2019-2020学年浙江省杭州二中高一(上)期末数学试卷
2019-2020学年浙江省杭州高中高一(上)期末数学试卷

2019-2020学年浙江省杭州高中高一(上)期末数学试卷一.选择题(本大题共10小题,每小题4分,共40分)1. 已知集合P={−1, 0, 1},Q={x|−1≤x<1},则P∩Q=()A.{0}B.[−1, 0]C.{−1, 0}D.[−1, 1)2. 若一个幂函数的图象经过点(2,14),则它的单调增区间是()A.(−∞, 1)B.(0, +∞)C.(−∞, 0)D.R3. 下列函数既是奇函数,又在区间[−1, 1]上单调递减的是()A.f(x)=sin xB.f(x)=−|x+1|C.f(x)=12(a x+a−x) D.f(x)=ln2−x2+x4. 函数y=ln x+2x−6零点的个数为()A.0B.1C.2D.35. 已知函数f(x)是奇函数,且当x>0时,f(x)=x2+1x,则f(−1)=( ) A.−2 B.0 C.1 D.26. 已知θ∈[π2,π],则√1+2sin(π+θ)sin(π2−θ)=()A.sinθ−cosθB.cosθ−sinθC.±(sinθ−cosθ)D.sinθ+cosθ7. 在下列函数①y=sin(2x+π6)②y=|sin(x+π4)|③y=cos|2x|④y=tan(2x−π4)⑤y=|tan x|⑥y=sin|x|中周期为π的函数的个数为()A.3个B.4个C.5个D.6个8. 函数f(x)=2x2+3x2e x的大致图象是()A. B.C. D.9. 已知函数f(x)=2sin ωx (其中ω>0),若对任意x 1∈[−3π4,0),存在x 2∈(0,π3],使得f(x 1)=f(x 2),则ω的取值范围为( ) A.ω≥3 B.0<ω≤3C.ω≥92D.0<ω≤9210. 已知函数f(x)是R 上的增函数,且f(sin ω)+f(−cos ω)>f(−sin ω)+f(cos ω),其中ω是锐角,并且使得g(x)=sin (ωx +π4)在(π2, π)上单调递减,则ω的取值范围是( )A.(π4, 54]B.[54, π2)C.[12, π4)D.[12, 54]二.填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)sin π6=________;cos α≥√22,则α∈________.函数y =(14)−|x|+1的单调增区间为________;奇偶性为________(填奇函数、偶函数或者非奇非偶函数).若lg x =m ,lg y =n ,则lg √x −lg (y10)2=________;若a m =2,a n =6(a >0, m, n ∈R),则a 3m−n2=2√33.函数y =cos x −sin 2x −cos 2x +74的值域为________−14,2] ;函数f(x)=3−sin x2+sin x 的值域为________23,4] .设函数f(x)={√x(x ≥0)(12)x (x <0) ,则f (f(−4))=________.若α∈(π2,π),sin (α+π4)=13,则sin α=________已知函数f(x)=√x 2+a x 2−9,若f(x)的值域为[0, +∞),则a 的取值范围________.三.解答题(本大题有5小题,共74分.解答应写出文字说明、证明过程或演算步骤)设全集为R ,A ={x|3<x <7},B ={x|4<x <10}, (1)求∁R (A ∪B)及(∁R A)∩B ;(2)C ={x|a −4≤x ≤a +4},且A ∩C =A ,求a 的取值范围.如图是f(x)=A sin (ωx +φ),(x ∈R,A >0,ω>0,0<φ<π2)在区间[−π6,5π6]上的图象,(Ⅰ)求函数f(x)的解析式;(Ⅱ)若把函数f(x)图象向左平移β个单位(β>0)后,与函数g(x)=cos 2x 重合,求β的最小值.已知函数f(x)=cos (x −π3)+2sin 2x2 (Ⅰ)求函数f(x)在区间[−π3,π2]上的值域(Ⅱ)把函数f(x)图象所有点的上横坐标缩短为原来的12倍,再把所得的图象向左平移φ个单位长度(0<φ<π2),再把所得的图象向下平移1个单位长度,得到函数g(x),若函数g(x)关于点(3π4,0)对称(i)求函数g(x)的解析式;(ii)求函数g(x)单调递增区间及对称轴方程.已知m ≠0,函数f(x)=sin x +cos x −m sin x cos x +1(Ⅰ)当m=1时,求函数f(x)的最大值并求出相应x的值;(Ⅱ)若函数f(x)在[−π2,2π]上有6个零点,求实数m的取值范围.已知a为正数,函数f(x)=ax2−12x−34,g(x)=log22x−log2x2+14.(Ⅰ)解不等式g(x)≤−12;(Ⅱ)若对任意的实数t,总存在x1,x2∈[t−1, t+1],使得|f(x1)−f(x2)|≥g(x)对任意x∈[2, 4]恒成立,求实数a的最小值.参考答案与试题解析2019-2020学年浙江省杭州高中高一(上)期末数学试卷一.选择题(本大题共10小题,每小题4分,共40分) 1.【答案】 C 2. 【答案】 C 3. 【答案】 D 4. 【答案】 B 5. 【答案】 A 6. 【答案】 A 7. 【答案】 B 8. 【答案】 B 9. 【答案】 C 10.【答案】 A二.填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分) 【答案】12,[−π4+2kπ, π4+2kπ],k ∈Z 【答案】[0, +∞),偶函数 【答案】 12m −2n +2【答案】[,[【答案】4【答案】4+√26【答案】[814, +∞)三.解答题(本大题有5小题,共74分.解答应写出文字说明、证明过程或演算步骤)【答案】∵全集为R,A={x|3<x<7},B={x|4<x<10},∴A∪B={x|3<x<10},∁R A={x|x≤3或x≥7},∴∁R(A∪B)={x|x≤3或x≥10},(∁R A)∩B={x|7≤x<10}.∵A={x|3<x<7},C={x|a−4≤x≤a+4},且A∩C=A,∴A⊆C,∴{a−4≤3a+4≥7,解得3≤a≤7.∴a的取值范围是[3, 7].【答案】(1)根据f(x)=A sin(ωx+φ),(x∈R,A>0,ω>0,0<φ<π2)在区间[−π6,5π6]上的图象,可得A=1,2πω=5π6−(−π6),∴ω=2.再根据五点法作图,可得2⋅π3+φ=π,∴φ=π3,∴f(x)=sin(2x+π3).(2)∵把函数f(x)图象向左平移β个单位(β>0)后,可得y=sin(2x+2β+π3)的图象,由于所得图象与函数g(x)=cos2x=sin(2x+π2)的图象重合,∴2β+π3=2kπ+π2,k∈Z,故β的最小值为π12.【答案】(1)∵函数f(x)=cos(x−π3)+2sin2x2=12cos x+√32sin x+2⋅1−cos x2=√32sin x−12cox+1=sin(x−π6)+1,在区间[−π3,π2]上,x−π6∈[−π2, π3],故当x−π6=−π2时,f(x)取得最小值为0;当x−π6=π3时,f(x)取得最大值为√32+1,故函数f(x)在区间[−π3,π2]上的值域为[0, √32+1].(2)(i)把函数f(x)=sin(x−π6)+1图象所有点的上横坐标缩短为原来的12倍,可得y=sin(2x−π6)+1的图象;再把所得的图象向左平移φ个单位长度(0<φ<π2),可得y=sin(2x+2φ−π6)+1的图象;再把所得的图象向下平移1个单位长度,得到函数g(x)=sin(2x+2φ−π6)的图象.若函数g(x)关于点(3π4,0)对称,则2×3π4+2φ−π6=kπ,k∈Z,∴φ=−π6,∴g(x)=sin(2x−π2)=−cos2x.(ii)对于函数g(x)=−cos2x,令2kπ−π≤2x≤2kπ,求得kπ−π2≤x≤kπ,可得函数g(x)的单调递增区间为[kπ−π2, kπ],k∈Z.令2x=kπ,求得x=kπ2,可得函数g(x)的图象的对称轴方程为x=kπ2,k∈Z.【答案】(1)当m=1时,f(x)=sin x+cos x−sin x cos x+1,令t=sin x+cos x=√2sin(x+π4)∈[−√2, √2],且t2=1+2sin x cos x,所以sin x cos x=t 2−12,则f(t)=t−t 2−12+1=−12(t−1)2+2,因为t∈[−√2, √2],所以当t=1时,函数f(x)取最大值为2,此时√2sin(x+π4)=1,解得x=2kπ或π2+2kπ(k∈Z);(2)∵x∈[−π2,2π],∴x+π4∈[−π4,9π4],则t=sin x+cos x=√2sin(x+π4)∈[−√2, √2],令f(x)=g(t)=t−m⋅t 2−12+1=0,故t+1=m⋅t2−12,易知t=−1是方程g(t)=0的一个解,且−1=√2sin(x+π4)在x+π4∈[−π4,9π4]有三个x与之对应,当t≠−1时,由t+1=m⋅t 2−12可得t=2m+1,故t=2m +1=√2sin(x+π4)在x+π4∈[−π4,9π4]也需有三个x与之对应,故2m+1∈(−1,1],解得m<−1,所以实数m的取值范围为(−∞, −1).【答案】(I)令log2x=u(u∈R),则不等式g(x)≤−12⇔u2−2u+14≤−12,∴4u2−8u+3≤0,∴12≤u≤32,∴12≤log2x≤32,∴√2≤x≤2√2.∴不等式g(x)≤−12的解集为[√2, 2√2].(II)令m=log2x,则1≤m≤2,g(x)=m2−2m+14,∴g(x)max=14.因为对任意的实数t,总存在x1,x2∈[t−1, t+1],使得|f(x1)−f(x2)|≥14.设f(x)=ax2−12x−34在[t−1, t+1]上最大值为M(t),最小值为m(t),f(x)的对称轴为直线x=1a.令ℎ(t)=M(t)−m(t),则对任意的实数t,ℎ(t)≥14.①当14a≤t−1时,M(t)=f(t+1),m(t)=f(t−1),则ℎ(t)=M(t)−m(t)=4at−1,此时ℎ(t)≥4a(14a +1)−1=4a≥14,∴a≥116;②当t−1<14a ≤t时,M(t)=f(t+1),m(t)=f(1a)=12a−34,ℎ(t)=M(t)−m(t)≥f(1a +1)−(12a−34)=a+52≥14,∴a≥−94.③当t<14a <t+1时,M(t)=f(t−1),m(t)=f(1a)=12a−34,ℎ(t)=M(t)−m(t)≥f(1a −1)−(12a−34)=a−32≥14,∴a≥74;④当14a≥t+1时,M(t)=f(t−1),m(t)=f(t+1),则ℎ(t)=M(t)−m(t)=−4at+ 1,此时ℎ(t)≥−4a(14a −1)+1=4a≥14,∴a≥116,综上,实数a的最小值为74.。
