金属精密成形技术的研究及应用
金属塑性成形

02
金属塑性成形的原理
金属塑性变形的物理基础
01
金属塑性变形的基本概念
金属塑性成形是通过外力作用使金属材料发生塑性变形,从而获得所需
形状和性能的过程。
02
金属的晶体结构与塑性变形
金属的晶体结构是影响其塑性变形行为的重要因素。金属的晶体结构决
定了其塑性变形的机制和特点。
03
温度对金属塑性变形的影响
塑性成形过程中的缺陷与控制
在塑性成形过程中,由于各种因素的影响,可能会出现裂纹、折叠、夹杂等缺陷。为了获得高质量的产 品,需要了解这些缺陷的形成原因,并采取相应的措施进行控制和预防。
03
金属塑性成形的方法
自由锻成形
总结词
自由锻成形是一种金属塑性加工方法,通过锤击或压力机等 工具对金属坯料施加外力,使其发生塑性变形,从而获得所 需形状和尺寸的金属制品。
随着科技的发展,精密金属塑性成形技术逐渐兴起,如精密锻造、精密轧制、精密冲压等 ,这些技术能够制造出更高精度、更复杂形状的金属零件。
数值模拟与智能化技术
近年来,数值模拟与智能化技术在金属塑性成形领域得到了广泛应用,通过计算机模拟技 术可以对金属塑性成形过程进行模拟分析,优化工艺参数,提高产品质量和生产效率。同 时,智能化技术的应用使得金属塑性成形过程更加自动化和智能化。
详细描述
挤压成形适用于生产各种复杂形状的管材、棒材和异型材等。由于其能够实现连续生产,因此具有较 高的生产效率。但挤压成形对设备和操作技术要求较高,且对原材料的表面质量、尺寸精度和化学成 分等要求严格。
拉拔成形
总结词
拉拔成形是一种金属塑性加工方法,通 过拉拔机对金属坯料施加拉力,使其发 生塑性变形,从而获得所需形状和尺寸 的金属制品。
金属塑性成形技术的发展方向及问题探讨

金属塑性成形技术的发展方向及问题探讨摘要:现代工业发展对材料提出了越来越高的要求,导致金属材料向性能多样化,功能新型化方向发展;介绍了金属材料塑形加工领域出现的新方法、新工艺,提出了塑形加工研究中主要的发展方向,揭示了存在的问题和矛盾,就相关问题进行了一定的讨论,得出金属塑形成形技术需要跨学科、多部门联合研究等结论。
关键词:塑形加工特种成形复合材料精密成形一、绪论现代工业的发展对材料提出愈来愈高的要求[1],如电子产品向微型化和超微型化发展,就要求材料尺寸精密、薄型化;导电材料要求不影响导电性的情况下,增加强度;交通运输部门向轻型化、高速化方向发展,要求轻质高强的合金,导致了铝、镁合金用量增大;眼镜行业要求高弹性、高强度材料;钟表行业提出耐磨的彩色材料;建筑行业需求美观、轻型、廉价的装饰材料,要满足各行各业对材料的要求,与之相对应技术含量较高的加工方法如:精密成型、复合成型、异型材加工、高精板带材的轧制技术等得到了快速发展。
二、材料加工新方法新技术的研究开发随着金属间化合物材料,金属基复合材料,各种新型功能材料,超导材料等高新技术新材料的不断出现,传统的加工方式或多或少地遇到了困难。
与新的材料制备和合成技术相适应,新的加工方法成为材料加工研究开发的一个重要领域。
材料制备和材料加工一体化是一个发展趋势,为降低新材料的成本使之达到商业化应用,新的廉价的加工方法的开发是至关重要的。
有观点认为,未来新材料在应用方面的竞争,很大程度取决于它的加工方法是否容易和廉价,换言之,就是材料加工技术方面的竞争。
材料加工新技术不断出现,尤其是针对复合材料的加工方面更为突出。
主要有:1.喷射成型技术喷射成形技术作为一种生产工程材料的加工技术,其独创之处是金属或合金自熔融状态经一步工艺直接制成接近最终产品的形状,并具有良好的组织性能。
用喷射成形方法生产铅合金板坯和各种形状的锻造坯料,可以省去以往从液态金属到固体坯料之间的铸造、热轧开坯,进一步简化工艺,大大降低了能耗和成本。
装备制造业之塑性成形技术

