方程为228(62)610(,0)x y mx m y m m R m +--+++=∈≠,椭圆中心在原点,焦点在x 轴上.(1)证明圆C 恒过一定点M ,并求此定点M 的坐标;(2)判断直线4330x y +-=与圆C 的位置关系,并证明你的结论;(3)当2m =时,圆C 与椭圆的左准线相切,且椭圆过(1)中的点M ,求此时椭圆方程;在x 轴上是否存在两定点A ,B 使得对椭圆上任意一点Q (异于长轴端点),直线QA ,QB 的斜率之积为定值?若存在,求出A ,B 坐标;若不存在,请说明理由.88.在平面直角坐标系xOy 中,已知曲线1C 的参数方程:()222411211k x k k y k ⎧=-+⎪+⎪⎨-⎪=⎪+⎩(k 为参数),以坐标原点为极点,以x 轴的正半轴为极轴建立极坐标系,曲线2C的极坐标方程为sin 4πρθ⎛⎫+= ⎪⎝⎭(1)求曲线1C 的普通方程;(2)过曲线2C 上一点P 作直线l 与曲线1C 交于,A B 两点,中点为D,AB =求PD 的最小值.89.已知圆C :22(1)5x y +-=,直线l :10mx y m -+-=. ①求证:对m R ∈,直线l 与圆C 总有两个不同的交点; ②设l 与圆C 交于A 、B两点,若AB l 的倾斜角; ③当实数m 变化时,求直线l 被圆C 截得的弦的中点的轨迹方程.90.在平面直角坐标系xOy 中,圆C 的方程为22(4)1x y -+=,且圆C 与x 轴交于,M N 两点,设直线l 的方程为(0)y kx k =>.(1)当直线l 与圆C 相切时,求直线l 的方程;(2)已知直线l 与圆C 相交于,A B 两点.(i )2OA AB =,求直线l 的方程;(ii )直线AM 与直线BN 相交于点P ,直线AM ,直线BN ,直线OP 的斜率分别为1k ,2k ,3k ,是否存在常数a ,使得123k k ak +=恒成立?若存在,求出a 的值;若不存在,说明理由.参考答案1.D 【详解】试题分析:因为直线0ax by c 与圆221x y +=1>,即222222,cos 02a b c a b c C ab+-+<=<,角C 为钝角,ABC ∆一定是锐角三角形,故选D.考点:1、点到直线的距离公式;2、余弦定理的应用.【方法点睛】本题主要考查利用正弦定理、两角和的正弦公式及三角形面积公式判断三角形形状,属于中档题.判断三角形状的常见方法是:(1)通过正弦定理和余弦定理,化边为角,利用三角变换得出三角形内角之间的关系进行判断;(2)利用正弦定理、余弦定理,化角为边,通过代数恒等变换,求出边与边之间的关系进行判断;(3)根据余弦定理确定一个内角为钝角进而判断其为钝角三角形. 2.A 【分析】确定直线过定点10,2⎛⎫⎪⎝⎭,点在圆内,得到答案.【详解】210kx y -+=过定点10,2⎛⎫ ⎪⎝⎭,且2211(110)24+-=<,故10,2⎛⎫⎪⎝⎭在圆内,故直线和圆相交. 故选:A 【点睛】本题考查了直线和圆的位置关系,确定直线过定点是解题的关键. 3.B 【详解】试题分析:圆22220x y x y a ++-+=化为标准方程为22(1)(1)2x y a ++-=-,所以圆心为(-1,1),半径r =d =.因为圆22220x y x y a ++-+=截直线20x y ++=所得弦长为4,所以222,4a a =-∴=-.故选B . 4.D 【分析】求出两圆的连心线所在直线的方程,即为AB 的垂直平分线的方程. 【详解】圆22460x y x y ++-=的标准方程为()()222313x y ++-=,圆心为()2,3M -,圆2260x y x +-=的标准方程为()2239x y -+=,圆心为()3,0N ,由于两圆关于直线MN 对称,所以,A 、B 两点也关于直线MN 对称, 所以,AB 的垂直平分线为直线MN , 直线MN 的斜率为303235MN k -==---,则直线MN 的方程为()335y x =--,即3590x y +-=. 故选:D. 【点睛】关键点点睛:本题考查两圆相交弦的垂直平分线所在直线的方程,解题的关键就是由两圆关于连心线所在直线对称,进而得出相交弦被连心线垂直平分,解题时应充分分析圆的几何性质,结合几何性质来解题. 5.A 【分析】由题设易知PC l ⊥且||PC 为C 到直线l 的距离,再根据圆心坐标及半径、2PC AC =即可确定m 的值,进而可得()1,5P ,应用向量数量积的坐标运算求OP PC ⋅. 【详解】∵这样的点P 是唯一的,则PC l ⊥,即||PC 为C 到直线l :()0y m m =>的距离,而圆C 的半径为2且(1,1)C ,∴要使2PC AC =,则4PC =,又0m >,即5m =, ∴()1,5P ,故()()1,50,420OP PC ⋅=⋅-=-. 故选:A . 6.C 【分析】根据题意,求出圆C 的圆心与半径,求出圆心到直线的距离125=,分析可得3r d +>,据此分析可得答案.【详解】解:根据题意,圆C :221x y +=,圆心为()0,0,半径1r =,则圆心()0,0C 到直线l :34120x y +-=距离1215d r ==>=, 圆的半径为1,有12135+>,即3r d +>, 则圆上到直线l :34120x y +-=距离为3的点有2个. 故选C . 【点睛】本题考查直线与圆的位置关系,注意分析圆心到直线的距离,属于基础题. 7.D【分析】对称圆的圆心C '与C 关于l 对称,且CC '所在直线垂直于直线l ,据此求解出对称圆的圆心C '坐标,再根据圆对称半径不变即可求解出对称圆的方程. 【详解】设对称圆的圆心(),C a b ',()2,6C -,所以CC '中点为26,22a b -+⎛⎫⎪⎝⎭, 所以2634502263124a b b a -+⎧⨯-⨯+=⎪⎪⎨-⎪⨯=-⎪+⎩,解得42a b =⎧⎨=-⎩,所以圆C 关于直线对称的圆的方程为:()()22421x y -++=. 故选:D. 【点睛】本题考查圆关于直线的对称圆的方程,难度一般.求解圆关于直线的对称圆的方程从两方面入手:(1)两圆圆心连线的中点在已知直线上;(2)两圆圆心的连线垂直于已知直线. 8.B 【详解】直线()220ax a b y b +++=整理得()()220a x y b y +++= 可知直线过定点T ()1,2-,所以点H 落在以QT 为直径的圆上,点H 的轨迹为()()22111x y -++=,圆心为C ()1,1-半径为1,PH的最小值为r 1PC -;故选B.点睛:本题关键是分析出直线过定点,从而利用垂直关系找到垂足的轨迹方程,最后点点距离的最小值转化到点到圆心的距离减掉半径,重点是转化的思想. 9.D 【分析】当直线l的斜率不存在时,易求得OAB S =l 的斜率存在时,设l 的方程为11(2)2y k x k ⎛⎫-=-≠ ⎪⎝⎭,进而得弦长AB =,A B的距离dOAB S ∆=.