实际问题与方程例1、例2、例3练习题
实际问题与一元一次方程(行程问题)

1. 谈谈你的收获. 2.你还有什么疑惑吗?
相遇问题: 甲路程+乙路程=总路程 追及问题: 追者路程=被追者路程+相隔距离
<1>学会借助线段图分析等量关 系;
<2>在探索解决实际问题时,应 从多角度思考问题.
放映结束 感谢各位的批评指导!
谢 谢!
让我们共同进步
一列客车和一列货车同时从两地车 站相对开出,货车每小时行35千米, 客车每小时行45千米,2.5小时相遇, 两车站相距多少千米?
速度、路程、时间之间的关系? 路程= 速度×时间 速度= 路程÷时间 时间= 路程÷速度
导入
想一想回答下面的问题:
1、A、B两车分别从相距S千米的甲、乙两地同时出 发,相向而行,两车会相遇吗?
精讲 例题
分
析
例1、 A、B两车分 别停靠在相距240千米
线段图分析:
的甲、乙两地,甲车每 小时行50千米,乙车每 小时行30千米.
A 50 x
甲
80千米
30 x B
乙
〔2若两车同时相向而 行,请问B车行了多长时 第一种情况: 间后两车相距80千米? A车路程+B车路程+相距80千米=
相距路程
相等关系:总量=各分量之和
3若解两:车设相〔y向小4而8时+行后60,慢两X=车车1先6相2开距出2710小公时里,再,由用题多意少得时:间
4两两车车同〔才时4能同8+相向解60遇 而得y行?:+1〔X6=2快1=.2车57在0 后面,几小时后快车 解可答:以:设追两再解上列用得慢火z:车车小?同时时两相车y向才=1而能行相,遇1.,5由小题时意可得以:相遇
解:设小王追上连队需要x小时,则小王行驶的路程为 14x千米,连队所行路程是 (6 18 6x) 千米 60 等量关系:小王所行路程=连队所行路程
第13讲 实际问题与一元一次方程(2) (原卷版)

第13讲实际问题与一元一次方程〔2〕一、知识梳理工程问题:工作量=工效·工时工时工作量工效=工效工作量工时=. 【例1】某制造工厂方案假设干天完成一批玩具的订货任务,如果每天生产玩具20个,那么就比订货任务少生成100个;如果每天生产玩具23个,那么就可超过订货任务20个,求原方案几天完成任务?【变式训练1】.现有120台大小两种型号的挖掘机同时工作,大型挖掘机每小时可挖掘土方360立方米,小型挖掘机每小时可挖掘土方200立方米,20小时共挖掘土方704000立方米,求大小型号的挖掘机各多少台?【例2】.整理一批图书,由一个人做需要120h 完成,先方案由一局部人先做12h ,然后再增加5人与他们一起做8个小时,完成这项工作.假设这些人的工作效率相同,具体应该先安排多少人工作?【变式训练2】.一项工程,甲队单独施工需要15天完成,乙队单独施工需要9天完成.现在由甲队先工作3天,剩下的由甲、乙两队合作,还需要几天才能完成任务?【例3】.某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在18天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?【变式训练3】.新型冠状肺炎疫情正在全球蔓延肆虐,口罩成了人们生活中必不可少的物品,某口罩厂有40名工人,每人每天可以生产1000个口罩面或1200根耳绳.一个口罩面需要配两根耳绳,为使每天生产的口罩面与耳绳刚好配套,应安排多少名工人生产口罩面?二、课堂训练1.某车间生产一种零件,该零件由甲乙两种配件组成,现有7名工人,每人每天可制作甲配件900个或者乙配件1200个.应怎样安排人力,才能使每天制作的甲乙配件的个数相等?2.一项工程,甲队单独完成需要40天,乙队单独完成需要50天,现甲队单独做4天后两队合作. 〔1〕求甲、乙两队合作多少天才能完成该工程.〔2〕在〔1〕的条件下,甲队每天的施工费为3000元,乙队每天的施工费为3500元,求完成此项工程需付给甲乙两队共多少元.3.“机器人〞的研发和运用,有效地节省了劳动力.某制造“机器人〞的车间有28名工人,每人每天可以生产“机器人〞的机壳500个或机脚800个.1个机壳需要配4个机脚,为使每天生产的机壳和机脚刚好配套.应安排生产机壳和机脚的工人各多少名?三、课后稳固1.中国宝武马鞍山钢铁集团第二炼铁厂接到一批原料加工任务425吨,现打算调用甲、乙两条生产线完成.甲生产线平均每天比乙生产线多加工5吨.假设甲生产线独立加工20天后,乙生产线参加,两条生产线又联合加工5天,刚好全部加工完毕.甲生产线加工一吨需用电40度,乙生产线加工一吨需用电25度.求完成这批加工任务需用电多少度?2.为打造运河风光带,现有一段河道治理任务由A、B两个工程队完成.A工程队单独治理该河道需16天完成,B 工程队单独治理该河道需24天完成,现在A工程队单独做6天后,B工程队参加合作完成剩下的工程,问B工程队工作了多少天?3.某车间有84名工人,每人每天可以生产16个大齿轮或10个小齿轮,1个大齿轮和2个小齿轮配成一套,为使每天生产的大齿轮和小齿轮刚好配套,应安排生产大齿轮和小齿轮的工人各多少名?一共可以配成多少套?。
实际问题与方程(例1)(五年级数学上册)

复 习 铺 垫
解方程:
87÷3+1.5x=116
只列方程,不解答:
4×2.5-2x=1.8
x的4倍与83的和是107,求x. 4x+83=107 从80里面减去x的3倍,差是26,求x.