装备制造业之塑性成形技术随着现代工业的不断发展,各类装备制造业在实现高效生产和优质产品方面面临着日益严峻的挑战。
然而,塑性成形技术作为一种重要的制造工艺,正逐渐成为解决这些问题的关键。
本文将介绍塑性成形技术在装备制造业中的应用及其优势,并分析其未来发展趋势。
一、塑性成形技术在装备制造业中的应用1. 金属板材的压力成形金属板材压力成形技术是制造高强度、高精度零部件的重要手段。
通过将金属板材置于模具中,并施加压力,使金属板材发生弯曲、拉伸或冲裁等变形过程,从而得到所需形状的零部件。
该技术广泛应用于航空航天、汽车、电子等领域,并且可以生产出具有优良机械性能和表面质量的产品。
2. 金属管材的拉伸和冲压成形金属管材的拉伸和冲压成形技术主要用于制造管道、管接头和其他金属管材零部件。
通过控制拉伸和冲压力度,使金属管材在变形过程中逐渐改变截面形状,从而得到满足需求的产品。
该技术在石油化工设备、船舶制造等行业中得到广泛应用。
3. 塑性挤压技术塑性挤压技术是将金属坯料通过模具挤压成型,用于制造复杂截面的金属材料。
该技术具有高效率、节能和资源利用率高的特点,并且可以生产出优质的零部件。
在航空航天、铁路交通等领域,塑性挤压技术已成为制造高性能轻质构件的重要工艺。
二、塑性成形技术的优势1. 精度高塑性成形技术可以通过精确的模具设计和控制,实现对材料的精细加工,从而获得高度精密的零部件。
与传统加工工艺相比,塑性成形技术具有更低的工艺损失和变形量,可以提供更高的制造精度和表面质量。
2. 材料利用率高塑性成形技术将材料的变形过程与材料的剪切、挤压和拉伸等工艺相结合,可大幅提高材料的利用率。
与传统切削加工相比,塑性成形技术减少了材料废料的产生,并可在一次成形中得到复杂形状的零部件。
3. 生产效率高塑性成形技术具有高效率、批量生产的优势。
通过合理的设备配置和工艺优化,可以实现自动化、连续化生产,从而大幅提高生产效率。
此外,塑性成形技术还可以快速响应市场需求,缩短产品的开发周期。
第3章 精密成形技术

• 家电和玩具等行业,并且能生产出形状复杂、 薄壁精美的金属器件。 • 我国压铸生产开始于20世纪50年代,发展于60 年代到70年代,90年代后有了长足进展。我国 多小型压铸,压铸合金以锌合金为主,多为家 电、玩具等非受力件,在汽车、摩托车等机械 设备零件的压铸所占比重较小,在压铸件的质 量方面于国外相比仍有较大差距。
第3章 精密成形技术
• 第一节 精密洁净铸造技术
• 铸造是一种液态金属成形方法。长期以来, 应用最广泛的是普通砂型铸造。随着科学技 术的不断发展和生产水平的不断提高以及人 类社会生活、生产的需要,在继承古代铸造 技术和应用近代科学技术成就的基础上,开 创了许多新的铸造方法和工艺。使现代铸造 技术朝着“精密、洁净、高效”方向发展。
• 2、压铸原理与压铸工艺
• 压铸在压铸机上进行,压铸机一般由压型也
称为压铸模、压室、射压系统等组成,压铸
时把液态金属装入压室,射压系统推动压射
头把液态金属高速压入压型,保持压力,结
晶凝固后,压射头回退,由顶出机构顶出铸
件。
• 压力铸造的基本工艺流程如下图所示:
• 3、压铸设备
• 压铸机是压铸生产的主要设备,主要由合型 机构和压射机构两部分组成。 • 根据压室的不同,压铸机分为热压室和冷压 室两类。 • 热压室压铸机的压室与金属液的保温装臵连
• 术进入工业生产。20世纪50年代大型压铸机 的诞生,压铸技术才真正拓宽了广泛地工业 应用领域。随着压铸机,压铸工艺、压铸模 及润滑剂等压铸技术的发展,压铸合金也从 最初的铅到锌、铝、铜、镁最后到铁合金的 发展过程,随着压铸合金熔点的不断提高, 压铸技术的应用会越来越广泛。目前压铸技 术已广泛用于汽车工业、仪表、电气通信、
凝固,保证获得更加致密的铸件。
大型复杂钛合金薄壁件精铸成形技术研究进展