浙江省杭州市杭第二中学2019-2020学年高一数学文联考试题含解析

浙江省杭州市杭第二中学2019-2020学年高一数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 下列函数中,既是偶函数,又在区间内是增函数的为()A. B.C. D.参考答案:B2. (本题满分12分)已知过点M(-3,-3)的直线被圆所截得的弦长为,求直线的方程.参考答案:解:将圆的方程写成标准形式,得所以,圆心的坐标是(0,-2),半径长为5.因为直线被圆所截得的弦长是,所以弦心距为即圆心到所求直线的距离为依题意设所求直线的方程为,因此所以解得故所求的直线方程有两条,它们的方程分别为略3. 若,则下列不等关系中不一定成立的是A. B.C. D.参考答案:A4. 已知平面直角坐标系内的两个向量=(1,2),=(m,3m-2),且平面内的任一向量都可以唯一的表示成=λ+μ(λ,μ为实数),则m的取值范围是()ks5uA.(-∞,2) B.(2,+∞)C.(-∞,+∞)D.(-∞,2)∪(2,+∞)参考答案:D略5. 若向量=﹣2,||=4,||=1,则向量,的夹角为()A.B.C.D.参考答案:A【考点】平面向量数量积的运算.【专题】平面向量及应用.【分析】根据平面向量的数量积公式求向量的夹角.【解答】解:由已知向量=﹣2,||=4,||=1,则向量,的夹角的余弦值为:,由向量的夹角范围是[0,π],所以向量,的夹角为;故选:A.【点评】本题考查了利用平面向量的数量积公式求向量的夹角;熟记公式是关键.6. 直线l过点(-1,2)且与直线2x-3y+4=0垂直,则l的方程是( ).A.3x+2y-1=0 B.2x-3y+5=0 C.3x+2y+7=0 D.2x-3y+8=0参考答案:A7. 已知定义域为R的函数在上为减函数,且函数的对称轴为,则()A. B.C. D.参考答案:D略8.A. B. C. D.,参考答案:A9. 函数的零点所在的大致区间是( )A.B.C.D.参考答案:D略10. 已知无穷等差数列的前n项和为,且,则 ( ) A.在中,最大B.C.在中,最大 D.当时,参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11. 设,若函数在区间[0,3]上的最大值为5,则实数t的值为.参考答案:-2或4∵函数y=x2﹣2x﹣t的图象是开口方向朝上,以x=1为对称轴的抛物线∴函数f(x)=|x2﹣2x﹣t|在区间[0,3]上的最大值为f(1)或f(3)即f(1)=5,f(3)≤5,解得t=4或f(3)=5,f(1)≤5,解得t=-2.综合可得的值为或.故答案为:或.12. 设函数f(x)=x2﹣2ax+3﹣2a的两个零点x1,x2,且在区间(x1,x2)上恰有两个正整数,则实数a的取值范围为.参考答案:{a|a<﹣,或a>}【考点】一元二次方程的根的分布与系数的关系;函数零点的判定定理.【专题】转化思想;综合法;函数的性质及应用.【分析】由条件根据△=4(a2+2a﹣3)>0,再根据 x2 ﹣x1 =2∈(2,3),求得a的范围.【解答】解:函数f(x)=x2﹣2ax+3﹣2a的两个零点x1,x2,且在区间(x1,x2)上恰有两个正整数,∴△=4(a2+2a﹣3)>0,即a<﹣3 或a>1.再根据 x2 ﹣x1 =2∈(2,3),求得a<﹣,或a>,综上可得,a的范围是:{a|a<﹣,或a>}.【点评】本题主要考查一元二次方程根的分布与系数的关系,二次函数的性质,函数零点的定义,属于基础题.13. 已知集合,,若,则实数=参考答案:略14. sin15o·sin30o·sin75o的值等于___________.参考答案:15. 与终边相同的角,则参考答案:16. 5.在△ABC中,角的对边分别为,若,则的形状一定是三角形.参考答案:等腰17. 根据指令,机器人在平面上能完成下列动作:先从原点O沿正东偏北()方向行走一段时间后,再向正北方向行走一段时间,但何时改变方向不定。
浙江省杭州地区重点中学2019-2020学年高一上学期期末考试数学试题Word版含解析

浙江省杭州地区重点中学2019-2020学年上学期期末考试高一数学试题一、选择题(本大题共10小题,共40.0分)1.已知集合2,,3,,那么A. B. C. 2, D. 2,3,2.已知角的终边经过点,则A. B. C. D.3.在中,点D为边AB的中点,则向量A. B. C. D.4.设,则a,b,c的大小关系为A. B. C. D.5.下列函数中,既是奇函数又在区间上为增函数的是A. B. C. D.6.若函数局部图象如图所示,则函数的解析式为A. B.C. D.7.已知函数为奇函数,为偶函数,且,则A. B. 2 C. D. 48.已知函数,则的最大值为A. B. C. D.9.已知向量满足,则的最小值是A. 4B. 3C. 2D. 110.若函数在区间和上均为增函数,则实数a的取值范围是A. B. C. D.二、填空题(本大题共7小题,共28.0分)11.计算:______.12.《九章算术》是中国古代数学名著,其对扇形田面积给出“以径乘周四而一”的算法与现代数学的算法一致,根据这一算法解决下列问题:现有一扇形田,下周长(弧长)为20米,径长(两段半径的和)为24米,则该扇形田的面积为______平方米.13.求值:______.14.已知幂函数满足,则______.15.已知平面向量,向量夹角为,则______.16.已知,则______.17.已知函数的最小值为与t无关的常数,则t的范围是______.三、解答题(本大题共4小题,共52.0分)18.已知函数;求的值;求函数的周期及单调递增区间;19.在平面直角坐标系中,O是坐标原点,向量若C是AB所在直线上一点,且,求C的坐标.若,当,求的值.20.已知函数求函数的定义域及其值域.若函数有两个零点,求m的取值范围.21.已知函数.当时,求函数在上的最大值与最小值.当时,记,若对任意,,总有,求a的取值范围.浙江省杭州地区重点中学2019-2020学年上学期期末考试高一数学试题参考答案一、选择题(本大题共10小题,共40.0分)1.已知集合2,,3,,那么A. B. C. 2, D. 2,3,【答案】B【解析】【分析】直接利用交集的定义进行运算即可.【详解】2,,3,;.故选:B.【点睛】本题考查交集的定义及运算,考查了列举法表示集合的方法,属于基础题.2.已知角的终边经过点,则A. B. C. D.【答案】B【解析】【分析】根据角的终边经过点,可得,,再根据计算求得结果.【详解】已知角的终边经过点,,,则,故选:B.【点睛】本题主要考查任意角的三角函数的定义,属于基础题.3.在中,点D为边AB的中点,则向量A. B. C. D.【答案】A【解析】【分析】根据向量加法的平行四边形法则即可得出,从而得出.【详解】如图,点D为边AB的中点;;.故选:A.【点睛】本题考查向量加法的平行四边形法则,中线向量的表示,向量的数乘运算,属于基础题.4.设,则a,b,c的大小关系为A. B. C. D.【答案】B【解析】【分析】利用指数函数、对数函数的单调性直接求解.【详解】,,,,,b,c的大小关系为.故选:B.【点睛】本题考查三个数的大小的判断,考查指数函数、对数函数的单调性等基础知识,考查运算求解能力,是基础题.5.下列函数中,既是奇函数又在区间上为增函数的是A. B. C. D.【答案】A【解析】【分析】根据函数奇偶性和单调性的性质对选项依次进行判断即可.【详解】,则函数是奇函数,和在上都是增函数,是增函数,满足条件.B.在上不单调,不满足条件.C.是增函数,但不是奇函数,不满足条件.D.是奇函数,在上不是单调函数,不满足条件.故选:A.【点睛】本题主要考查函数奇偶性和单调性的判断,要求熟练掌握常见函数的奇偶性和单调性.6.若函数局部图象如图所示,则函数的解析式为A. B.C. D.【答案】D【解析】【分析】由的部分图象可求得A,T,从而可得,再由,结合的范围可求得,从而可得答案.【详解】,;又由图象可得:,可得:,,,.,,又,当时,可得:,此时,可得:故选:D.【点睛】本题考查由的部分图象确定函数解析式,常用五点法求得的值,属于中档题.7.已知函数为奇函数,为偶函数,且,则A. B. 2 C. D. 4【答案】C【解析】【分析】根据函数奇偶性的性质,建立方程组进行求解即可.【详解】函数为奇函数,为偶函数,且,,,即由得,则,故选:C.【点睛】本题主要考查函数值的计算,利用函数奇偶性的性质建立方程组是解决本题的关键.8.已知函数,则的最大值为A. B. C. D.【答案】C【解析】【分析】根据二倍角公式及两角和正弦公式,结合正弦函数的性质即可求出.【详解】,∴=,当时,有最大值,最大值为,故选:C.【点睛】本题考查了函数的最值问题,考查了三角函数的化简和计算,属于中档题.9.已知向量满足,则的最小值是A. 4B. 3C. 2D. 1【答案】D【解析】【分析】由平面向量的坐标运算得:所对应的点B在直线的左边区域含边界或在直线的右边区域含边界,由向量模的几何意义得:的结合意义为与所对应的点A与B的距离,作图观察可得解.【详解】不妨设如图所示的直角坐标系,,,,因为,所以或,即所对应的点B在直线的左边区域含边界或在直线的右边区域含边界,又的结合意义为与所对应的点A与B的距离,由图知:当B位于时,最短,且为1,故的最小值是1,故选:D.【点睛】本题考查了平面向量的坐标运算及向量模的几何意义,属中档题.10.若函数在区间和上均为增函数,则实数a的取值范围是A. B. C. D.【答案】D【解析】【分析】根据题意,写成函数的解析式,当时,,当时,,结合二次函数的性质分析可得a的取值范围,综合可得答案.【详解】根据题意,函数,当时,,若在区间上为增函数,则有,解得;当时,,若在区间上为增函数,则有,解得;综合可得:,即a的取值范围为;故选:D.【点睛】本题考查分段函数的单调性,涉及二次函数的性质,考查了分类讨论的思想,属于基础题.二、填空题(本大题共7小题,共28.0分)11.计算:______.【答案】【解析】【分析】直接利用诱导公式化简求值即可.【详解】由.故答案为:.【点睛】本题考查诱导公式的应用,考查了特殊角三角函数值,属于基础题.12.