80-3x=26
一个数的1.6倍加上0.6与8的积,和是8.4,求这个数。
1.6x+0.6×8=8.4
复 习 铺 垫
现在 成绩
在一次跳远测试中,小 明的成绩是4.21m ,超 过原学校跳远记0.06m, 学校原跳远纪录是多少 米?
超过原纪录 现在的成绩比原来的纪录多 现在成绩 0.06 -0.06= 米是什么意思? 原来纪录 0.06
4.21-0.06=4.15(米)
答:学校原跳远纪录是4.15米。
答:学校原跳远纪录是4.15米。
x+0.06=4.21
巩 固 1、某电脑公司购进300台 练 电脑,卖出一些后还剩140 习 台,卖出多少台?
解:设卖出 台。
x
2、桌子上摆了8排水饺, 每排7个。下了一部分 到锅里,桌上还剩下34 个,锅里有几个水饺?
解:设锅里有x个水饺。 总的 -锅里的 =剩下的 8× 7- =34
今天你有什么 收获?
现在成绩-原来纪录=0.06 现在成绩-0.06=原来纪录
4.21-0பைடு நூலகம்06=原来纪录
探 究 新 知
学校原跳远纪录是多少米? 在一次跳远测试中,小明 的成绩是4.21m ,超过 怎么求? 原学校跳远记0.06m,学 4.21-0.06=原来纪录 校原跳远纪录是多少米?
原来纪录+0.06=4.21 4.21-原来纪录=0.06
§_3.4实际问题与一元一次方程(练习答案)

§ 3.4实际问题与一元一次方程(知识要点)一、销售问题在生活中,人们购买商品和销售商品时,经常会遇到进价、原价(标价)、售价、打折等概念,在了解这些概念后,还必须熟悉销售问题中的两个基本关系式:① 利润=售价-进价; ② 利润率=进价利润×100%. 在①式中若等式左边的“利润”为正,就是盈利;若为负,就是亏损;由①和②式可以得到:利润=售价-进价=利润率×进价。
【例1】 某商店将某种服装按进价提高30%作为标价,又以九折优惠卖出,结果仍可获利17元,则这种服装每件进价是多少元?分析:此题要用的等量关系是:利润=售价-进价,如果把进价设为x 元,则标价为(1+30%)x ,打九折后售价为0.9×(1+30%)x ,再减去进价x 元得到的就是利润17元。
解:设这种服装每件的进价为x 元,依题意列方程为:0.9×(1+30%)x -x =17解得x =100答:这种服装的进价是100元。
练习:某商店对一种商品进行调价,按原价的八折出售,打折后利润率是20%,已知商品的原价是63元,求该商品的进价?二、行程问题1、相遇问题:主要是指两车(戓人)从两地同时相向而行。
其基本等量关系为两车(戓人)所行的路程这和恰好等于两地的距离;两车(或人)人开始行驶到相遇所用的时间相等。
2、追赶问题:主要是指甲、乙同向而行,快者追慢者称为追赶问题。
① 基本公式:速度差×追赶时间=被追赶的路程;② 对于同向同地不同时出发的问题有相等关系:追赶者行进路程=被追赶者行进路程; ③ 对于同时同向不同地出发的问题有等量关系:追赶者的行驶时间=被追赶者的行驶时间。
3、航行问题:基本公式:顺水速度=静水速度+水速,逆水速度=静水速度-水速 顺风速度=无风速度+风速,逆风速度=无风速度-风速 符号公式:v 顺水=v 静水+v 水 v 顺风=v 无风+v 风v 逆水=v 静水-v 水 v 逆风=v 无风-v 风 4、行程问题一般都能通过画线段示意图来分析,通过线段示意图,等量关系就能直观地显示出来,进而用方程表示出来。
实际问题与方程例1

学校原跳远记录是多少米?