大型复杂钛合金薄壁件精铸成形技术研究进展赵瑞斌【摘要】Large complex thin-walled titanium alloy precision casting is the most advanced technologies in the world of military and civil aviation field.This paper introduces its process flow, technical features and the domestic and international research frontier achievements. Combined with the most popular international computer numerical simulation and 3D print and other new technology, summarizes the research trend and development direction of this technology in China: theory research strengthen of the investment casting process, research of titanium alloy design and exploration of large thin wall complex higher performance of casting titanium alloy, construction of model library, development of automatic coating machine slurry and sanding process, better quality management and control of the whole process, more emphasis on application of 3D printing technology in the fields of the manufacture and investment casting process of titanium alloy.%大型复杂薄壁钛合金精密铸造技术是当今世界军用与民用航空领域的尖端技术。
航空发动机涡轮叶片精密成形技术分析

航空发动机涡轮叶片精密成形技术分析航空发动机作为飞机的动力系统,发挥着至关重要的作用。
而发动机的性能优劣直接影响着飞机的飞行性能和安全性。
在航空发动机中,涡轮叶片是发动机中最关键的部件之一,涡轮叶片的制作工艺与精度直接决定了发动机的性能。
涡轮叶片的精密成形技术显得尤为重要。
涡轮叶片是航空发动机中的一个重要零部件,它在发动机中扮演着承受高温高速气流的任务。
涡轮叶片需要具有极高的强度和耐热性。
涡轮叶片的表面粗糙度、气动性能也对发动机的性能有着直接的影响。
在涡轮叶片的制作工艺中,精密成形技术是至关重要的一环。
精密成形技术是一种应用于金属材料制造加工的高新技术,它包括了压铸、注塑、锻造、精密锻造等多种工艺。
而在航空发动机涡轮叶片的制作中,常用的精密成形技术主要有精密铸造和精密锻造两种。
下面将从这两种技术进行详细的分析。
一、精密铸造技术精密铸造技术是将金属材料通过在低温状态下的液态状态注入模具中,利用模具的结构将熔融金属冷却后形成所需形状的一种成形技术。
精密铸造技术制造的零件表面光洁度高,尺寸精度高,重量轻,成本低。
精密铸造技术在航空发动机涡轮叶片的制作中应用广泛。
在精密铸造技术中,铸造模具的结构设计和制造对于涡轮叶片的成型至关重要。
一方面,铸造模具的结构设计需要考虑到叶片的复杂形状和内部空腔,保证叶片的内部结构完整性;铸造模具的制造需要具备高精度加工和表面处理技术,以确保叶片的表面粗糙度和尺寸精度。