【详解】当直线l 的斜率不存在时, l 的方程为2x =,则,A B 的坐标分别为在时,所以122OABS=⨯⨯=当直线l 的斜率存在时,设l 的方程为11(2)2y k x k ⎛⎫-=-≠ ⎪⎝⎭,则圆心到直线,A B 的距离d =由平面几何知识得AB =119222OABS AB d ∆=⨯⋅=⨯, 当且仅当229d d -= ,即292d =时, OAB S ∆取得的最大值为92,因为92,所以OAB S ∆的最大值为92.此时292=,解得1k =-或7k =-, 此时直线l 的方程为: 30x y +-=或7150x y +-= 故选:D. 【点睛】本题考查直线与圆的位置关系,基本不等式求最值,考查分类讨论思想和运算能力,是中档题. 10.C 【分析】先由题意,设直线l 的方程为()34y k x -=-,根据直线与圆位置关系,列出不等式求解,即可得出结果. 【详解】由题意,易知,直线l 的斜率存在,设直线l 的方程为()34y k x -=-,即340kx y k -+-= 曲线22231x y 表示圆心()2,3,半径为1的圆,圆心()2,3到直线340kx y k -+-=的距离应小于等于半径1,1≤,即2k -≤,解得k ≤故选:C. 【点睛】方法点睛:本题主要考查由直线与圆的位置关系求参数,判断直线与圆的位置关系用几何法—圆心到直线的距离d 与圆的半径r 比较,d r =相切;d r 相离;d r <相交,考查学生的运算求解能力,属于一般题. 11.B 【分析】问题转化为圆心到直线的距离大于1,小于3,再求出圆心到直线的距离后列出不等式可解得. 【详解】依题意可得圆心到直线的距离()1,3d ∈.∵d =3<,解得b -<b <B . 【点睛】本题考查直线与圆的位置关系,属于一般题. 12.B 【分析】由2y =()()22224x y -+-=,且22y =<,即2y =()2,2为圆心,2为半径的圆位于直线2y =下方的部分, 直线y x b =+表示斜率为1的直线系, 如图所示,考查满足题意的临界条件: 当直线经过点()4,2A 时:24,2b b =+∴=-,当直线与圆相切时,圆心()2,2到直线0x y b -+=的距离等于半径2,即:2=,解得:b =±B 时,b =-结合题中的临界条件可知:实数b 的取值范围是(2⎤--⎦. 本题选择B 选项.【详解】 13.D 【详解】因为直线l :1y kx =+过定点()0,1M ,而点()0,1M 在圆22:230C x y x +--=内,根据圆的几何性质可知,当直线l 与MC 垂直时,直线l :1y kx =+被圆22:230C x y x +--=截得的弦最短,由圆的方程可得()1,0C ,于是可得101,101MC k k -==-=-,直线l 的方程是1,y x =+化为10x y -+=,故选D. 14.C 【分析】利用直角三角形的性质求得其内切圆的半径,如图建立直角坐标系,则内切圆的方程可得,设出p 的坐标,表示出,222||||||S PA PB PO =++,利用x 的范围确定S 的范围,则最小值可得 【详解】解:如图,ABO 是直角三角形,设ABO 的内切圆圆心为O ',切点分别为D ,E ,F ,则1(1086)122AD DB EO ++=++=.但上式中10AD DB +=,所以内切圆半径2r EO ==,如图建立坐标系,则内切圆方程为:22(2)(2)4x y -+-= 设圆上动点P 的坐标为(,)x y , 则222||||||S PA PB PO =++222222(8)(6)x y x y x y =-+++-++22331612100x y x y =+--+223[(2)(2)]476x y x =-+--+34476884x x =⨯-+=-.因为P 点在内切圆上,所以04x ,所以881672S =-=最小值故选:C15.C【分析】做出圆22(3)(2)2x y ++-=关于x 轴的对称圆,进而根据图形得AC BC AP r +≥-即可求解.【详解】解:如图,圆22(3)(2)1x y ++-=的圆心()3,2-,其关于x 轴的对称圆的圆心为()3,2P --,由图得AC BC AP r +≥-==故选:C.【点睛】解题的关键在于求圆关于x 轴的对称圆圆心P ,进而将问题转化AC BC AP r +≥-求解. 16.D【分析】根据题意,画出图象,当MPN ∠取得最大值时,则MPC ∠取得最大值,而sin MC r MPC PC PC∠==,当PC 取得最小值时,MPC ∠取得最大值,结合已知,即可求得答案.【详解】 结合题意,绘制图象如下:当MPN ∠取得最大值时,则MPC ∠取得最大值, 而sin MC r MPC PC PC∠==, 当PC 取得最小值时,MPC ∠取得最大值.故PC 的最小值为点C 到该直线的距离,故d ==故1sin 302r PC ==︒=,解得r =故选:D .【点睛】本题主要考查了圆的基础知识,和数形结合,考查了分析能力和计算能力,属于中档题. 17.B【分析】根据“直线l 与圆22210x y ay +--=相切”求出1a =-,由211a a =⇒=±,然后根据必要不充分条件的概念进行判断.【详解】因为直线l 与圆22210x y ay +--=相切,所以圆心到直线的距离等于半径,又因为圆心()0,a=1a =-,又211a a =⇒=±,所以“21a =”是“直线l 与圆22210x y ay +--=相切”的必要不充分条件.故选:B.18.A【分析】首先判断出圆心到直线的距离,然后判断2d +,2d -与r 的关系,从而确定点的个数.【详解】圆的圆心为()2,3-,半径为3圆心到直线的距离d ==可知23<,232+<由上图可知,圆上到直线距离等于2的点共有4个本题正确选项:A【点睛】本题考查直线与圆的位置关系,由位置关系判断到直线距离为定值的点的个数,解题关键在于确定圆心到直线的距离,再进一步判断.19.A【详解】由圆的性质知:AB 与直线0x y c -+=垂直且被平分,所以3111AB k m+==--,解得5m =,又AB 中点(3,1)在直线上,代入可求得2c =-,所以21m c +=故选A.20.B【分析】建立平面直角坐标系,设00(,)P x y ,利用坐标法将,x y 用P 点坐标表示,即可求出2x y +的最小值.【详解】以A 点为坐标原点,AB 所在直线为x 轴,AD 所在直线为y 轴,建立如图所示的平面直角坐标系,设2AB =,00(,)P x y ,则(0,0)A ,(0,2)D ,(2,1)E ,半圆的方程为22(1)1(0)x y y -+=≥,所以(2,1)AE =,(0,2)AD =,00(,)AP x y =,因为(,)AE xAD y AP x y =+∈R ,即00(2,1)(0,2)(,)x y x y =+,所以00212yx x yy =⎧⎨=+⎩,即0002221y x y x x ⎧=⎪⎪⎨⎪=-⎪⎩, 所以001212y x y x -+=+⋅,又00(,)P x y 是半圆上的任意一点, 所以01cos x θ=+,0sin y θ=,[0,]θπ∈, 所以1sin 2121cos θx y θ-+=+⋅+,所以当2πθ=时,2x y +取得最小值1. 