4.21米
0.06米
?米
原纪录
小明
小明成绩-超出成绩=原纪录
4.21 - 0.06 =4.15(m)
解:设学校原跳远纪录是x米。
答:学校原跳远纪录是4.15米。
原纪录+超出米数=小明成绩
x+0.06-0.06=4.21-0.06
X+0.06=4.21
答:一个滴水的水龙头每分钟浪费水0.06千克。
四
长江是我国第一长河,长6300km,比黄河长836km。黄河长多少千米?
长江长度-黄河长度=836千米
黄河长度+836千米=长江的长度
解:设黄河长x千米。
6300-x=836
X=6300-836
X=5464
X+836=6300
X+836-836=6300-836
X=5464
答:黄河长5464km.
四
如果地球上每分钟出生300个婴儿,平均每秒有多少个婴儿出生?
每秒出生的人数×60秒=每分钟出生的人数
解:设平均每秒有x个婴儿出生。
60x=300
60x ÷60=300÷60
X=5
答:平均每秒有5个婴儿出生。
四
书上74页4题
解:设每平方米草地每天释放x克氧气。
三、巩固新知 拓展应用
问题:你能用方程解决这个问题吗?自己试着做一做。
2.
解:设一个滴水的水龙头每分钟浪费x千克水。
x=0.06
答:一个滴水的水龙头每分钟浪费0.06千克水。
半小时=30分
30x=1.8
每分钟滴的水×30=半小时滴的水
简易方程
实际问题与方程 例1
实际问题与一元二次方程练习题

实际问题与一元二次方程类型归纳练习题姓名:班级:座位号:一、传播问题例题:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?分析:①设每轮传染中平均一个人传染了x个人,那么患流感的这一个人在第一轮中传染了x人,第一轮后共有(x+1)人患了流感;②第二轮传染中,这些人中的每个人又传染了x人,第二轮后共有(x+1)(x+1)人患了流感.则:列方程 (x+1)2=121,解得x=10或x=-12(舍),即平均一个人传染了10个人.再思考:如果按照这样的传染速度,三轮后有多少人患流感?练习题:1、某种植物的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支,主干、枝干和小分支的总数是91,求每个枝干长出多少小分支?2、生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,那么全组有多少名同学?3、一个小组若干人,新年互相发送祝福短信,若全组共发送祝福短信72条,则这个小组共有多少人?4、学校组织了一次篮球单循环比赛(每两队之间都进行了一次比赛),共进行了15场比赛,那么有几个球队参加了这次比赛?5、某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?二、增长率问题例题:两年前生产1吨甲种药品的成本是5 000元,生产1吨乙种药品的成本是6 000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3 000元,生产1吨乙种药品的成本是3 600元,哪种药品成本的年平均下降率较大?(精确到0.001)分析:①设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为5 000(1-x)元,两年后甲种药品成本为5 000(1-x)2元.依题意,得5 000(1-x)2=3 000 .解得:x1≈0.225,x2≈1.775.根据实际意义,甲种药品成本的年平均下降率约为0.23.②设乙种药品成本的年平均下降率为y.则,列方程:6 000(1-y)2=3 600.解得:y1≈0.225,y2≈1.775(舍).答:两种药品成本的年平均下降率相同.练习题:1、青山村种的水稻2001年平均每公顷产7 200 kg,2003年平均每公顷产8 460 kg,求水稻每公顷产量的年平均增长率.2、某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份营业额达到633.6万元.求3月份到5月份营业额的月平均增长率.3、某印刷厂元月份印刷课本30万册,第一季度共印了150万册,问2、3月份平均每月的增长率是多少?4、来自信息产业部的统计数字显示,2007年一至四月份我国手机产量为4000万台,相当于2006年全年手机产量的80%,预计到2008年年底手机产量将达到9800万台,试求这两年手机产量平均每年的增长率:5、某城市2006年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2008年底增加到363公顷.