精密铸造技术制造的涡轮叶片表面光洁度高,可以减小叶片表面的阻力,提高叶片的气动性能;精密铸造技术还能够制造出形状复杂的内部空腔结构,提高叶片的强度和耐热性。
精密铸造技术在航空发动机涡轮叶片制作中有着重要的应用价值。
在不断发展的航空发动机领域,涡轮叶片的制作技术也在不断地进行创新与提升。
未来,随着材料工艺技术的不断进步,精密成形技术在涡轮叶片制作中将会有更加广泛和深入的应用,为航空发动机的性能提升和安全保障提供更加可靠的技术支持。
先进制造工艺--精密洁净铸造成形工艺

第二讲1. 精密洁净铸造成形工艺气化模铸造工艺与设备概述气化模铸造按工艺方法主要分为两种:气化模-铡压铸造(EPC-V法)和气化模-精铸-负压复合铸造(EPC-CS法)。
EPC-V法铸造是气化模-振动计紧实负压工艺。
它利用气化模作一次性模型和不含水分、粘结剂及任何其他附加物的干砂造型,浇注和凝固期间铸型保持一定的负压度,由此获得近零起模斜度,可直接铸螺纹及曲折通道,表面光洁、尺寸精确、无飞边的近无余量少加工精密铸件。
EPC-CS法复合铸造是气化模-精铸-振动紧实负压复合铸造工艺。
它是用气化模代替蜡融出,将超薄型壳埋入无粘结剂干砂中,采用振动紧实造型,浇注和凝固期间铸型保持一定的负压度,而获得表面光洁、尺寸精确的无余量精密铸件。
气化模铸造是在实型铸造基础上发展起来的。
实型铸造由美国H.F.Shoyer发明并于1958年获得专利。
后经德国Witmoser等深入研究,1961年进入工业化生产,尤其对冶金矿山、造船和机械用大型、单件、小批量生产的铸件更为适宜,在工业生产中应用实型铸造的国家主要有美、英、法、俄、日、德、和中国等。
由于实型铸造采用可消失的聚苯乙烯塑料模,不存在普通砂型铸造从铸型中取出模样的困难,简化了铸造工序,降低劳动强度和成本,提高了生产效率。
但实型铸造存在着铸件表面质量差,尺寸精度低,易造成中、低碳钢铸件表面增碳和缺陷,因此限制了该工艺的发展和应用。
80年代,工业发达国家,在实型铸造基础上,针对上述问题进行了研究,推出了EPC-V法铸造工艺,引起了铸造界的关注,认为这是铸造行业上的一项突破。
福特、通用、菲亚特等汽车公司已开始应用该工艺生产汽车、发动机和涡轮机用铸件,如图28所示。
该工艺在欧洲、美洲、日本及中国也等到大力开发和应用。
然而,EPC-V法铸造工艺易于在铸件内存在气化残物和造成中、低碳钢铸件表面增碳、增氢缺陷[59],一般渗碳层深度为0.5~2.5mm,渗碳量(质量分数)在0.01%~0.6%之间,使铝合金铸件的气密性较差,从而限制了EPC-V铸造在生产铸铝、铸钢件中的应用。
航空发动机涡轮叶片精密成形技术分析

航空发动机涡轮叶片精密成形技术分析航空发动机涡轮叶片是发动机中非常关键的部件,其性能直接影响着发动机的工作效率和稳定性。
涡轮叶片的制造工艺和精密成形技术显得尤为重要。
本文将分析航空发动机涡轮叶片的精密成形技术,并介绍其制作工艺及相关的发展动态。
一、涡轮叶片制造工艺1.铸造工艺涡轮叶片的制造原料通常为高温合金,通过铸造工艺进行生产。
铸造工艺主要包括原料准备、模具制作、熔炼浇注、冷却固化等工序。
在具体的生产制造过程中,铸造工艺需要高度的精密度和专业的技术来保证叶片的质量和性能。
2.金属成形工艺金属成形工艺是将金属材料通过加热软化后,利用压力和模具进行成形。
这种工艺在涡轮叶片的制造中应用广泛,可分为锻造和压铸两种方式。
其中锻造工艺适用于生产较大型、较复杂结构的涡轮叶片,而压铸工艺则适用于生产批量较大、形状较为规则的叶片。
3.热等静压工艺热等静压工艺是通过将金属粉末装入模具后,进行高温高压处理,使得粉末颗粒在原子级别上发生结合。
这种工艺可以制作出具有优异超高温性能和抗疲劳性能的涡轮叶片。