《九章算术》是中国古代数学名著,其对扇形田面积给出“以径乘周四而一”的算法与现代数学的算法一致,根据这一算法解决下列问题:现有一扇形田,下周长(弧长)为20米,径长(两段半径的和)为24米,则该扇形田的面积为______平方米.【答案】120【解析】扇形的半径为,故面积为(平方米),填.13.求值:______.【答案】1【解析】【分析】进行分数指数幂和对数的运算即可.【详解】原式.故答案为:1.【点睛】本题考查分数指数幂的运算,对数的运算及对数的换底公式,属于基础题.14.已知幂函数满足,则______.【答案】2【解析】【分析】由幂函数满足,能求出的值.【详解】幂函数满足,.故答案为:2.【点睛】本题考查函数值的求法,考查幂函数的性质等基础知识,考查运算求解能力,是基础题.15.已知平面向量,向量夹角为,则______.【答案】2【解析】【分析】由平面向量的数量积及其运算得:,即,即,得解.【详解】由,所以,又,所以,所以,故答案为:2.【点睛】本题考查了平面向量的数量积及其运算,属于简单题16.已知,则______.【答案】【解析】【分析】由题意利用同角三角函数的基本关系求得的值,再利用两角和的正弦公式的值.【详解】已知,还是锐角,,则,故答案为:.【点睛】本题主要考查同角三角函数的基本关系、两角和的正弦公式的应用,属于基础题.17.已知函数的最小值为与t无关的常数,则t的范围是______.【答案】【解析】【分析】先利用换元法,将函数转化为当,的最小值为与t无关的常数,对t进行分类讨论,根据函数的单调性即可求出t的范围【详解】,设,则,函数转化为的最小值为与t无关的常数,当时,,函数在单调递增,无最小值,当时,时,,函数在单调递减,,当时,,,令,解得,若,即时,当时,,函数单调递减,当时,,函数单调递增,,要使函数的最小值为与t无关的常数,,即解得,若,即时,在单调递增,,综上所述:t的范围是【点睛】本题考查了含绝对值函数的单调性与最值,关键是分类去绝对值符号,考查分类讨论的数学思想,属于难题.三、解答题(本大题共4小题,共52.0分)18.已知函数;求的值;求函数的周期及单调递增区间;【答案】(1)3;(2)【解析】【分析】利用三角函数的恒等变换化简函数的解析式为,由此求得的值;代入周期公式即可求出函数的最小正周期,利用正弦函数的单调性解关于x的不等式,即可得到的单调递增区间.【详解】,,;函数的周期,由,可得.函数的周期,单调递增区间为.【点睛】本题考查三角函数的恒等变换及化简求值,考查三角函数的周期性以及单调性的求法,属于中档题.19.在平面直角坐标系中,O是坐标原点,向量若C是AB所在直线上一点,且,求C的坐标.若,当,求的值.【答案】(1);(2)或1【解析】【分析】由向量共线的坐标运算得:设,可得,又因为,,即.由题意结合向量加减法与数量积的运算化简得,所以,运算可得解.【详解】,因为C是AB所在直线上一点,设,可得,又因为,所以,解得,所以,故答案为:且,显然,所以,,又所以,即,所以,所以即,解得:或,故答案为:或1.【点睛】本题考查了向量共线的坐标运算及平面向量数量积的运算,属于中档题.20.已知函数求函数的定义域及其值域.若函数有两个零点,求m的取值范围.【答案】(1);(2).【解析】【分析】由偶次根式被开方数非负,以及指数函数的单调性和值域,可得所求;由零点的定义和换元法,以及二次函数的图象和性质,可得m的不等式组,解不等式可得所求范围.【详解】由题意可知,,函数的定义域为,,函数的值域为;,,令,可得,所以原函数转化为,记,要使函数有两个零点,即方程在上有两个根,所以,解得,所以当时,函数有两个零点.【点睛】本题考查函数的定义域和值域,以及函数零点的求法,考查换元法和指数函数的单调性、二次函数的图象和性质,考查运算能力,属于中档题.21.已知函数.当时,求函数在上的最大值与最小值.当时,记,若对任意,,总有,求a的取值范围.【答案】(1)见解析;(2)【解析】【分析】根据二次函数的性质即可求出函数的最值,问题转化为只需当时,,分类讨论,根据函数的单调性即可求出.【详解】当时,,,当时,,当时,由题意可知:要使得对任意,,总有只需当时,当时,在上单调递增即:,所以,所以,不合题意当时Ⅰ当即时,在上单调递增,解得Ⅱ即时,在上单调递增,上单调递减可得,解得Ⅲ即时,在上单调递减,所以,即得综上【点睛】本题考查了不等式恒成立问题的转化,注意运用函数的单调性,考查了函数最值的求法,同时考查分类讨论的思想方法,属于中档题.。
杭州市2019-2020学年高一数学期末学业水平测试试题

2019-2020学年高一数学上学期期末试卷一、选择题1.A.已知b 的模为1.且力在。
方向上的投影为吏,则。
与力的夹角为() 2C. 120°30° B. 60°D. 150°2.7T为了得到函数y = 2sin 2x-|的图象,可以将函数y = 2sin 2% + ^的图象()A.向左平移务...____ 7 兀 B.向右平移24C.3.7 jr7 兀向左平移=D.向右平移技1212如图,在正方体ABCD - AiBiCD 中,给出以下四个结论:①DE 〃平面AjABBj ②AD 与平面BCD 】相交③AD_L 平面DiDB正确的结论个数是(④平面BCDi_L 平面AiABBi )A. 1B. 2C. 3D. 44.四面体共一个顶点的三条棱两两垂直,其长分别为1,, 3,且四面体的四个顶点在同一球面上,则这个球的体积为16〃在AA3C 中,)2a /6A.B.5.A.角A,B.32〃B, C 的对边分别为a , b , c,C. 12〃64〃D.——3A = 45°, 5 = 120°, a = 6,贝!]。
=4(3也logi (x + 2),x< -126.a /1-x 2 ,-1 < x < 1 , 2x -2,x>l若函数g(x)^有4个不同的零点,则实数7"的已知函数/■(》) = <取值范围是()A. (-1,1]B. [1,很]C. (1M)D. [V2,+oo)7. 已知二次函数/(x) = x 2 +bx+c 满足/■⑴=/■⑶=-3,函数g(x)是奇函数,当x20时,g(x) = /(%),若g(a)>a,则。
的取值范围是()A. (—co,—5)B. (一5,0)C. (—5,0)(5,+oo)D.(5,+oo)8. 著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事休. ”事实上,有很多代数问题可以转化为几何问题加以解决,如:J(x-a)2+(y-。
2019-2020浙江省杭州市高三(上)期末试卷答案解析

2019-2020浙江省杭州市高三(上)期末数学考试试卷答案解析一、选择题(每题4分,共40分)1.设集合A={x|x>2},B={x|(x﹣1)(x﹣3)<0},则A∩B=()A.{x|x>1}B.{x|2<x<3}C.{x|1<x<3}D.{x|x>2或x<1}【解答】解:集合A={x|x>2},B={x|(x﹣1)(x﹣3)<0}={x|1<x<3},则A∩B={x|2<x<3}.故选:B.2.双曲线的离心率等于()A.B.C.D.【解答】解:由双曲线=1可得a2=4,b2=1,∴a=2,c==.∴双曲线的离心率e==.故选:A.3.已知非零向量,,则“•>0”是“向量,夹角为锐角”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:与都是非零向量,则“向量与夹角为锐角”⇒“”,反之不成立,可能同向共线.因此“”是“向量与夹角为锐角”的必要不充分条件.故选:B.4.若实数x,y满足不等式组,则()A.y≥1B.x≥2C.x+2y≥0D.2x﹣y+1≥0【解答】解:作出不等式组对应的平面区域如图:;由图可得A,B均不成立;对于C:因为直线x+2y=0过平面区域,红线所表,故函数值有正有负,不成立.故只有答案D成立.故选:D.5.设正实数x,y满足e x•e y=(e x)y,则当x+y取得最小值时,x=()A.1B.2C.3D.4【解答】解:∵正实数x,y满足e x•e y=(e x)y,∴x+y=xy,又∵,∴,∴xy≥4,∴x+y≥4,当且仅当x=y=2时取等号,∴当x+y取得最小值时,x=2.故选:B.6.已知随机变量ξ的取值为i(i=0,1,2).若,E(ξ)=1,则()A.P(ξ=1)<D(ξ)B.P(ξ=1)=D(ξ)C.P(ξ=1)>D(ξ)D.【解答】解:∵随机变量ξ的取值为i(i=0,1,2).,E(ξ)=1,∴P(ξ=1)+2P(ξ=2)=1,P(ξ=1)+P(ξ=2)=,∴P(ξ=1)=,P(ξ=2)=,∴D(ξ)=+=.∴P(ξ=1)>D(ξ).故选:C.7.下列不可能是函数f(x)=x a(2x+2﹣x)(a∈Z)的图象的是()A.B.C.D.【解答】解:根据题意,函数f(x)=x a(2x+2﹣x)(a∈Z),当a=0,f(x)=(e x+e﹣x),(x≠0)其定义域为{x|x≠0},f(x)为偶函数,不经过原点且在第一象限为增函数,A选项符合;当a为正整数时,f(x)=x a(e x+e﹣x),其定义域为R,图象经过原点,没有选项符合;当a为负整数时,f(x)=x a(e x+e﹣x),其定义域为{x|x≠0},其导数f′(x)=ax a﹣1(e x+e﹣x)+x a(e x﹣e﹣x),当x>0时,f′(x)=x a﹣1[a(e x+e﹣x)+x(e x﹣e﹣x)]=x a﹣1[(a+x)e x+(a﹣x)e﹣x],则f′(x)先负后正,故f(x)不经过原点且在第一象限先减后增,BD符合;故选:C.8.若函数y=f(x),y=g(x)定义域为R,且都不恒为零,则()A.若y=f(g(x))为周期函数,则y=g(x)为周期函数B.若y=f(g(x))为偶函数,则y=g(x)为偶函数C.若y=f(x),y=g(x)均为单调递增函数,则y=f(x)•g(x)为单调递增函数D.若y=f(x),y=g(x)均为奇函数,则y=f(g(x))为奇函数【解答】解:令f(x)=sin x,g(x)=2x,函数sin2x是周期函数,但y=g(x)不是周期函数,故A错误;令f(x)=x2+1,g(x)=2x,则f(g(x))=4x2+1为偶函数,但y=g(x)不是偶函数,故B错误;令f(x)=x,g(x)=x3,y=f(x),y=g(x)均为R上的单调递增函数,但y=f(x)•g(x)=x4在R上不单调,故C错误;由y=f(x),y=g(x)均为奇函数,则f(﹣x)=﹣f(x),g(﹣x)=﹣g(x),且两函数定义域均关于原点对称,则f(g(﹣x))=f(﹣g(x))=﹣f(g(x)),且定义域关于原点对称,函数y=f(g(x))为奇函数,故D正确.故选:D.9.