故选:B【点睛】关键点点睛:本题主要考查二元变量的最值求法,关键是根据已知把几何图形放在适当的坐标系中,把有关点与向量用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决.21.C【分析】 首先设()()00,,,P x y N x y ,根据平行四边形的性质,求得003,4.x x y y =+⎧⎨=-⎩,代入圆的方程,求得点P 的轨迹,同时注意去掉不能满足平行四边形的点.【详解】设()()00,,,P x y N x y ,则线段OP 的中点坐标为,22x y ⎛⎫ ⎪⎝⎭,线段MN 的中点坐标为0034,22x y -+⎛⎫ ⎪⎝⎭.由于平行四边形的对角线互相平分,所以003,22422x x y y -⎧=⎪⎪⎨+⎪=⎪⎩,从而003,4.x x y y =+⎧⎨=-⎩又点()3,4N x y +-在圆224x y +=上,所以()()22344x y ++-=.当点P 在直线OM 上时,22443x y y x ⎧+=⎪⎨=-⎪⎩,解得:912,55x y =-=或2128,55x y =-=. 因此所求轨迹为以()3,4-为圆心,2为半径的圆,除去点91255⎛⎫- ⎪⎝⎭,和点212855⎛⎫- ⎪⎝⎭,.故选:C.22.D【分析】根据题意将所求问题转化为两个圆有交点的问题解决.【详解】以()0,4A ,()2,0B 两点为直径的圆的方程为()()22125x y -+-=,设圆心为N ,所以()1,2N若在圆22:245M x y x y m ++++=上存在点P ,使得APB ∠为直角,则圆M 与圆N 有公共点,又圆22:245M x y x y m ++++=,所以()1,2M --)0m >,所以MN =≤545m ≤≤,所以m 的最大值为45.故选:D23.D【解析】圆C 的标准方程为(x +2)2+(y -1)2=9,圆心为C (-2,1),半径为3.|OC |圆上一点(x ,y )到原点的距离的最大值为3x 2+y 2表示圆上的一点(x ,y )到原点的距离的平方,最大值为(32=14+故选D.24.D【分析】由题意可得直线l 过圆心(2,1)-,分直线l 过原点和直线l 不过原点,分别求得其直线方程.【详解】解:由题意可得直线l 过圆心(2,1)-,当直线l 过原点时,其方程为20x y +=;当直线l 不过原点时,设l :x y a +=,则211a =-+=-,此时方程为10x y ++=. 故选:D.25.A【分析】先求出AC AB ⊥,然后以,AB AC 为,x y 轴建立平面直角坐标系,求出圆C 的方程丹凤 出M 点坐标,用坐标表示向量积,结合三角函数性质可得最大值.【详解】 由题意3ABC π∠=,所以22212212cos 33AC π=+-⨯⨯=,即222AC AB BC +=,所以2CAB π∠=,以,AB AC 为,x y 轴建立平面直角坐标系,如图,则(1,0)B ,C ,(D -.直线BD 方程为111x -=--20y +-=,所以圆C 半径为7r ==C 方程为223(7x y +=,设()77M αα,21()AM αα=,(BD =-,所以3AM BD αα⋅=+,33=.故选:A .26.C【分析】由两圆有三条公切线,可知两圆外切,则两圆的圆心距等于半径之和,列出式子即可求出m 的值.【详解】由题意可知两圆外切,圆C 的圆心为()0,0,圆E 的圆心为()3,4,半径为4,4,解得4m =.故答案为C.【点睛】本题考查了两圆的公切线,考查了圆与圆的位置关系,考查了计算能力,属于基础题. 27.A【解析】【详解】由题意可得圆心(2,3)C ,半径为1r =,点A 关于x 轴的对称点(1,1)A -'-,求得5A C =',则要求的最短路径的长为514A C r -=-=',故选A.28.B【详解】将sin 20ρθ-=化为直角坐标方程得,20y -= ,由4cos 0ρθ-=可得,24cos ρρθ=化为直角坐标方程可得,()2224x y -+= ,圆心()2,0 到直线20y -=的距离为2 ,等于圆的半径,所以直线20y -=与()2224x y -+=相切,即曲线1:sin 20C ρθ-=,曲线2:4cos 0C ρθ-=,则曲线12C C 、的位置关系是相切,故选B.29.A【分析】若,,A B C 公差为d ,结合直线方程可得(1)(2)0A x y d y ++++=,即可确定所过的定点坐标,再判断定点与圆的位置关系即可.【详解】若,,A B C 公差为d ,则()(2)(1)(2)0Ax A d y A d A x y d y ++++=++++=,∴直线恒过定点(1,2)-,将代入圆中,可得522610t t +--=-<,∴(1,2)-在圆22260x y tx ty +++-=内,故直线与圆相交.故选:A30.B【分析】先求出M 点的轨迹为圆,然后问题转化为圆外的点到圆上的点的距离最大问题求解即可【详解】设点M 坐标为(),x y ,P 点坐标为()00,x y ,因为P ,M ,E 共线所以//PE ME ,得()()0011y x y x -=-因为003y x =+,得0033141y x x y x y y y x +-⎧=⎪-+⎪⎨⎪=⎪-+⎩① CD 的直线方程为()()00114x x y y --+=②将①代入②得22111222x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,所以M 点的轨迹是以N 11,22⎛⎫ ⎪⎝⎭为圆心,AM的最大值为2AN r +=+=故选:B31.C【详解】圆心到直线的距离()90,25d ==∈, 据此可知直线与圆的位置关系为相交但不过圆心. 本题选择C 选项.32.C【详解】圆C 1关于x 轴的对称圆的圆心坐标C 3(﹣1,﹣3),半径为1, 圆C 2的圆心坐标(5,5),半径为2, |PM|+|PN|的最小值为圆C 3与圆C 2的圆心距减去两个圆的半径和,31037=-=. 故选C .33.A【分析】设以2OF 为直径的圆与直线1PF 相切于点N ,圆心为M ,则1MN PF ⊥,因此121Rt PF F Rt NF M ∽,所以1212||F M NM PF F F =,由此可求出223cPF =,而12PF PF ⊥,再由勾股定理可得1PF =18PF =,从而可求出c 的值 【详解】依题意知12PF PF ⊥,设以2OF 为直径的圆与直线1PF 相切于点N ,圆心为M ,则1MN PF ⊥,因此121Rt PF F Rt NF M ∽,所以1212||F MNM PF F F =. 设双曲线的焦距为2c ,则23222c cPF c=,解得223cPF =,由勾股定理可得1PF =8=,c =2c = 故选:A 【点睛】此题考查圆与双曲线的性质的应用,考查数学转化思想和计算能力,属于基础题 34.B 【分析】作出图形,利用椭圆的定义以及圆的几何性质可求得PF PQ的最小值.【详解】 如下图所示:。