设绿化面积平均每年的增长率为x,由题意,所列方程正确的是()A.300(1+x)=363 B.300(1+x)2=363C.300(1+2x)=363 D.363(1-x)2=300三、利润问题此类问题常见的等量关系是:利润=售价-进价,总利润=每件商品的利润×销售数量,利润率=例题:某商场销售一批名牌衬衫,现在平均每天可售出20件,每件盈利40元,为了扩大销售量,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果这种衬衫的售价每降低1元,那么衬衫平均每天多售出2件,商场若要平均每天盈利1200元,每件衬衫应降价多少元?分析:假设每件衬衫应降价x元,现每件盈利为(40-x)元,现每天销售衬衫为(20+2x)件,根据等量关系:每件衬衫的利润×销售衬衫数量=销售利润,可列出方程。
实际问题与一元二次方程

实际问题与一元二次方程<1>握手(单循环)问题:二分之一n(n-1)=握手总次数例:某校七年级举行乒乓球单循环赛比赛(参加比赛的每一个选手都与其他所有选手各比赛一场),共比赛32场,求有多少个学生?<2>送照片:n(n-1)=总张数例:初三毕业晚会时每人互相送照片一张,一共要90张照片,有多少人?<3>勾股定理问题:a平方+b平方=c平方例:一个直角三角形的斜边长7cm,一条直角边比另一条直角边长1cm,求两条直角边的长度?<4>多边形对角线条数:二分之一n(n-3)=总条数例:一个多边形有14条对角线,那么这个多边形边数是多少?<5>连续两次增长(降低)百分率:a(1+或减x)平方=以后的量例:甲工厂一月份生产零件1000个,二月份生产零件1200个,那么二月份到一月份平均增长的百分率为多少?<6>镶边问题:(a+2x)(b+2x)=总面积例:在一幅长70cm宽50cm的风景画四周镶上一条宽度相同的金色纸边,如果使金色纸边的面积是1300平方厘米,求金色纸边的宽度?<7>最大利润问题:(一件利润)件数=总利润例:某百货大楼服装柜在销售者发现:“某”牌童装平均每天可售出20件,每件利润40元为了迎接国庆节市场决定采取适当的降价措施,扩大销售量,增加利润,如果每件降价4元,那么平均每天多售出8件,要想平均每天销售这种童装盈利1200元那么每件童装应降价多少?<8>传染病问题:1+x+x(1+x)=总人数,两轮后:(1+x)平方=总人数例:某养鸡场突发流感疫情,一只带病毒的小鸡经过两天的传染后,使鸡场共有169只小鸡感染患病,在每一天的传染中平均一只小鸡传染了几只小鸡?<9>树枝分叉:1+x+x平方=总枝数例:一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干,支干和小分支的总数是91,每个支干长出多少小分支?。
九年级-实际问题与一元二次方程

A.80(1+x)2=275
B.80+80(1+x)+80(1+x)2=275
C.80(1+x)3=275
D.80(1+x)+80(1+x)2=275
4. 有一个人患了流感,经过两轮传染后共有 100 人患了流感,设每轮传染中平均一个人传染的人数是 x
人,则下列方程正确的是( )
A.1+x2=100
B.(40-2x)(70-3x)=2450 D.(40-x)(70-x)=2450
【例21】(2011 江苏宿迁)如图,邻边不.等.的矩形花圃 ABCD,它的一边 AD 利用已有的围墙,另外三边 所围的栅栏的总长度是 6m.若矩形的面积为 4m2,则 AB 的长度是 m(可利用的围墙长度超过 6m).
6
不Ⅽ揉ⓧň∁㪴作ʼn棏歹
【例5】有一只鸡患了 H7N9 流感,经过两轮传染后共有 100 只鸡患了流感,那么每轮传染中,平均一只 鸡传染的只数为______________________________
【例6】(2013 襄阳)有一人患了流感,经过两轮传染后共有 64 人患了流感. (1)求每轮传染中平均一个人传染了几个人? (2)如果不及时控制,第三轮将又有多少人被传染?
.
2. 某城市居民最低生活保障在 2009 年是 240 元,经过连续两年的增加,到 2011 年提高到 345.6 元.则
该城市两年来最低生活保障的平均年增长率是
.