已知椭圆(a>b>0)的左右焦点分别为F1,F2,抛物线y2=2px(p>0)的焦点为F2.设两曲线的一个交点为P,若,则椭圆的离心率为()A.B.C.D.【解答】解:设P(x0,y0),,.∵,则2c(c﹣x0)=…①,∵抛物线y2=2px(p>0)的焦点为F2.∴p=2c…②,由①②可得x0=,由椭圆、抛物线焦半径公式可得a﹣ex0=x.整理可得:a﹣e=⇒2e2+5e﹣3=0.解得e=(负值舍).故选:A.10.已知非常数数列{a n}满足(n∈N*,α,β为非零常数).若α+β≠0,则()A.存在α,β,对任意a1,a2,都有数列{a n}为等比数列B.存在α,β,对任意a1,a2,都有数列{a n}为等差数列C.存在a1,a2,对任意α,β,都有数列{a n}为等差数列D.存在a1,a2,对任意α,β,都有数列{a n}为等比数列【解答】解:由题意,得=a n+1+a n.令t=,则=1﹣t,∵α,β为非零常数且α+β≠0,∴t,1﹣t均为非零常数,∴常数t≠0,且t≠1.故a n+2=ta n+1+(1﹣t)a n.两边同时减去a n+1,可得a n+2﹣a n+1=ta n+1﹣a n+1+(1﹣t)a n=(t﹣1)(a n+1﹣a n).∵常数t≠0,且t≠1.∴t﹣1≠﹣1,且t﹣1≠0.∴a n+1﹣a n=(t﹣1)(a n﹣a n﹣1)=(t﹣1)2(a n﹣1﹣a n﹣2)=…=(t﹣1)n﹣1(a2﹣a1).∵数列{a n}是非常数数列,∴a2﹣a1≠0,则当t﹣1=1,即t=2,即=2,即α+2β=0时,a n+1﹣a n=a n﹣a n﹣1=a n﹣1﹣a n﹣2=…=a2﹣a1.此时数列{a n}很明显是一个等差数列.∴存在α,β,只要满足α,β为非零,且α+2β=0时,对任意a1,a2,都有数列{a n}为等差数列.故选:B.二.填空题(共36分)11.设复数z满足(1+i)•z=2i(i为虚数单位),则z=1+i,|z|=.【解答】解:由(1+i)•z=2i,得z=,∴|z|=.故答案为:1+i;.12.已知二项式的展开式中含x2的项的系数为15,则a=1,展开式中各项系数和等于64.【解答】解:二项式的展开式的通项公式为T r+1=•a r•x6﹣2r,令6﹣2r=2 求得r=2,故展开式中含x2的项的系数为•a2=15,则a=1.再令x=1,可得展开式中各项系数和等于(1+1)6=64,故答案为:1;64.13.在△ABC中,∠BAC的平分线与BC边交于点D,sin C=2sin B,则=2;若AD =AC=1,则BC=.【解答】解:①如图所示,△ABC中,∠BAC的平分线与BC边交于点D,sin C=2sin B,所以c=2b,所以===2;②由AD=AC=1,所以AB=2AC=2,设DC=x,则BD=2x,由余弦定理得cos∠BAD===,cos∠CAD===,又∠BAD=∠CAD,所以=,解得x=;所以BC=3x=.故答案为:2,.14.已知函数,则f[f(2019)]=0;若关于x的方程f(x+a)=0在(﹣∞,0)内有唯一实根,则实数a的取值范围是[﹣1,].【解答】解:∵函数,∴f(2019)=cos2019π=cosπ=﹣1,f[f(2019)]=f(﹣1)=1﹣(﹣1)2=0.作出函数的图象,如下图:设f(x)与x轴从左到右的两个交点分别为A(﹣1,0),B(,0),f(x+a)与f(x)的图象是平移关系,∵关于x的方程f(x+a)=0在(﹣∞,0)内有唯一实根,∴结合图形,得实数a的取值范围是(﹣1,].故答案为:0,(﹣1,].15.杭州亚运会启动志愿者招募工作,甲、乙等5人报名参加了A,B,C三个项目的志愿者工作,因工作需要,每个项目仅需1名志愿者.若甲不能参加A,B项目,乙不能参加B,C项目,那么共有21种不同的选拔志愿者的方案.(用数字作答)【解答】解:若甲,乙都参加,则甲只能参加C项目,乙只能参见A项目,B项目有3种方法,若甲参加,乙不参加,则甲只能参加C项目,A,B项目,有A32=6种方法,若甲参加,乙不参加,则乙只能参加A项目,B,C项目,有A32=6种方法,若甲不参加,乙不参加,有A33=6种方法,根据分类计数原理,共有3+6+6+6=21种.故答案为:21.16.已知函数f(x)=x3﹣9x,g(x)=3x2+a(a∈R).若方程f(x)=g(x)有三个不同的实数解x1,x2,x3,且它们可以构成等差数列,则a=﹣11.【解答】解:方程f(x)=g(x)即为x3﹣3x2﹣9x=a,依题意,函数h(x)=x3﹣3x2﹣9x与常函数y=a由三个不同的实数根x1,x2,x3,不妨设x1<x2<x3,由x1,x2,x3构成等差数列可知,函数h(x)关于(x2,h(x2))中心对称,而三次函数的对称中心点就是二阶导函数的零点,且h′(x)=3x2﹣6x﹣9,h''(x)=6x﹣6,令h''(x)=6x﹣6=0,解得x=1,即x2=1,故函数h(x)的对称中心即为(1,﹣11),则a=﹣11.故答案为:﹣11.17.在平面凸四边形ABCD中,AB=2,点M,N分别是边AD,BC的中点,且,若,则=﹣2.【解答】解:取BD的中点O,连接OM,ON,可得,平方可得==,即有,,即有•()=()•()=()=(4﹣)=,解得,所以==,故答案为:﹣2.三、解答题(5题,共74分)18.已知函数(x∈R).(1)求f(x)的最小正周期;(2)求f(x)在区间上的值域.【解答】解:(1)函数=sin2x﹣=sin2x﹣cos2x+sin x cos x=sin2x﹣cos2x=sin(2x﹣),∴f(x)的最小正周期为=π.(2)在区间上,2x﹣∈[﹣,],故当2x﹣=﹣时,函数f(x)取得最小值为﹣,当2x﹣=时,函数f(x)取得最大值为,故f(x)的值域为[﹣,].19.已知函数f(x)=x2+k|x﹣1|﹣2.(1)当k=1时,求函数f(x)的单调递增区间.(2)若k≤﹣2,试判断方程f(x)=﹣1的根的个数.【解答】解:(1)k=1时,f(x)=x2+|x﹣1|﹣2=,当x≥1时,f(x)=(x+)2﹣,此时函数在[1,+∞)上单调递增;当x<1时,f(x)=(x﹣)2﹣,此时函数在(,1)上单调递增,综上函数f(x)的单调递增区间是(,+∞);(2)当x≥1时,则x2+k(x﹣1)﹣2=﹣1,即(x﹣1)(x+1+k)=0,即x=﹣1﹣k,或x=1;当x<1时,则x2﹣k(x﹣1)﹣2=﹣1,即(x﹣1)(x+1﹣k)=0,即x=k﹣1,故当k<﹣2,﹣1﹣k>1,k﹣1<1,则方程有3个不等实数根;当k=﹣2时,﹣1﹣k=1,k﹣1=﹣3,则方程有2个不等实数根.20.如图,在△ABC中,,,P为CD上一点,且满足,若△ABC的面积为.(1)求m的值;(2)求的最小值.【解答】解:(1)设||=c,||=b,所以S△ABC=bc sin=2,解得bc=8,由=m+=m+,且C,P,D三点共线,所以m+=1,解得m=;(2)由(1)可知,所以||2=()2=因为=bc cos=﹣4,所以||2=≥2•﹣=,故||≥,当且仅当b=2,c=时取得等号,综上||的最小值为.21.设公差不为0的等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,若a2是a1与a4的等比中项,a6=12,a1b1=a2b2=1.(1)求a n,S n与T n;(2)若,求证:.【解答】(1)解:由题意得,,即,得a1=d(d ≠0),由a6=12,得a1=d=2.∴a n=a1+(n﹣1)d=2+2(n﹣1)=2n,,由a1b1=a2b2=1,得,,∴;(2)证明:∵,由0<<1恒成立,∴c n<<=,∴c1+c2+…+c n<.22.设函数f(x)=e x+ax,a∈R.(1)若f(x)有两个零点,求a的取值范围;(2)若对任意x∈[0,+∞)均有2f(x)+3≥x2+a2,求a的取值范围.【解答】解:(1)f′(x)=e x+a,①当a≥0时,f′(x)>0,则f(x)在R上单调递增,不满足题意;②当a<0时,令f′(x)=0,解得x=ln(﹣a),则f(x)在(﹣∞,ln(﹣a))上单调递减,在(ln(﹣a),+∞)上单调递增,要使f(x)有两个零点,只需f(ln(﹣a))<0,解得a<﹣e;(2)令g(x)=2f(x)+3﹣x2﹣a2=2e x﹣(x﹣a)2+3,x≥0,则g′(x)=2(e x﹣x+a),又令h(x)=2(e x﹣x+a),则h′(x)=2(e x﹣1)≥0,所以h(x)在[0,+∞)上单调递增,且h(0)=2(a+1),①当a≥﹣1时,g′(x)≥0恒成立,即函数g(x)在[0,+∞)上单调递增,从而必须满足g(0)=5﹣a2≥0,解得﹣≤a≤,又因为a≥﹣1,所以﹣1≤a≤;②当a<﹣1时,则存在x0>0,使h(x0)=0且x∈(0,x0)时,h(x)<0,即g′(x)<0,即g(x)单调递减,x∈(x0,+∞)时,h(x)>0,即g′(x)>0,即g(x)单调递增,所以g(x)最小值为g(x0)=≥0,又h(x0)=2()=0,从而≥0,解得0<x0≤ln3,由=x0﹣a,则a=x0﹣,令M(x)=x﹣e x,0<x≤ln3,则M′(x)=1﹣e x<0,所以M(x)在(0,ln3上单调递减,则M(x)≥M(ln3)=ln3﹣3,又M(x)<M(0)=﹣1,故ln3﹣3≤a<﹣1,综上,ln3﹣3≤a≤.。
【数学】2019学年杭二高一上期末