2020-2021学年高考数学(理)考点:圆的方程

2020-2021学年高考数学(理)考点:圆的方程

2020-2021学年高考数学(理)考点:圆的方程圆的定义与方程概念方法微思考1.二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的条件是什么? 提示 ⎩⎪⎨⎪⎧A =C ≠0,B =0,D 2+E 2-4AF >0.2.点与圆的位置关系有几种?如何判断? 提示 点和圆的位置关系有三种.已知圆的标准方程(x -a )2+(y -b )2=r 2,点M (x 0,y 0), (1)点在圆上:(x 0-a )2+(y 0-b )2=r 2; (2)点在圆外:(x 0-a )2+(y 0-b )2>r 2; (3)点在圆内:(x 0-a )2+(y 0-b )2<r 2.1.(2020•北京)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( ) A .4 B .5C .6D .7【答案】A 【解析】如图示:,半径为1的圆经过点(3,4),可得该圆的圆心轨迹为(3,4)为圆心,1为半径的圆, 故当圆心到原点的距离的最小时,连结OB ,A 在OB 上且1AB =,此时距离最小, 由5OB =,得4OA =,即圆心到原点的距离的最小值是4, 故选A .2.(2018•天津)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________. 【答案】22(1)1x y -+=(或2220)x y x +-= 【解析】【方法一】根据题意画出图形如图所示, 结合图形知经过三点(0,0),(1,1),(2,0)的圆, 其圆心为(1,0),半径为1, 则该圆的方程为22(1)1x y -+=.【方法二】设该圆的方程为220x y Dx Ey F ++++=, 则042020F D F D E F =⎧⎪++=⎨⎪+++=⎩, 解得2D =-,0E F ==;∴所求圆的方程为2220x y x +-=.故答案为:22(1)1x y -+=(或2220)x y x +-=.3.(2017•上海)若P 、Q 是圆222440x y x y +-++=上的动点,则||PQ 的最大值为__________. 【答案】2【解析】圆222440x y x y +-++=,可化为22(1)(2)1x y -++=,P 、Q 是圆222440x y x y +-++=上的动点,||PQ ∴的最大值为2,故答案为2.1.(2020•江西模拟)圆C 的半径为5,圆心在x 轴的负半轴上,且被直线3440x y ++=截得的弦长为6,则圆C 的方程为( ) A .22230x y x +--= B .2216390x x y +++= C .2216390x x y -+-= D .2240x y x +-=【答案】B【解析】设圆心为(a ,0)(0)a <,由题意知圆心到直线3440x y ++=的距离为|34|45a d +==,解得8a =-, 则圆C 的方程为22(8)25x y ++=,即为2216390x x y +++=, 故选B .2.(2020•西城区模拟)若圆22420x y x y a +-++=与x 轴,y 轴均有公共点,则实数a 的取值范围是( ) A .(-∞,1] B .(-∞,0] C .[0,)+∞ D .[5,)+∞【答案】A【解析】圆2222420(2)(1)5x y x y a x y a +-++=⇒-++=-;圆心(2,1)-,r =圆与x ,y 轴都有公共点; ∴2515150a a a a ⎧-⎪⎪-⇒⎨⎪->⎪⎩; 故选A .3.(2020•全国Ⅱ卷模拟)已知圆C 过点(4,6),(2,2)--,(5,5),点M ,N 在圆C 上,则CMN ∆面积的最大值为( ) A .100 B .25 C .50 D .252【答案】D【解析】设圆C 的方程为220x y Dx Ey F ++++=, 将(4,6),(2,2)--,(5,5)代入可得,52460822050550D E F D E F D E F +++=⎧⎪--+=⎨⎪+++=⎩,解得2D =-,4E =-,20F =-,故圆C 的一般方程为2224200x y x y +---=, 即22(1)(2)25x y -+-=, 故CMN ∆的面积1125||||sin 55222S CM CN MCN =∠⨯⨯=, 故选D .4.(2020•长春三模)已知圆E 的圆心在y 轴上,且与圆22:20C x y x +-=的公共弦所在直线的方程为0x =,则圆E 的方程为( )A .22(2x y +-=B .22(2x y +=C .22(3x y +=D .22(3x y ++=【答案】C【解析】圆E 的圆心在y 轴上,∴设圆心E 的坐标为(0,)b ,设半径为r , 则圆E 的方程为:222()x y b r +-=,即222220x y by b r +-+-=, 又圆C 的方程为:2220x y x +-=,两圆方程相加得公共弦所在直线的方程为:2202b r x by --+=,又公共弦所在直线的方程为0x =,∴2202b b r ⎧=⎪⎨-=⎪⎩,解得b r ⎧=⎪⎨=⎪⎩∴圆E的方程为:22(3x y +=,故选C .5.(2020•怀柔区一模)已知圆C 与圆22(1)1x y -+=关于原点对称,则圆C 的方程为( ) A .221x y += B .22(1)1x y ++= C .22(1)1x y +-= D .22(1)1x y ++=【答案】D【解析】圆22(1)1x y -+=的圆心坐标为(1,0),半径为1. 点(1,0)关于原点的对称点为(1,0)-, 则所求圆的方程为22(1)1x y ++=. 故选D .6.(2020•郑州二模)圆22(2)(12)4x y ++-=关于直线80x y -+=对称的圆的方程为( ) A .22(3)(2)4x y +++= B .22(4)(6)4x y ++-= C .22(4)(6)4x y -+-= D .22(6)(4)4x y +++=【答案】C【解析】由圆22(2)(12)4x y ++-=可得圆心坐标(2,12)-,半径为2,由题意可得关于直线80x y -+=对称的圆的圆心与(2,12)-关于直线对称,半径为2, 设所求的圆心为(,)a b 则21280221212a b b a -+⎧-+=⎪⎪⎨-⎪=-⎪+⎩解得:4a =,6b =,故圆的方程为:22(4)(6)4x y -+-=, 故选C .7.(2020•西城区一模)设(2,1)A -,(4,1)B ,则以线段AB 为直径的圆的方程是( )A .22(3)2x y -+=B .22(3)8x y -+=C .22(3)2x y ++=D .22(3)8x y ++=【答案】A【解析】弦长AB =(3,0), 所以圆的方程22(3)2x y -+=, 故选A .8.(2020•拉萨二模)圆心为(2,1)且和x 轴相切的圆的方程是( ) A .22(2)(1)1x y -+-= B .22(2)(1)1x y +++= C .22(2)(1)5x y -+-= D .22(2)(1)5x y +++=【答案】A【解析】圆心为(2,1)且和x 轴相切的圆,它的半径为1, 故它的的方程是22(2)(1)1x y -+-=, 故选A .9.(2020•绵阳模拟)已知圆22:6890C x y x y +--+=,点M ,N 在圆C 上,平面上一动点P 满足||||PM PN =且PM PN ⊥,则||PC 的最大值为( )A .8B .C .4D .