3. 某经济开发区今年一月份工业产值达到 80 亿元,第一季度总产值为 275 亿元,问二、三月平均每月
的增长率是多少?设平均每月的增长率为 x,根据题意所列方程是( )
【例13】足球世界杯预选赛实行主客场的循环赛,即每两支球队都要在自己的主场和客场踢一场.共举行比 赛 210 场,则参加比赛的球队共有____________支.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
列方程解下列应用题
1.图书室中科技书的本数是文艺书的3倍,科技书有495本。
文艺书有多少本?(6分)
2.水果店运来15筐桔子和12筐苹果,一共重600 kg。
每筐桔子重20 kg,每筐苹果重多少千克?(6分)
3.光明小学四月份买书86本,比三月份买的本数的2倍多10本,三月份、四月份共买书多少本?(8分)
4.阿姨买4块肥皂、2条毛巾共用去2.8元,已知肥皂每块0.26元,毛巾每条多少元?
5.商店运来500千克水果,其中有8筐苹果,剩下的是梨,梨有300千克。
每筐苹果重多少千克?
6.王妈买了2千克苹果,付出5元钱。
找回0.6元,每千克苹果多少元?
7.商店运来8筐苹果和10筐梨,一共重820千克。
每筐苹果重45千克,每筐梨重多少千克?
8.学校买回4个排球和5个篮球,共用476元。
每个篮球56元,每个排球多少元?
9.爸爸的体重是66千克,比小军的2倍轻24千克,小军的体重是多少千克?
10.修一条长360米的路,每天修80米,修了若干天后,还剩40米,已修了多少天?
11.师徒两人同时加工一批零件,5小时共加工450个,师傅每小时加工50个,徒弟每小时加工零件多少个?
12.一个长方形和一个正方形的面积相等,正方形的边长是6厘米,长方形的长是10厘米,宽是多少厘米?
13.五年级有230人,比四年级多30人,四年级有多少人?
14.王大妈养鸡450只,是鸭子的1.5倍,鸭子有多少只?
15.学校饲养小组今年养兔子25只,比去年养的只数的3倍少8只,去年养兔子多少只?
16.2004年亚洲人口约有39亿,比欧洲人口总数物5倍还多4亿人,欧洲人口大约有多少人?
17.2004年雅典奥运会中国队共获得金牌32枚,比1988年汉城奥运会的7倍少3枚。
1988年中国队共获金牌多少枚?
18.强强有奶糖14粒,比丽丽的2倍多2粒,丽丽有奶糖多少粒?
19.有36米布,正好裁成10件大人衣服和8件儿童衣服。
每件大人衣
服用布2.4米,每件儿童衣服用布多少米?
20.五(3)班买了4把椅子和2张桌子共花了198元,每把椅子的价钱是22元,你能算出每张桌子的价钱吗?
21.新城中学今年绿化面积1800平方米,比去年的绿化面积的2倍还多40平方米,去年绿化面积是多少平方米?
22.洗衣机厂今年每日生产洗衣机260台,比去年平均日产量的2.5倍少40台,去年平均日产洗衣机多少台?
23.化肥厂用大、小两辆汽车运47吨化肥,大汽车运了8次,小汽车运了6次正好运完,大汽车每次运4吨,小汽车每次运多少吨?
24..甲车每小时行48千米,乙车每小时行56千米,两车从相距12千米的两地同时背向而行,几小时后两车相距272千米?
25.一只大象重5.1吨,比一头牛的2.4倍多0.75吨,这头牛重多少吨?
26.食堂运来150千克大米,比运来的面粉的3倍少30千克,食堂运来面粉多少千克?
27.小东家今年8月份节约用电12度,9月份比8月份的1.2倍少3度,9月节电多少度?
28.修一段铁路,已经修好了56.5千米,剩下的比修好的2.4倍少10.84
千米,这段铁路全长多少千米?
29.妈妈买大米4千克,每千克2.5元,买面粉8千克,共用去24元,每千克面粉多少元?
30.甲乙两地相距63千米,甲乙二人同时从两地相向而行,7小时相遇,甲每小时行5千米,乙每小时行多少千米?
31.一批钢材36吨,制造了10台甲种机器和8台乙种机器,每台甲种机器用钢材2.4吨,每台乙种机器用钢材多少吨?
32.四年级学生采集树种,一班比二班多采集4.7千克。
二班有40人,平均每人采集0.6千克,一班有41人,平均每人采集树种多少千克?
33.粮店运来36袋面粉和40袋大米,大米比面粉重2700千克,已知每袋面粉重25千克,每袋大米重多少千克?
34.张老师到体育用品店买了4个篮球,付了100元,找回8元。
每个篮球的售价是多少元?。