2019学年杭二高一上期末一、选择题:每小题4分,共40分 1. 若5sin 13α=-且α为第三象限角,则tan α的值等于( )A .125B .125-C .512D .512-2. 函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图象( )A .关于点,06π⎛⎫⎪⎝⎭对称B .关于点,03π⎛⎫⎪⎝⎭对称C .关于直线6x π=对称 D .关于直线3x π=对称3. 函数()3f x x =在定义域上是( ) A .单调递减的偶函数 B .单调递减的奇函数C .单调递增的偶函数D .单调递增的奇函数4. ABC △的三边分别为a ,b ,c ,若ABC △是锐角三角形,则( )A .sin cos AB < B .tan tan 1A B >C .()cos 0A B +>D .()sin sin A B C +>5. 设α∈R ,且()()44log 2sin cos log sin 2cos 1αααα+++=,则tan α的值是( )A .12B .2C .12或2 D .不存在6. 设函数()sin 0y ax b a =+>的图象如下图所示,则函数()log a y x b =+的图象可能是( )xy O 3π2ππ-11yx yx y x yx O OOO–11231D–11231C–11231B–11231A7. 设1x ,2x 分别是函数()1x f x xa =-和()log 1a g x x x =-的零点(其中1a >),则122x x +的取值范围是( )A .[)2,+∞B .()2,+∞C .[)3,+∞D .()3,+∞8. 对任意x ∈R ,不等式22sin sin x x a a +-≥恒成立,则实数a 的取值范围是( )A .01a ≤≤B .11a -≤≤C .12a -≤≤D .22a -≤≤9. 已知函数()sin 3f x x πω⎛⎫=+ ⎪⎝⎭,()0ω>在区间25,36ππ⎡⎤-⎢⎥⎣⎦上是增函数,且在区间[]0,π上恰好取得一次最大值1,则ω的取值范围是( )A .10,5⎛⎤⎥⎝⎦B .13,25⎡⎤⎢⎥⎣⎦C .11,65⎡⎤⎢⎥⎣⎦D .15,22⎡⎫⎪⎢⎣⎭10. 设不等式3412x x a +->-对所有[]1,2x ∈均成立,则实数a 的取值范围是( ) A .15a <-或47a > B .15a <-C .47a >或01a <<D .15a <-或1064a <<二、填空题:单空题每题4分,多空题每题6分11. 圆心角为1弧度的扇形半径为1,则该扇形的周长为 .面积为 .12. 若函数()f x 满足:对任意实数x ,有()()20f x f x -+=且()()20f x f x ++=,当[]0,1x ∈时,()()21f x x =--,则()6f = .当[]2019,2020x ∈时,()f x = .13. 若3sin x ,[)0,2x π∈,则x 的取值范围是 .若sin cos 12sin cos 0x x x x ++=,则x 的取值范围是 .14. 已知函数()()sin 013f x x πωω⎛⎫=+<< ⎪⎝⎭。
2019-2020学年浙江省杭州市高级中学高一上学期期末数学试题及答案解析版

2019-2020学年浙江省杭州市高级中学高一上学期期末数学试题及答案解析版一、单选题1.已知集合{}{}=-101=11,P Q x x -≤<,,,则P Q = ( ) A .{}0 B .[)1,1- C .[]1,0-D .{}1,0-【答案】D【解析】根据交集运算求解即可. 【详解】因为{}{}=-101=11,P Q x x -≤<,,,故P Q ={}1,0-.故选:D 【点睛】本题主要考查了交集的运算,属于基础题型.2.若一个幂函数的图像经过点12,4⎛⎫⎪⎝⎭,则它的单调增区间是( ) A .(),1-∞ B .()0,∞+ C .(),0-∞D .R【答案】C【解析】求出幂函数的解析式再求单调增区间即可. 【详解】设幂函数a y x =,又图像经过点12,4⎛⎫ ⎪⎝⎭故1224a a =⇒=-.故2y x.其增区间为(),0-∞ 故选:C【点睛】本题主要考查了幂函数的解析式与单调区间,属于基础题型.3.下列函数中既是奇函数,又在区间[]1,1-上单调递减的是( ) A .()sin f x x = B .()|1|f x x =-+ C .1()()2xx f x a a -=+ D .2()lg2xf x x-=+ 【答案】D【解析】()sin f x x =在区间[]1,1-上单调递增;()1f x x =-+是非奇非偶函数;当01a <<时,()1()2xx f x a a -=+是增函数;对于D:22()ln ln ()22xxf x f x x x +--==-=--+,是奇函数;又24()lnln(1)22x f x x x-==-+++在区间[]1,1-上单调递减.故选D4.函数()ln 26f x x x =+-的零点的个数为 ( ) A .0 B .1 C .2 D .3【答案】B 【解析】略 【详解】因为函数单调递增,且x=3,y>0,x=1,y<0,所以零点个数为15.已知()f x 为R 上的奇函数,且当0x >时,21()f x x x =+,则(1)f -=()A .1B .2C .1-D .2-【答案】D【解析】根据奇偶性转为计算()1f -,结合所给条件代入计算即可. 【详解】因为()f x 是R 上的奇函数,所以()()11f f -=-;又因为()21112f =+=,所以()()112f f -=-=-,故选:D. 【点睛】本题考查根据函数的奇偶性求值,难度较易.若函数()f x 是奇函数,则有()()f x f x -=-.6.已知,2πθπ⎡⎤∈⎢⎥⎣⎦( )A .()sin cos θθ±-B .cos sin θθ-C .sin cos θθ-D .sin cos θθ+ 【答案】C【解析】根据诱导公式以及二倍角公式化简即可. 【详解】sin cos θθ===-.又,2πθπ⎡⎤∈⎢⎥⎣⎦,故sin cos sin cos θθθθ-=-.故选:C 【点睛】本题主要考查了诱导公式以及二倍角公式的化简,属于基础题型.7.在下列函数①sin 26y x π⎛⎫=+ ⎪⎝⎭ ②sin 4y x π⎛⎫=+ ⎪⎝⎭③cos 2y x =④tan 24y x π⎛⎫=- ⎪⎝⎭ ⑤tan y x = ⑥sin y x =中周期为π的函数的个数为 ( ) A .3个 B .4个 C .5个 D .6个【答案】C【解析】根据三角函数图像与性质逐个判断即可. 【详解】①sin 26y x π⎛⎫=+ ⎪⎝⎭最小正周期为22ππ=.正确. ②因为sin sin sin 444x x x ππππ⎛⎫⎛⎫⎛⎫++=-+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.正确.③cos 2cos2y x x ==,最小正周期为22ππ=.正确. ④tan 24y x π⎛⎫=- ⎪⎝⎭最小正周期为2π,故周期为π成立.正确.⑤()tan tan tan x x x π+=-=故周期为π.正确. ⑥sin y x =为偶函数且无周期.错误. 故选:C 【点睛】本题主要考查了三角函数周期的判定,周期是否为π可根据()()f x f x +π=判定,属于中等题型. 8.函数223()2xx x f x e +=的大致图像是( )A .B .C .D .【答案】B 【解析】由()f x 的解析式知仅有两个零点32x =-与0x =,而A 中有三个零点,所以排除A ,又()2232xx x f x e-++'=,由()0f x '=知函数有两个极值点,排除C ,D ,故选B . 9.已知函数()2sin f x x ω=(其中0>ω),若对任意13,04x π⎡⎫∈-⎪⎢⎣⎭,存在20,3x π⎛⎤∈ ⎥⎝⎦,使得()()12f x f x =,则ω的取值范围为( ) A .3ω≥ B .03ω<≤ C .92ω≥D .902ω<≤【答案】C【解析】根据题意可知.()f x 在0,3π⎛⎤⎥⎝⎦的值域包含在3,04π⎡⎫-⎪⎢⎣⎭上的值域.再分析列出不等式求解即可. 【详解】 画图易得,()f x 在0,3π⎛⎤⎥⎝⎦的值域包含在3,04π⎡⎫-⎪⎢⎣⎭上的值域.故3π应当大于等于34个周期才能使得值域包含在3,04π⎡⎫-⎪⎢⎣⎭上的值域. 故239432ππωω⨯≤⇒≥. 故选:C 【点睛】本题主要考查了三角函数的图形变换与区间的不等式列式方法等.需要考虑区间长度与周期的关系,属于中等题型.10.已知函数()f x 是R 上的增函数,且,其中ω是锐角,并且使得()sin 4g x x πω⎛⎫=+ ⎪⎝⎭在,2ππ⎛⎫⎪⎝⎭上单调递减,则ω的取值范围是( )A .5,44π⎛⎤⎥⎝⎦ B .5,42π⎡⎫⎪⎢⎣⎭C .1,24π⎡⎫⎪⎢⎣⎭D .15,24⎡⎤⎢⎥⎣⎦【答案】A【解析】试题分析:构造函数,因为函数()f x 是R 上的增函数,所以也是增函数,而,所以,那么,以及根据周期,解得,又因为,解得,综上可得,故选A.【考点】1.构造法;2.三角函数的性质.【思路点睛】本题考查了三角函数的性质以及构造函数法,综合性强,属于难题,本题的第一个难点是构造函数,根据函数的单调性,得到,得到的第一个范围,根据函数在区间上单调递减,说明函数的周期,得到的第二个范围,以及时函数单调递减区间的子集,这样得到参数取值.二、填空题 11.sin6π=_________;2cos ,α≥则α∈________. 【答案】122,2,44k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦【解析】(1)根据正弦函数求值即可. (2)画出余弦函数图像分析即可. 【详解】 (1)1sin62π=(2)由余弦函数图像,易得当2cos α=时有24k παπ=±+.故当2cos α≥,2,2,44k k k Zππαππ⎡⎤∈-++∈⎢⎥⎣⎦.故答案为:(1)12;(2)2,2,44k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦【点睛】本题主要考查了利用三角函数图像求解不等式的问题,属于基础题型.12.函数114x y -+⎛⎫= ⎪⎝⎭的单调增区间为________;奇偶性为_________(填奇函数、偶函数或者非奇非偶函数). 【答案】[)0,+∞ 偶函数【解析】(1)分0,0x x ≥<两种情况讨论即可. (2)将x 代换为x -再判断奇偶性即可. 【详解】(1)当0x ≥时11144x x y -+-⎛⎫== ⎪⎝⎭为增函数,当0x <时()111144x x y --++⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭为减函数.故单调增区间为[)0,+∞.(2)因为111144x x y --+-+⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭.且定义域为R .故奇偶性为偶函数.故答案为:(1) [)0,+∞; (2) 偶函数 【点睛】本题主要考查了绝对值有关的函数的单调性与奇偶性,分绝对值内的正负讨论即可.属于基础题型.13.若lg ,lg ,x m y n ==则2lg 10y ⎛⎫⎪⎝⎭=____;若()2,60,,m n a a a m n R ==>∈,则32m n a -=______.【答案】1222m n -+3【解析】(1)根据对数基本运算求解即可. (2)利用指数幂的运算求解即可. 【详解】(1) ()211lg lg 2lg 110221022y x y g m n ⎛⎫=--=-+ ⎪⎝⎭(2)32m na-===故答案为:(1)1222m n -+; (2)【点睛】本题主要考查了对数与指数的基本运算法则等,属于基础题型.14.