【答案】D【解析】根据题意,若平面上一动点P 满足||||PM PN =,又由||||CM CN =,则PC 为线段MN 的垂直平分线,设MN 的中点为G ,||NG n =,||CG m =,又由||||PM PN =且PM PN ⊥,则PMN ∆为等腰直角三角形,故||||PG NG n ==, 圆22:6890C x y x y +--+=,即22(3)(4)16x y -+-=, 则2216m n +=,则||()16(PC m n m =++当且仅当m n =时等号成立,故||PC 的最大值为 故选D .10.(2020•绵阳模拟)已知圆22:280C x y x +--=,直线l 经过点(2,2)M ,且将圆C 及其内部区域分为两部分,则当这两部分的面积之差的绝对值最大时,直线l 的方程为( ) A .220x y -+= B .260x y +-= C .220x y --= D .260x y +-=【答案】D【解析】如图所示:圆22:280C x y x +--=,化为标准方程为:22(1)9x y -+=,∴圆心(1,0)C ,当直线l 与CM 垂直时,直线l 分圆C 的两部分的面积之差的绝对值最大, 20221CM k -==-, ∴直线l 的斜率12k =-, ∴直线l 的方程为:12(2)2y x -=--,即260x y +-=,故选D .11.(2020•和平区校级二模)已知圆C 的圆心在直线230x y --=上,且过点(2,3)A -,(2,5)B --,则圆C 的标准方程为__________. 【答案】22(1)(2)10x y +++=【解析】根据题意,圆C 的圆心在直线230x y --=上,设圆心的坐标为(23,)t t +, 圆C 经过点(2,3)A -,(2,5)B --,则有2222(232)(3)(232)(5)t t t t +-++=++++, 解可得2t =-,则231t +=-,即圆心C 的坐标为(1,2)--, 圆的半径为r ,则2222||(12)(23)10r CA ==--+-+=, 故圆C 的标准方程为22(1)(2)10x y +++=; 故答案为:22(1)(2)10x y +++=.12.(2020•江苏模拟)在平面直角坐标系xOy 中,已知圆M 经过直线:0l x -+=与圆22:4C x y +=的两个交点.当圆M 的面积最小时,圆M 的标准方程为__________.【答案】223(()12x y ++-=【解析】根据题意,直线:0l x -+=与圆22:4C x y +=相交,设其交点为A 、B ,则有2204x x y ⎧-+⎪⎨+=⎪⎩,联立解可得:1x y ⎧=⎪⎨=⎪⎩02x y =⎧⎨=⎩,即A 、B 的坐标为(1)和(0,2);当AB 为圆M 的直径时,圆M 的面积最小,此时圆M的圆心(M ,3)2,半径1||12r AB ==; 则此时圆M的标准方程为:223(()12x y +-=;故答案为:223(()12x y ++-=. 13.(2020•河东区一模)已知圆O 过点(0,0)A 、(0,4)B 、(1,1)C ,点(3,4)D 到圆O 上的点最小距离为__________.【解析】设圆O 的方程为220x y dx ey f ++++=,圆O 过点(0,0)A 、(0,4)B 、(1,1)C , ∴0016040110f e f d e f =⎧⎪++++=⎨⎪++++=⎩,求得240d e f =⎧⎪=-⎨⎪=⎩,故圆的方程为22240x y x y ++-=,即22(1)(2)5x y ++-=,表示圆心为(1,2)-的圆.||DO =故点(3,4)D 到圆O上的点最小距离为.14.(2020•南通模拟)在平面直角坐标系xOy 中,已知过点(10,0)-的圆M 与圆22660x y x y +--=相切于原点,则圆M 的半径是__________. 【答案】【解析】圆22660x y x y +--=化为22(3)(3)18x y -+-=, 圆心坐标为(3,3),半径为 如图,所求的圆与圆22660x y x y +--=相切于原点,∴两圆圆心的连线在直线y x =上,可设所求圆的圆心为(,)a a 解得5a=-,∴所求圆M 的半径为故答案为:15.(2020•滨海新区模拟)以点(1,0)C 为圆心,且被y 轴截得的弦长为2的圆的方程为__________. 【答案】22(1)2x y -+= 【解析】如图,圆的半径为r . 又圆心为(1,0),∴所求圆的方程为22(1)2x y -+=.故答案为:22(1)2x y -+=.16.(2020•东城区一模)圆心在x 轴上,且与直线1:l y x =和2:2l y x =-都相切的圆的方程为__________. 【答案】221(1)2x y -+=【解析】设所求圆的方程为222()x a y r -+=, 因为圆与直线1:l y x =和2:2l y x =-r ==,解得1a =,r ,所以圆的方程为221(1)2x y -+=. 故答案为:221(1)2x y -+=. 17.(2020•河西区一模)已知圆C 的圆心在第一象限,且在直线2y x =上,圆C 与抛物线24y x =的准线和x 轴都相切,则圆C 的方程为__________. 【答案】22(1)(2)4x y -+-=【解析】圆C 的圆心在第一象限,且在直线2y x =上, 故可设圆心为(,2)C a a ,0a >,圆C 与抛物线24y x =的准线1x =-和x 轴都相切,故圆的半径|1||2|a a +=,解得1a =,或13a =-(舍去),故半径为2,则圆C 的方程为22(1)(2)4x y -+-=, 故答案为:22(1)(2)4x y -+-=.18.(2020•宿迁模拟)在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2100x y +-=相切,当圆C 面积最小时,圆C 的标准方程为__________. 【答案】22(2)(1)5x y -+-=【解析】A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2100x y +-=相切,所以原点(0,0)在圆上,原点(0,0)到直线2100x y +-=的距离d ==(0,0)到直线的距离为直径时,该圆最小.即2dr =直线2100x y +-=与圆的切点坐标满足210012x y y x +-=⎧⎪⎨=⎪⎩,解得42x y =⎧⎨=⎩,所以圆心坐标为40222012a b +⎧==⎪⎪⎨+⎪==⎪⎩,故圆的方程为22(2)(1)5x y -+-=. 故答案为:22(2)(1)5x y -+-=.19.(2020•滨海新区模拟)已知圆心为C 的圆经过点(1,1)A --和(2,2)B -,且圆心C 在直线:10l x y --=上,则圆心为C 的圆的标准方程是__________.【答案】22(3)(2)25x y -+-=【解析】由(1,1)A --,(2,2)B -,得AB 的中点为3(2-,1)2,又12312AB k --==--+,AB ∴的垂直平分线方程为113()232y x -=+,即330x y -+=. 联立33010x y x y -+=⎧⎨--=⎩,解得32x y =⎧⎨=⎩.∴圆心坐标为(3,2)C ,半径为||5CA =.∴圆心为C 的圆的标准方程是22(3)(2)25x y -+-=.故答案为:22(3)(2)25x y -+-=.20.