二、涡轮叶片精密成形技术分析1.数控机床加工技术数控机床加工技术是目前涡轮叶片精密成形中应用较多的一种技术,其主要是通过电脑控制机床进行切削加工,能够实现高精度、高效率和高质量的加工。
数控机床加工技术在提高涡轮叶片的精密度和表面质量方面起到了重要的作用。
2.激光成形技术激光成形技术是一种利用激光束对金属材料进行熔化和成形的技术,可实现对涡轮叶片的高精度成形和表面处理。
激光成形技术具有无污染、灵活性高、加工效率高等优点,是目前涡轮叶片精密成形技术中的一种新兴技术。
3.电火花加工技术电火花加工技术是利用电脉冲放电的原理,通过在工件表面产生高温高压的等离子体进行加工,可以实现对涡轮叶片的微细加工和表面处理。
电火花加工技术具有高精度、高表面质量和加工难度低的特点,适用于对涡轮叶片的精密加工。
以上介绍的技术只是涡轮叶片精密成形技术中的一部分,随着科技的不断发展,会有更多更先进的技术不断涌现,为涡轮叶片的精密成形提供更多可能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属精密成形技术的研究及应用金属精密成形技术是一种将金属材料在极高的压力下通过变形
来制作出精细部件的技术。
这种技术在多个领域都有广泛的应用,例如建筑、汽车、航空、医疗器械等。
在这篇文章中我们将会深
入探讨金属精密成形技术的研究和应用。
一、概述
金属精密成形技术是一种通过加工金属材料来制造精密部件的
技术。
这种技术需要使用特殊的设备和工具来对金属进行加工。
在完成加工之后,金属材料变形后就能够形成精细的部件。
这种
技术通常使用压力来使金属变形,同时还需要使用保护性的材料,来避免金属在加工过程中受到破坏。
这种技术的主要应用是在微
型部件的制造中,例如薄膜电路、微型芯片等。
二、金属精密成形技术的分类
根据金属精密成形技术中使用的成形方法,该技术可以分为以
下几类:
1. 挤压法
挤压法是一种将金属材料在极高的压力下通过变形来制造出精细部件的方法。
这种方法通常需要使用模具来保护金属材料,并且还需要控制压力的大小来保证金属的精度。
这种方法适用于加工较大的金属工件,并且能够产生高精度。
2. 绕线法
绕线法是一种通过将金属线材绕在圆柱形或圆锥形模具上进行变形的方法。
这种方法适用于制造高精度的部件,并且能够制造出各种形状和精度的部件。
3. 压印法
压印法是一种将金属材料放在高压下,通过对金属材料施加压力,并配合模具来进行变形的方法。
这种方法适用于制造许多种不同的形状,例如环形、半球形等。
4. 折弯法
折弯法是一种通过将金属材料折弯成所需的形状的方法。
这种方法适用于制造具有各种复杂形状的部件,并且能够轻松地控制精度和形状。
三、金属精密成形技术的应用
金属精密成形技术已被广泛应用于建筑、汽车、航空、医疗器械等领域。
例如,在建筑领域中,该技术已成功用于制造高强度玻璃幕墙的连接件。
在汽车领域中,该技术被用于制造发动机零部件,以及汽车底盘和车身结构等部件。
在航空领域中,该技术被用于制造航空发动机零件,以及起落架和飞机外壳等部件。
在医疗器械领域中,该技术被用于制造人工心脏瓣膜等部件。
四、金属精密成形技术的未来
随着科技的不断进步,金属精密成形技术在未来的应用前景将会更加广阔。
现在这项技术不仅可以应用于部件的制造,而且还能够制造出更加复杂的结构,例如纳米结构、薄膜结构等。
在未来,该技术还可以应用于制造更加复杂的奇异结构,例如人工晶体管电路和纳米探测器等。
总结
金属精密成形技术是一种将金属材料在极高的压力下通过变形
来制作出精细部件的技术。
该技术已成功被应用于建筑、汽车、
航空、医疗器械等领域,为人们的生活和工作带来了巨大的便利。
随着科技的不断进步,未来该技术的应用前景将会更加广阔。
金
属精密成形技术的研究将会成为未来科技研究的一个重要方向。