函数27cos sin cos24y x x x =--+的 值域为_______;函数()3sin 2sin xf x x-=+的值域为______. 【答案】1,24⎡⎤-⎢⎥⎣⎦2,43⎡⎤⎢⎥⎣⎦【解析】(1)利用三角函数公式代换为含有cos x 的二次复合函数再求值域即可. (2)参变分离再求值域即可 【详解】 (1)()222277cos sin cos 2cos sin cos sin 44y x x x x x x x =--+=---+ 2271cos cos cos 242x x x ⎛⎫=-++=--+ ⎪⎝⎭.因为[]cos 1,1x ∈-故222111112cos 22cos 2,22224x x ⎛⎫⎛⎫⎛⎫⎡⎤---+≤--+≤⇒-+∈- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. 即函数27cos sin cos24y x x x =--+的值域为1,24⎡⎤-⎢⎥⎣⎦. (2)()3sin sin 25512sin 2sin 2sin x x f x x x x---+===-++++.因为[]sin 1,1x ∈-. 故55,52sin 3x ⎡⎤∈⎢⎥+⎣⎦,521,42sin 3x ⎡⎤-+∈⎢⎥+⎣⎦ 故答案为:(1)1,24⎡⎤-⎢⎥⎣⎦;(2)2,43⎡⎤⎢⎥⎣⎦ 【点睛】本题主要考查了正余弦函数的复合函数的值域问题,属于中等题型.15.设函数f (x )=0{102x x x ≥⎛⎫ ⎪⎝⎭,,<,则f (f (-4))=________.【答案】4【解析】f (-4)=12⎛⎫ ⎪⎝⎭-4=16, 所以f (f (-4))=f (16)416.若,2παπ⎛⎫∈ ⎪⎝⎭,1sin 43πα⎛⎫+= ⎪⎝⎭,则sin α=_________【解析】利用凑角的方法与两角和的正弦公式求解即可. 【详解】因为1sin 43πα⎛⎫+= ⎪⎝⎭,,2παπ⎛⎫∈ ⎪⎝⎭,故cos 43πα⎛⎫+==-⎪⎝⎭sin sin cos cos s s in44i 44n 44ππππππαααα⎛⎫⎛⎫⎛⎫+-=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=14sin cos 2442336ππαα⎡⎤⎛⎡⎤+⎛⎫⎛⎫=+-+=--=⎢⎥ ⎪ ⎪⎢⎥ ⎝⎭⎝⎭⎣⎦⎢⎥⎝⎭⎣⎦.故答案为:46+【点睛】本题主要考查了凑角的方法求三角函数值的方法,同时也需要根据角度的象限分析余弦的正负,同时也要利用两角和的正弦公式,属于中等题型.17.已知函数()f x =[)0,+∞,则实数a 的取值范围_________.【答案】81,4⎛⎤-∞⎥⎝⎦【解析】由题意知229ax x +-的值域包含[)0,+∞,再分情况讨论即可. 【详解】由题意229ax x +-的值域包含[)0,+∞, 设20t x =≥,故()9,0ag t t t t=+-≥的值域包含[)0,+∞. 当0a ≤时, ()9,0ag t t t t=+-≥在定义域内为增函数,且值域为R ,满足条件.当0a >时,()999a g t t t =+-≥=,故819004a ≤⇒<≤. 综上所述,实数a 的取值范围为81,4⎛⎤-∞⎥⎝⎦. 故答案为:81,4⎛⎤-∞⎥⎝⎦【点睛】本题主要考查了函数值域与分情况讨论,以及函数的单调性与基本不等式的用法等.需要根据题意得出值域的包含关系.属于中等题型.三、解答题18.设全集为R ,A ={x|3<x<7},B ={x|4<x<10}.(1)求∁R (A ∪B)及(∁R A)∩B ;(2)若C ={x|a -4≤x≤a +4},且A∩C =A ,求a 的取值范围.【答案】(1){|310}x x x 或≤≥;(2){}37a a ≤≤ 【解析】(1)先求得AB ,再求其补集.先求得A 的补集,再和集合B 取交集.(2)由于AC A =,属于集合A 是集合C的子集,由此列出不等式组,求得a 的取值范围. 【详解】(1)∵A ∪B ={x|3<x<10}, ∴∁R (A ∪B)={x|x≤3或x≥10}. 又∵∁R A ={x|x≤3或x≥7}, ∴(∁R A)∩B ={x|7≤x<10}. (2)∵A∩C =A ,∴A ⊆C. ∴⇒⇒3≤a≤7.【点睛】本小题主要考查集合交集、并集和补集混合运算,在运算的过程中,要注意端点值是否取得.属于基础题. 19.如图是()sin()f x A x ωϕ=+,,0,0,02x R A πωϕ⎛⎫∈>><<⎪⎝⎭在区间5,66ππ⎡⎤-⎢⎥⎣⎦上的图象,(1)求函数()f x 的解析式;(2)若把函数()f x 图像向左平移β个单位()0β>后,与函数()cos2g x x =重合,求β的最小值.【答案】(1)()sin(2)3f x x π=+;(2) 12π【解析】(1)先观察出1A =,再根据五点作图法列式求解,ωϕ的值即可.(2)求得出y 轴右边最近的最大值处的对称轴表达式,再分析即可. 【详解】(1)易得1A =,又周期5()66T πππ=--=,故2==2ππωω⇒.又因为()f x 在126312x πππ⎛⎫=-+= ⎪⎝⎭处取最大值.故22,122k k Z ππϕπ⨯+=+∈.即2,3k k Z πϕπ=+∈,又02πϕ<<,故3πϕ=. 故()sin(2)3f x x π=+(2)因为()sin(2)3f x x π=+,故y 轴右边最近的最大值处的对称轴在23212x x πππ+=⇒=处取得.故把函数()f x 图像向左平移12π个单位后,与函数()cos2g x x =重合.即β的最小值为12π. 【点睛】本题主要是考查了根据五点作图法与图像求三角函数解析式的方法,同时也考查了三角函数图像平移的方法等.属于中等题型. 20.已知函数()2cos 2sin 32x f x x π⎛⎫=-+ ⎪⎝⎭(1)求函数()f x 在区间,32ππ⎡⎤-⎢⎥⎣⎦上的值域(2)把函数()f x 图象所有点的上横坐标缩短为原来的12倍,再把所得的图象向左平移ϕ个单位长度02πϕ⎛⎫<< ⎪⎝⎭,再把所得的图象向下平移1个单位长度,得到函数()g x , 若函数()g x 关于点3,04π⎛⎫⎪⎝⎭对称 (i )求函数()g x 的解析式;(ii )求函数()g x 单调递增区间及对称轴方程.【答案】(1)0,12⎡⎤+⎢⎥⎣⎦;(2) (i )()cos2g x x =;(ii )单调递增区间为,,2πππ⎡⎤-+∈⎢⎥⎣⎦k k k Z , 对称轴方程为,2k x k Z π=∈ 【解析】(1)利用降幂公式与和差角辅助角公式等将()f x 化简为()sin()f x A x ωϕ=+的形式再求值域即可.(2)根据三角函数图像伸缩平移的方法求解函数()g x 的解析式,再求解()g x 单调递增区间及对称轴方程即可. 【详解】 (1)()211cos 2sin cos 1cos cos 1322222x f x x x x x x x π⎛⎫=-+=++-=-+ ⎪⎝⎭sin 16x π⎛⎫=-+ ⎪⎝⎭.即()sin 16f x x π⎛⎫=-+ ⎪⎝⎭.又,,,32623x x πππππ⎡⎤⎡⎤∈--∈-⎢⎥⎢⎥⎣⎦⎣⎦.故()sin 10,162f x x π⎡⎤⎛⎫=-+∈+⎢⎥ ⎪⎝⎭⎣⎦.(2)由题易得()sin 226g x x πϕ⎛⎫+- ⎪⎝⎭=.又函数()g x 关于点3,04π⎛⎫⎪⎝⎭对称,故342sin 222,463230k k k Z πππππϕϕπϕ⎛⎫⨯+-⇒+=⇒=- ⎝⎭=∈⎪. 又02πϕ⎛⎫<< ⎪⎝⎭,故当2k =时3πϕ=满足. 故()2sin 2sin 2cos 2362g x x x x πππ⎛⎫⎛⎫+-=+= ⎪ ⎪⎝⎭⎝⎭=.即()cos2g x x = ()g x 单调递增区间满足[]22,2x k k πππ∈-+即单调递增区间为,,2πππ⎡⎤-+∈⎢⎥⎣⎦k k k Z 对称轴方程满足2,2k x k x k Z ππ=⇒=∈.即对称轴方程为,2k x k Z π=∈. 【点睛】本题主要考查了三角函数的和差角以及降幂公式化简以及三角函数图像变换与图像性质等,属于中等题型. 21.已知0m ≠,函数()sin cos sin cos 1f x x x m x x =+-+(Ⅰ)当1m =时,求函数()f x 的最大值并求出相应x 的值; (Ⅱ)若函数()f x 在,22ππ⎡⎤-⎢⎥⎣⎦上有6个零点,求实数m 的取值范围.【答案】(Ⅰ)()f x 的最大值为2,此时2x k =π或22x k ππ=+,k Z ∈;(Ⅱ)(),1m ∈-∞-【解析】(Ⅰ)令sin cos t x x =+,再将其()f x 的最大值以及相应x 的值即可.(Ⅱ)令()0f x =,再参变分离讨论在区间上单调性与值域,进而分析零点个数即可. 【详解】(Ⅰ)当1m =时,()sin cos sin cos 1f x x x x x =+-+,令sin cos t x x =+,则22112sin cos sin cos 2t t x x x x -=+⇒=.故()21sin cos sin cos 1()12t f x x x x x g t t -=+-+==-+,故21()(1)22g t t =--+.又sin cos )4t x x x π⎡=+=+∈⎣. 故21()(1)22g t t =--+在1t =时取最大值2,)14x π+=,即sin()42x π+=, 解得244x k πππ+=+或3244x k πππ+=+,k Z ∈. 化简得2x k =π或22x k ππ=+,k Z ∈. 故()f x 的最大值为2,此时2x k =π或22x k ππ=+,k Z ∈.(Ⅱ)由(Ⅰ)令()0f x =有sin cos 1sin cos x x m x x ++=,,22x ππ⎡⎤∈-⎢⎥⎣⎦.当sin cos 1sin cos 0x x m x x ++==时有3个零点,2x π=-,x π=或32x π=时均成立.当sin cos 0x x ≠时,有sin cos 1sin cos x x m x x++=,设sin cos t x x =+,则21sin cos 02t x x -=≠则2sin cos 1121sin cos 12x x t m t x xt +++===--也有3个根.又21m t =-为一一对应的函数,故只需t 的函数值有3个根即可.