(2020•如皋市校级模拟)在平面直角坐标系xOy 中,若(0,1)A ,点B 是圆22:230C x y x ++-=上的动点,则2AB BO +的最小值为__________.【解析】由(0,1)A ,圆22:230C x y x ++-=上可化为22(1)4x y ++=, 设点(,)B x y ,则2AB BO +=====这表示圆C 上的点B 到点A 的距离与到点(3,0)D 的距离的和, 所以点B 在线段AD 上时,2AB BO +取得最小值,如图所示,所以2AB BO +的最小值是AD21.(2020•江苏一模)在平面直角坐标系xOy 中,已知圆22:48120M x y x y +--+=,圆N 与圆M 外切于点(0,)m ,且过点(0,2)-,则圆N 的标准方程为__________. 【答案】22(2)8x y ++=【解析】已知圆22:48120M x y x y +--+=,整理得:22(2)(4)8x y -+-=, 令0y =,圆的方程转换为:28120y y -+=,解得2y =或6. 由于圆N 与圆M 相切于(0,)m 且过点(0,2)-. 所以2m =.即圆N 经过点(0,2)A ,(0,2)B -. 所以圆心在这两点连线的中垂线x 轴上,x 轴与MA 的交点为圆心N .所以:2MA y x =+. 令0y =,则2x =-. 即(2,0)N -,|R NA ==.所以圆N 的标准方程为:22(2)8x y ++=. 故答案为:22(2)8x y ++=.22.(2020•南通模拟)在平面直角坐标系xOy 中,已知圆C 圆心在直线:21l y x =-上,若圆C 上存在一点P ,使得直线1:20l ax y --=与直线2:20l x ay +-=交于点P ,则当实数a 变化时,圆心C 的横坐标x 的取值范围是__________. 【答案】[1-,7]5【解析】因为直线1:20l ax y --=与直线2:20l x ay +-=互相垂直,且分别过定点(0,2)A -,(2,0)B ,故点P 在以AB 为直径的圆上运动,直径AB ,圆心坐标为(1,1)-, 又因为点P 在圆C 上,故两圆有公共点,所以两圆的圆心距d 满足022d , 即220(1)(211)22x x -+-+,解得715x-, 故答案为[1-,7]5.23.(2020•南通模拟)已知半径为1的圆C 的圆心在射线2(1)y x x =-+上,若圆C 上有且仅有一点Q ,满足226QA QB +=,其中(1,1)A ,(3,3)B ,则圆C 的方程为__________. 【答案】22(2)1x y -+=【解析】设(,)Q x y ,则由22||||6QA QB +=得:2222[(1)(1)][(3)(3)]6x y x y -+-+-+-=, 整理得22(2)(2)1x y -+-=,所以点Q 在以(2,2)为圆心,半径为1的圆上;又点Q 在圆22()[(2)]1(1)x a y a a -+--+=上, 且两圆有唯一公共点,则两圆相切,如图所示; 当两圆外切时,22(2)[2(2)]4a a -+--+=,解得2a =或0a =,应取2a =;当两圆内切时,22(2)[2(2)]0a a -+--+=, 此时方程无实数解,a 的值不存在; 综上知,圆C 的圆心为(2,0), 圆C 的方程为22(2)1x y -+=. 故答案为:22(2)1x y -+=.24.(2020•许昌一模)若圆22420x y x y F +--+=的半径为3,则F =__________. 【答案】4-【解析】根据题意,圆22420x y x y F +--+=的半径为33=, 解可得:4F =-; 故答案为:4-.25.(2020•南开区校级模拟)过点(3,2)A -,(5,2)B --,且圆心在直线3240x y -+=上的圆的半径为__________.【解析】(3,2)A -,(5,2)B --,∴2225(3)AB k --==---,AB 的中点坐标为(4,0)-,AB ∴的垂直平分线方程为1(4)2y x =-+,即240x y ++=.联立2403240x y x y ++=⎧⎨-+=⎩,解得21x y =-⎧⎨=-⎩.∴所求圆的圆心坐标为(2,1)--,半径r26.(2020•洛阳二模)已知点A ,B 分别在x 轴,y 轴上,||3AB =,2BM MA =. (1)求点M 的轨迹C 的方程;(2)过点(0,1)N 作两条互相垂直的直线1l ,2l ,与曲线C 分别交于P ,Q (不同于点)N 两点,求证:直线PQ 过定点.【解析】(1)设点M 的坐标为(,)M x y ,(,0)A a ,(0,)B b .由2BM MA =得21(,)33M a b所以3,32a xb y == 因为229a b += 所以223()(3)92x y +=则2214xy += (2)由题可知,直线NP 的斜率存在,设直线1()NP l 的方程:1y kx =+ 联立22114y kx x y =+⎧⎪⎨+=⎪⎩得:22(14)80k x kx ++=,解得12280,14k x x k -==+ 则222814(,)1414k k P k k --++,由于1l ,2l 为过N 互相垂直的直线,同理得22284(,)44k k Q k k -++直线PQ 的斜率为22222224141414885414k k k k k k k k k k k----++==--++ 直线PQ 的方程为2222418()454k k ky x k k k ---=-++化简得:21355k y x k -=-因此直线PQ 恒过点3(0,)5-.27.(2019•西湖区校级模拟)如图,已知圆M 过点(10,4)P ,且与直线43200x y +-=相切于点(2,4)A (1)求圆M 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于B 、C 两点,且||||BC OA =,求直线l 的方程;【解析】(1)过点(2,4)A 且与直线43200x y +-=垂直的直线方程为34100x y -+=①;AP 的垂直平分线方程为6x =;由①②联立得圆心(6,7)M ,半径||5r AM =; 圆M 的方程为22(6)(7)25x y -+-=. (2)因为直线//l OA ,所以直线l 的斜率为40220-=-. 设直线l 的方程为2y x m =+,即20x y m -+= 则圆心M 到直线l 的距离d =因为BC OA ==,而222()2BC MC d =+,所以2(5)2555m +=+,解得5m =或15m =-. 故直线l 的方程为250x y -+=或2150x y --=.28.(2019•西湖区校级模拟)已知圆22:(3)(4)4C x y -+-=, (Ⅰ)若直线1l 过定点(1,0)A ,且与圆C 相切,求1l 的方程;(Ⅱ)若圆D 的半径为3,圆心在直线2:20l x y +-=上,且与圆C 外切,求圆D 的方程.【解析】(Ⅰ)①若直线1l 的斜率不存在,即直线是1x =,符合题意. ②若直线1l 斜率存在,设直线1l 为(1)y k x =-,即0kx y k --=. 由题意知,圆心(3,4)到已知直线1l 的距离等于半径2,2=解之得34k =. 所求直线方程是1x =,3430x y --=.(Ⅱ)依题意设(,2)D a a -,又已知圆的圆心(3,4)C ,2r =,由两圆外切,可知5CD =∴5=,解得3a =,或2a =-, (3,1)D ∴-或(2,4)D -,∴所求圆的方程为22(3)(1)9x y -++=或22(2)(4)9x y ++-=.。