又sin cos 2sin(),,242t x x x x πππ⎡⎤=+=+∈-⎢⎥⎣⎦,画出图像知,当11t -<<时均有3个自变量与之对应.故此时()2,11m t =∈-∞--故(),1m ∈-∞- 【点睛】本题主要考查了三角函数中的换元用法以及关于二次函数的复合函数问题,同时也考查了数形结合解决零点个数的问题,需要换元分析复合函数的定义域与值域的关系,属于难题.22.已知a 为正数,函数()()22222131,log log 244f x ax xg x x x =--=-+. (Ⅰ)解不等式()12g x ≤-;(Ⅱ)若对任意的实数,t 总存在[]12,1,1x x t t ∈-+,使得()()()12f x f x g x -≥对任意[]2,4x ∈恒成立,求实数a 的最小值.【答案】(Ⅰ)2,22x ⎡∈⎣;(Ⅱ)14【解析】(Ⅰ)转换为关于2log x 的二次函数,再求解不等式即可.(Ⅱ)先求得()g x 在[]2,4x ∈时的最大值14 ,再根据()()()12f x f x g x -≥得max min 1()()4f x f x -≥.再分情况讨论()f x 在[]12,1,1x x t t ∈-+上的最大最小值即可.【详解】(Ⅰ)2222222113log log log 2log 0424x x x x -+≤-⇒-+≤ 2221313log log 0log 2222x x x ⎛⎫⎛⎫⇒--≤⇒≤≤ ⎪⎪⎝⎭⎝⎭.解得132222x ≤≤即x ∈.(Ⅱ)由题意得max min max ()()()f x f x g x -≥.又()()22222213log log log 144g x x x x =-+=--,[]2,4x ∈,[]2log 1,2x ∈ 故2max 31()(21)44g x =--=.即max min 1()()4f x f x -≥恒成立.又()21324f x ax x =--对称轴14x a=.又区间[]1,1t t -+关于x t =对称,故只需考虑14t a ≥的情况即可.①当114t t a ≤<+,即11144t a a -<≤时,易得()()()max min 1311,4416f x f t f x f a a ⎛⎫=-==-- ⎪⎝⎭, 故2max min 13311()()(1)(1)244164f x f x a t t a ⎛⎫-=-------≥ ⎪⎝⎭ 即2111(1)(1)2164a t t a ---+≥,又111112114444t t a a a a -<≤⇒-<-≤-. 故211111(1)(1)424164a aa a ---+≥,解得14a ≥. ②当114t a ≥+,即114t a ≤-时,易得()()()()max min 1,1f x f t f x f t =-=+, 即22max min 13131()()(1)(1)(1)(1)24244f x f x a t t a t t ⎡⎤-=---------≥⎢⎥⎣⎦.化简得1414at -+≥,即344at ≤,所以131414416a a a ⎛⎫-≤⇒≥ ⎪⎝⎭. 综上所述, 14a ≥故实数a 的最小值为14 【点睛】本题主要考查了与二次函数的复合函数有关的问题,需要理解题意明确求最值,同时注意分析对称轴与区间的位置关系,再分情况进行讨论求最值即可.属于难题.。
浙江省杭州市高一上期末数学试卷((含答案))

2019-2020学年浙江省杭州市高一(上)期末检测数学试卷一、选择题(本大题有14小题,每小题3分,共42分.每小题的四个选项中,只有一项是符合要求的,请将答案填写在答案卷相应的答题栏内)1.(3分)sin120°的值为()A.B.C.D.﹣2.(3分)已知sinα=,α为第二象限角,则cosα的值为()A.B.﹣C.D.﹣3.(3分)已知集合A={x∈R|x2﹣4x<0},B={x∈R|2x<8},则A∩B=()A.(0,3) B.(3,4) C.(0,4) D.(﹣∞,3)4.(3分)函数f(x)=logx+x﹣3的零点所在的区间是()3A.(0,1) B.(1,2) C.(2,3) D.(3,+∞)5.(3分)函数y=的定义域是()A.[1,+∞)B.(1,+∞)C.(0,1] D.(,1]6.(3分)一名心率过速患者服用某种药物后心率立刻明显减慢,之后随着药力的减退,心率再次慢慢升高,则自服药那一刻起,心率关于时间的一个可能的图象是()A.B.C.D.7.(3分)已知函数f (x )=,则f (5)的值为( )A .B .1C .2D .38.(3分)已知函数y=f (2x )+2x 是偶函数,且f (2)=1,则f (﹣2)=( ) A .5B .4C .3D .29.(3分)函数f (x )=|sinx+cosx|+|sinx ﹣cosx|是( ) A .最小正周期为π的奇函数 B .最小正周期为π的偶函数C .最小正周期为的奇函数 D .最小正周期为的偶函数10.(3分)记a=sin1,b=sin2,c=sin3,则( ) A .c <b <a B .c <a <b C .a <c <b D .a <b <c 11.(3分)要得到函数y=cos (2x ﹣)的图象,只需将函数y=sin2x 的图象( ) A .向左平移个单位 B .向左平移个单位 C .向右平移个单位 D .向右平移个单位12.(3分)已知函数在(﹣∞,+∞)上是增函数,则实数a 的取值范围是( )A .1<a <3B .1<a ≤3C .<a <5D .<a ≤513.(3分)定义min{a ,b}=,若函数f (x )=min{x 2﹣3x+3,﹣|x ﹣3|+3},且f (x )在区间[m ,n]上的值域为[,],则区间[m ,n]长度的最大值为( ) A .1B .C .D .14.(3分)设函数f (x )=|﹣ax|,若对任意的正实数a ,总存在x 0∈[1,4],使得f (x 0)≥m ,则实数m 的取值范围为( )A .(﹣∞,0]B .(﹣∞,1]C .(﹣∞,2]D .(﹣∞,3]二、填空题(本大题有6小题,15~17题每空3分,18~20题每空4分,共30分,把答案填在答题卷的相应位置)15.(3分)设集合U={1,2,3,4,5,6},M={2,3,4},N={4,5},则M ∪N= ,∁U M= . 16.(3分)()+()= ;log 412﹣log 43= .17.(3分)函数f (x )=tan (2x ﹣)的最小正周期是 ;不等式f (x )>1的解集是 .18.(4分)已知偶函数f (x )和奇函数g (x )的定义域都是(﹣4,4),且在(﹣4,0]上的图象如图所示,则关于x 的不等式f (x )•g(x )<0的解集是 .19.(4分)已知不等式(ax+2)•ln (x+a )≤0对x ∈(﹣a ,+∞)恒成立,则a 的值为 . 20.(4分)已知函数f (x )=x+,g (x )=f 2(x )﹣af (x )+2a 有四个不同的零点x 1,x 2,x 3,x 4,则[2﹣f (x 1)]•[2﹣f (x 2)]•[2﹣f (x 3)]•[2﹣f (x 4)]的值为 .三、解答题:(本大题有4小题,共48分.解答应写出文字说明,证明过程或演算步骤) 21.(10分)已知幂函数f (x )=x α(α∈R ),且.(1)求函数f (x )的解析式;(2)证明函数f (x )在定义域上是增函数.22.(12分)已知函数f (x )=2sin (ωx +φ)(﹣π<φ<0,ω>0)的图象关于直线对称,且两相邻对称中心之间的距离为.(1)求函数y=f (x )的单调递增区间; (2)若关于x 的方程f (x )+log 2k=0在区间上总有实数解,求实数k 的取值范围.23.(12分)一辆汽车在某段路程中的行驶速率与时间的关系如图所示. (1)求图中阴影部分的面积,并说明所求面积的实际含义;(2)假设这辆汽车在行驶该段路程前里程表的读数是8018km,试求汽车在行驶这段路程时里程表读数s(km)与时间t (h)的函数解析式,并作出相应的图象.24.(13分)已知函数f(x)=(x﹣1)|x﹣a|﹣x﹣2a(x∈R).(1)若a=﹣1,求方程f(x)=1的解集;(2)若,试判断函数y=f(x)在R上的零点个数,并求此时y=f(x)所有零点之和的取值范围.2019-2020学年浙江省杭州市高一(上)期末数学试卷参考答案与试题解析一、选择题(本大题有14小题,每小题3分,共42分.每小题的四个选项中,只有一项是符合要求的,请将答案填写在答案卷相应的答题栏内)1.(3分)sin120°的值为()A.B.C.D.﹣【解答】解:因为sin120°=sin(90°+30°)=cos30°=.故选C.2.(3分)已知sinα=,α为第二象限角,则cosα的值为()A.B.﹣C.D.﹣【解答】解:∵sinα=,且α为第二象限的角,∴cosα=﹣=﹣.故选:D.3.(3分)已知集合A={x∈R|x2﹣4x<0},B={x∈R|2x<8},则A∩B=()A.(0,3) B.(3,4) C.(0,4) D.(﹣∞,3)【解答】解:∵集合A={x∈R|x2﹣4x<0}={x|0<x<4},B={x∈R|2x<8}={x|x<3},∴A∩B={x|0<x<3}=(0,3).故选:A.4.(3分)函数f(x)=logx+x﹣3的零点所在的区间是()3A.(0,1) B.(1,2) C.(2,3) D.(3,+∞)【解答】解:∵函数f (x )=log 3x+x ﹣3,定义域为:x >0;函数是连续函数, ∴f (2)=log 32+2﹣3<0,f (3)=log 33+3﹣3=1>0, ∴f (2)•f(3)<0,根据函数的零点的判定定理, 故选:C .5.(3分)函数y=的定义域是( )A .[1,+∞)B .(1,+∞)C .(0,1]D .(,1] 【解答】解:要使函数有意义,则log 0.5(3x ﹣2)≥0, 即0<3x ﹣2≤1,得<x ≤1,即函数的定义域为(,1], 故选:D6.(3分)一名心率过速患者服用某种药物后心率立刻明显减慢,之后随着药力的减退,心率再次慢慢升高,则自服药那一刻起,心率关于时间的一个可能的图象是( )A .B .C .D .【解答】解:患者服用某种药物后心率立刻明显减慢,则函数的图象应呈下降趋势, 之后随着药力的减退,心率再次慢慢升高,则函数的图象应一直呈上升趋势, 但上升部分的图象比下降的图象要缓,排除AB , 根据正常人的心率约为65,可排除D , 只有C 符合, 故选:C7.(3分)已知函数f (x )=,则f (5)的值为( )A.B.1 C.2 D.3【解答】解:∵函数f(x)=,∴f(5)=f(3)=f(1)=2.故选:C.8.