聚焦高考新热点——圆的方程

聚焦高考新热点——圆的方程

聚焦高考新热点——圆的方程作者:阙东进来源:《中学课程辅导高考版·学生版》2009年第03期圆与方程是曲线与方程的典范,是解析几何的基础内容,在09年江苏高考《考试说明》中是C级要求,成为新高考的重点与热点问题.本文以题行文,拟探讨高考中的圆与方程,供广大的师生们参考.1 “对称”问题例1 已知圆C:x2+y2+2x+ay-3=0(a为实数)上任意一点关于直线l:x-y+2=0的对称点都在圆C上,则a=.解析:易知当直线l过圆C的圆心(-1,-a2)时满足题意,故a=-2.点评:圆具有较好的对称性,这是高考命题的关注点,应当重视.2 “运动型”问题例2 已知圆M:(x+cosθ)2+(y-sinθ)2=1,直线l:y=kx,下列命题:A.对任意实数k与θ,直线l总和圆M相切;B.对任意实数k与θ,直线l和圆M都有公共点;C.对任意实数θ,必存在实数k,使得直线l与和圆M相切;D.对任意实数k,必存在实数θ,使得直线l与和圆M相切其中真命题的代号是.解析:如图1,圆心P(-cosθ,sinθ)的轨迹是单位圆O,故圆M的圆心在圆O上运动(半径为1),又直线l是绕原点的运动的直线,故填(B)、(D).点评:本题考查圆的标准方程、直线与圆的位置关系,注意到圆M、直线l的本质属性,利用运动变化的观念、数形结合的思想巧妙解题.(也可用代数法)3 与圆相关的轨迹问题例3 (2008•江苏卷)若AB=2,AC=2BC,则ΔABC的面积SΔABC的最大值是.解析:如图2,建立平面直角坐标系xOy,则A(-1,0),B(1,0),设C(x,y),由题意得(x+1)2+y2=2(x-1)2+y 2 ,整理得(x-3)2+y2=8,故点C的轨迹为圆(除与x轴的两个交点),所以SΔABC=12ABy≤22.点评:本题表面上考查解三角形问题,实质上考查点的轨迹为圆的问题,可谓明修栈道,暗度陈仓!这种题型值得重视,到两个定点距离之比为常数(不为1)的点的轨迹是一个圆,通常称为阿氏(Apoollonius,约前260~前190)圆.4 极点(线)问题例4 已知圆C:x2+y2=r2,定点M(x0,y0),直线l:x0x+y0y=r2,有如下两组论断:第一组(a)点M在圆内且M不是圆心(b)点M在圆上(c)点M在圆外第二组(1)直线l与圆C相切(2)直线l与圆C相交(3)直线l与圆C相离由第一组论断作为条件,第二组论断作为结论,写出所有可能成立的命题(请用题设的论断序号表示)解析:由点M关于圆C的极线为直线l 知:(a)(3),(b)(1),(c)(2).点评:极点、极线是切点、切线概念的推广,有许多美妙的性质,可参见本人拙文《漫谈点、线、圆之间的巧妙关系》,中学数学月刊.2008年第10期.5 应用型问题例5 如图3,l1,l2是通过某城市开发区中心O的两条南北和东西走向的街道,连接M,N两地之间的铁路线是圆心在直线l2上的一段圆弧,若点M在点O正北方向,且MO=3km,点N到l1,l2的距离分别为4km和5km.(1)建立适当坐标系,求铁路线所在圆弧的方程;(2)若该城市的某中学拟在点O正东方向选址建分校,考虑环境问题,要求校址到点O 的距离大于4km,并且铁路线上任意一点到校址的距离不能少于26km,求该校址(视校址为一个点)距点O的最近距离.即有a=5,故校址距点O的最近距离为5km.点评:本题考查数学建摸与实际应用能力,通过建系并设出圆的标准方程,求得基本量,但要注意实际问题中变量的范围.6 探究型问题例6 平面直角坐标系xOy中,设二次函数f(x)=x2+2x+b(x∈R)的图像与两坐标轴有三个交点,经过这三个交点的圆记为C,问圆C是否经过某定点(其坐标与b无关)?解:设圆C的方程为x2+y2+Dx+Ey+F=0(D2+E2-4F>0),令y=0,得x2+Dx+F=0,这与方程x2+2x+b=0同解,故D=2,F=b.令x=0,得y2+Ey+b=0,此方程有一个根为b,代入得E=-b-1,故圆C的方程为x2+y2+2x-(b+1)y+b=0,整理得(1-y)b+(x2+y2+2x-y)=0,由题意得y-1=0,且x2+y2+2x-y=0,即有x=0或x=-2,所以圆C必过定点(0,1),(-2,1).点评:确定一个圆C需要三个独立的参数,标准式C~(a,b;r),一般式C~(D,E,F),本题选取一般式方程,利用(同解)方程思想求解,过定点问题的处理思路是将方程化为f(x,y)b+g(x,y)=0的形式,令f(x,y)=0且g(x,y)=0,进而求出定点坐标.7 创新型问题例7 在平面区域x-2y+10≥0,x+2y-6≥0,2x-y-7≤0内有一个圆,向该区域内随机投点,将点落在圆内的概率最大时的圆记为⊙M.(1)求⊙M的方程;(2)过点P(0,3)作⊙M的两条切线,切点分别记为A,B;又过P作⊙N:x2+y2-4x+λy+4=0的两条切线,切点分别记为C,D.试确定λ的值,使AB⊥CD.解:(1)如图4,设⊙M的方程为(x-a)2+(y-b)2=r2(r>0),则点(a,b)在所给区域的内部,故a-2b+105=r,a+2b-65=r,-2a+b+75=r,解得a=3,b=4,r=5,故⊙M的方程为(x-3)2+(y-4)2=5;(2)如图5,当且仅当PM⊥PN时,AB⊥CD,由k PM=13知k PN=12(-λ点评:本题涉及线性规划,几何概型等考点,但仅是给出它们的背景,并未深入挖掘,将知识点有机组合而成的创新问题,是命题的一种趋势.8 半开放型问题例8 设圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3∶1,在满足条件①、②的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆的方程.解:如图6,设圆心为P(a,b),半径为r,图6在Rt△PHD中,由①知r2=a2+1,由②知∠APB=90°,故r2=2b2,从而2b2-a2=1,又点P到直线l的距离为d=a-2b5,故5d2=a2+4b2-4ab≥a2+4b2-2(a2+b2)=2b2-a2=1,当且仅当a=b时等号成立,此时d取得最小值,故a=1,b=1或a=-1,b=-1,r2=a2+1=2,所求圆的方程为(x-1)2+(y-1)2=2或(x+1)2+(y+1)2=2.点评:满足①、②的圆有无穷个(先开放),再提出限制条件,使所求圆的个数有穷(再封闭),让人耳目一新,有超凡脱俗之感.由①求②的最小值也可用方程思想:由②得a=2b±5d,代入①得2b2±45db+5d2+1=0有解,下略;或三角换元法:①中令b=secα2,a=tanα,下略;亦或数形结合法:由①知点(a,b)的轨迹为双曲线,下略.可见,圆与方程的试题题型丰富,形式活泼,在高考复习时务必扎实地掌握圆的几何性质,灵活地选用圆的方程形式,高考中才能游刃有余.。

高考数学圆的方程与性质选择题

高考数学圆的方程与性质选择题

高考数学圆的方程与性质选择题1. 请根据圆的标准方程 (x-a)^2 + (y-b)^2 = r^2,判断圆心坐标和半径。

2. 圆的方程 (x-2)^2 + (y+1)^2 = 9 是一个什么圆?3. 已知一个圆的方程是 (x-1)^2 + (y-2)^2 = 16,请问这个圆的半径是多少?4. 如果一个圆的方程是 x^2 + y^2 = 1,那么这个圆的圆心坐标和半径分别是什么?5. 已知一个圆的方程是 (x-2)^2 + (y-3)^2 = 4,请判断这个圆是否是圆心在原点的圆。

6. 请根据圆的方程 x^2 + y^2 - 2x - 4y + 5 = 0,判断这个圆的圆心坐标和半径。

7. 已知一个圆的方程是 (x-3)^2 + (y+2)^2 = 1,请问这个圆的半径是多少?8. 请判断圆的方程 x^2 + y^2 - 4x + 2y - 15 = 0 是否是一个标准圆的方程。

9. 如果一个圆的方程是 (x-1)^2 + (y-2)^2 = 5,请问这个圆的圆心坐标和半径分别是什么?10. 已知一个圆的方程是 (x+2)^2 + (y-3)^2 = 1,请判断这个圆的圆心坐标和半径。

11. 请根据圆的方程 (x-2)^2 + (y+1)^2 = 4,判断这个圆的半径。

12. 已知一个圆的方程是 x^2 + y^2 = 4,请问这个圆的圆心坐标和半径分别是什么?13. 请判断圆的方程 x^2 + y^2 - 2x - 4y + 5 = 0 是否是一个标准圆的方程。

14. 如果一个圆的方程是 (x-3)^2 + (y+2)^2 = 1,请问这个圆的半径是多少?15. 请根据圆的方程 (x-2)^2 + (y+1)^2 = 4,判断这个圆的圆心坐标和半径。

16. 已知一个圆的方程是 (x+2)^2 + (y-3)^2 = 1,请判断这个圆的圆心坐标和半径。

17. 请根据圆的方程 (x-2)^2 + (y+1)^2 = 4,判断这个圆的半径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆与方程
4.1.1 圆的标准方程
1、圆的标准方程:2
22()
()x a y b r -+-=
圆心为A(a,b),半径为r 的圆的方程
2、点00(,)M x y 与圆2
22()()x a y b r -+-=的关系的判断方法:
(1)2200()()x a y b -+->2r ,点在圆外 (2)2200()()x a y b -+-=2r ,点在圆上 (3)220
0()()x a y b -+-<2r ,点在圆内
4.1.2 圆的一般方程
1、圆的一般方程:022
=++++F Ey Dx y x
2、圆的一般方程的特点:
(1)①x2和y2的系数相同,不等于0. ②没有xy 这样的二次项.
(2)圆的一般方程中有三个特定的系数D 、E 、F ,因之只要求出这三个系数,圆的方程就确定了. (3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。

4.2.1 圆与圆的位置关系
1、用点到直线的距离来判断直线与圆的位置关系.
设直线l :0=++c by ax ,圆C :02
2
=++++F Ey Dx y x ,圆的半径为r ,圆心)2
,2(E
D --到直线的距离为d ,则判别直线与圆的位置关系的依据有以下几点:
(1)当r d >时,直线l 与圆C 相离;(2)当r d =时,直线l 与圆C 相切; (3)当r d <时,直线l 与圆C 相交;
4.2.2 圆与圆的位置关系
两圆的位置关系.
设两圆的连心线长为l ,则判别圆与圆的位置关系的依据有以下几点:
(1)当21r r l +>时,圆1C 与圆2C 相离;(2)当21r r l +=时,圆1C 与圆2C 外切; (3)当<-||21r r 21r r l +<时,圆1C 与圆2C 相交;
(4)当||21r r l -=时,圆1C 与圆2C 内切;(5)当||21r r l -<时,圆1C 与圆2C 内含;
4.2.3 直线与圆的方程的应用
1、利用平面直角坐标系解决直线与圆的位置关系;
2、过程与方法
用坐标法解决几何问题的步骤:
第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;
第二步:通过代数运算,解决代数问题; 第三步:将代数运算结果“翻译”成几何结论.
4.3.1空间直角坐标系
1、点M 对应着唯一确定的有序实数组),,(z y x ,x 、y 、z 分别是P 、Q 、R 在x 、y 、
z 轴上的坐标
2、有序实数组),,(z y x ,对应着空间直角坐标系中的一点
3、空间中任意点M 的坐标都可以用有序实数组),,(z y x 来表示,该数组叫做点M 在此空间直角坐标系中的坐标,记M ),,(z y x ,x 叫做点M 的横坐标,y 叫做点M 的纵坐标,z 叫做点M 的竖坐标。

4.3.2空间两点间的距离公式
1、空间中任意一点),,(1111z y x P 到点),,(2222z y x P 之间的距离公式
2
2122122121)
()()(z z y y x x P P -+-+-=
y。

相关文档
最新文档