(3分)已知函数y=f(2x)+2x是偶函数,且f(2)=1,则f(﹣2)=()A.5 B.4 C.3 D.2【解答】解:∵函数y=f(2x)+2x是偶函数,∴设g(x)=f(2x)+2x,则g(﹣x)=f(﹣2x)﹣2x=g(x)=f(2x)+2x,即f(﹣2x)=f(2x)+4x,当x=1时,f(﹣2)=f(2)+4=1+4=5,故选:A9.(3分)函数f(x)=|sinx+cosx|+|sinx﹣cosx|是()A.最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为的奇函数D.最小正周期为的偶函数【解答】解:f(﹣x)=|sin(﹣x)+cos(﹣x)|+|sin(﹣x)﹣cos(﹣x)|=|﹣sinx+cosx|+|﹣sinx﹣cosx|=|six+cosx|+|sinx﹣cosx|=f(x),则函数f(x)是偶函数,∵f(x+)=|sin(x+)+cos(x+)|+|sin(x+)﹣cos(x+)|=|cosx﹣sinx|+|cosx+sinx|=|sinx+cosx|+|sinx﹣cosx|=f(x),∴函数f(x)的周期是,故选:D10.(3分)记a=sin1,b=sin2,c=sin3,则()A.c<b<a B.c<a<b C.a<c<b D.a<b<c【解答】解:如图所示,∵>π﹣2>1>0,∴sin2=sin(π﹣2)>sin1,∵,∴sin1=sin(π﹣1)>sin3.综上可得:sin2>sin1>sin3.故选B.11.(3分)要得到函数y=cos(2x﹣)的图象,只需将函数y=sin2x的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位【解答】解:∵y=cos(2x﹣)=cos(﹣2x)=sin(2x+)=sin[2(x+)],∴将函数y=sin2x的图象向左平移个单位即可得到函数y=cos(2x﹣)的图象.故选:B.12.(3分)已知函数在(﹣∞,+∞)上是增函数,则实数a的取值范围是( )A .1<a <3B .1<a ≤3C .<a <5D .<a ≤5【解答】解:函数在(﹣∞,+∞)上是增函数,可得:,解得:1<a ≤3.故选:B .13.(3分)定义min{a ,b}=,若函数f (x )=min{x 2﹣3x+3,﹣|x ﹣3|+3},且f (x )在区间[m ,n]上的值域为[,],则区间[m ,n]长度的最大值为( ) A .1B .C .D .【解答】解:根据定义作出函数f (x )的图象如图:(蓝色曲线), 其中A (1,1),B (3,3),即f (x )=,当f (x )=时,当x ≥3或x ≤1时,由3﹣|x ﹣3|=,得|x ﹣3|=,即x C =或x G =,当f (x )=时,当1<x <3时,由x 2﹣3x+3=,得x E =,由图象知若f (x )在区间[m ,n]上的值域为[,],则区间[m ,n]长度的最大值为x E ﹣x C =﹣=, 故选:B .14.(3分)设函数f (x )=|﹣ax|,若对任意的正实数a ,总存在x 0∈[1,4],使得f (x 0)≥m ,则实数m 的取值范围为( )A .(﹣∞,0]B .(﹣∞,1]C .(﹣∞,2]D .(﹣∞,3]【解答】解:对任意的正实数a ,总存在x 0∈[1,4],使得f (x 0)≥m ⇔m ≤f (x )max ,x ∈[1,4].令u (x )=﹣ax ,∵a >0,∴函数u (x )在x ∈[1,4]单调递减, ∴u (x )max =u (1)=4﹣a ,u (x )min =1﹣4a .①a ≥4时,0≥4﹣a >1﹣4a ,则f (x )max =4a ﹣1≥15.②4>a >1时,4﹣a >0>1﹣4a ,则f (x )max ={4﹣a ,4a ﹣1}max >3. ③a ≤1时,4﹣a >1﹣4a ≥0,则f (x )max =4﹣a ≥3. 综上①②③可得:m ≤3.∴实数m 的取值范围为(﹣∞,3]. 故选:D .二、填空题(本大题有6小题,15~17题每空3分,18~20题每空4分,共30分,把答案填在答题卷的相应位置)15.(3分)设集合U={1,2,3,4,5,6},M={2,3,4},N={4,5},则M ∪N= {2,3,4,5} ,∁U M= {1,5,6} .【解答】解:集合U={1,2,3,4,5,6},M={2,3,4},N={4,5},则M ∪N={2,3,4,5};∁U M={1,5,6},故答案为:{2,3,4,5},{1,5,6}16.(3分)()+()= 3 ;log 412﹣log 43= 1 .【解答】解:()+()==;log 412﹣log 43=.故答案为:3,1.17.(3分)函数f (x )=tan (2x ﹣)的最小正周期是 ;不等式f (x )>1的解集是.【解答】解:由正切函数的周期公式得函数的周期T=;由f (x )>1得tan (2x ﹣)>1,得+kπ<2x ﹣<+kπ,得+<x <+,k ∈Z ,即不等式的解集为;故答案为:,;18.(4分)已知偶函数f (x )和奇函数g (x )的定义域都是(﹣4,4),且在(﹣4,0]上的图象如图所示,则关于x 的不等式f (x )•g(x )<0的解集是 (﹣4,﹣2)∪(0,2) .【解答】解:设h(x)=f(x)g(x),则h(﹣x)=f(﹣x)g(﹣x)=﹣f(x)g(x)=﹣h (x),∴h(x)是奇函数,由图象可知:当﹣4<x<﹣2时,f(x)>0,g(x)<0,即h(x)>0,当0<x<2时,f(x)<0,g(x)>0,即h(x)<0,∴h(x)<0的解为(﹣4,﹣2)∪(0,2).故答案为(﹣4,﹣2)∪(0,2)19.(4分)已知不等式(ax+2)•ln(x+a)≤0对x∈(﹣a,+∞)恒成立,则a的值为﹣1 .【解答】解:∵x∈(﹣a,+∞),∴当﹣a<x<1﹣a时,y=ln(x+a)<0,当x>1﹣a时,y=ln(x+a)>0,又(ax+2)•ln(x+a)≤0对x∈(﹣a,+∞)恒成立,①若a>0,y=ax+2与y=ln(x+a)均为定义域上的增函数,在x∈(﹣a,+∞)上,可均大于0,不满足题意;②若a=0,则2lnx)≤0对x∈(0,+∞)不恒成立,不满足题意;∴a<0.作图如下:由图可知,当且仅当方程为y=ln (x+a )的曲线与方程为y=ax+2的直线相交于点A ,即满足时,(ax+2)•ln(x+a )≤0对x ∈(﹣a ,+∞)恒成立,解方程得,解得a=﹣1.故答案为:﹣1.20.(4分)已知函数f (x )=x+,g (x )=f 2(x )﹣af (x )+2a 有四个不同的零点x 1,x 2,x 3,x 4,则[2﹣f (x 1)]•[2﹣f (x 2)]•[2﹣f (x 3)]•[2﹣f (x 4)]的值为 16 . 【解答】解:∵令t=f (x ),则y=g (x )=f 2(x )﹣af (x )+2a=t 2﹣at+2a , ∵g (x )=f 2(x )﹣af (x )+2a 有四个不同的零点x 1,x 2,x 3,x 4, 故t 2﹣at+2a=0有两个根t 1,t 2,且t 1+t 2=a ,t 1t 2=2a ,且f (x 1),f (x 2),f (x 3),f (x 4)恰两两相等,为t 2﹣at+2a=0的两根, 不妨令f (x 1)=f (x 2)=t 1,f (x 3)=f (x 4)=t 2, 则[2﹣f (x 1)]•[2﹣f (x 2)]•[2﹣f (x 3)]•[2﹣f (x 4)] =(2﹣t 1)•(2﹣t 1)•(2﹣t 2)•(2﹣t 2)=[(2﹣t 1)•(2﹣t 2)]2=[4﹣2(t 1+t 2)+t 1t 2]2=16. 故答案为:16三、解答题:(本大题有4小题,共48分.解答应写出文字说明,证明过程或演算步骤)21.(10分)已知幂函数f (x )=x α(α∈R ),且.(1)求函数f (x )的解析式;(2)证明函数f (x )在定义域上是增函数. 【解答】(1)解:由得,,所以;(2)证明:定义域是[0,+∞),设任意的x 2>x 1≥0,则,∵,∴f (x 2)>f (x 1),函数f (x )在定义域上是增函数.22.(12分)已知函数f (x )=2sin (ωx +φ)(﹣π<φ<0,ω>0)的图象关于直线对称,且两相邻对称中心之间的距离为.(1)求函数y=f (x )的单调递增区间; (2)若关于x 的方程f (x )+log 2k=0在区间上总有实数解,求实数k 的取值范围.【解答】解:(1)周期T=π,所以ω=2,当时,,(2分)得,又﹣π<φ<0,所以取k=﹣1,得(2分)所以,(1分)由,得,k ∈Z所以函数y=f (x )的单调递增区间是得(k ∈Z ),(2分)(2)当时,,所以,(2分)所以log 2k=﹣f (x )∈[﹣1,2],得. (3分)23.(12分)一辆汽车在某段路程中的行驶速率与时间的关系如图所示.(1)求图中阴影部分的面积,并说明所求面积的实际含义;(2)假设这辆汽车在行驶该段路程前里程表的读数是8018km,试求汽车在行驶这段路程时里程表读数s(km)与时间t (h)的函数解析式,并作出相应的图象.【解答】解:(1)阴影部分的面积为:50+70+90+60=270,表示汽车在4小时内行驶的路程为270 km.(4分)(2)∵这辆汽车在行驶该段路程前里程表的读数是8018km,汽车在行驶这段路程时里程表读数s(km)与时间t (h)的函数解析式为:(4分)图象如下图:(4分)24.(13分)已知函数f (x )=(x ﹣1)|x ﹣a|﹣x ﹣2a (x ∈R ). (1)若a=﹣1,求方程f (x )=1的解集; (2)若,试判断函数y=f (x )在R 上的零点个数,并求此时y=f (x )所有零点之和的取值范围.【解答】解:(1)方法一: 当a=﹣1时,(2 分)由f (x )=1得或(2 分)解得 x=0,1,﹣2,即解集为{0,1,﹣2}. (2分)方法二:当a=﹣1时,由f (x )=1得:(x ﹣1)|x+1|﹣(x ﹣1)=0(x ﹣1)(|x+1|﹣1)=0(3分)∴得x=1或|x+1|=1∴x=1或x=0或x=﹣2 即解集为{0,1,﹣2}. (3分) (2)当x ≥a 时,令x 2﹣(a+2)x ﹣a=0,∵,∴△=a 2+8a+4=(a+4)2﹣12>0得,(2分)且先判断2﹣a,与大小:∵,即a <x1<x 2,故当x ≥a 时,f (x )存在两个零点.(2分)当x <a 时,令﹣x 2+ax ﹣3a=0,即x 2﹣ax+3a=0得∵,∴△=a 2﹣12a=(a ﹣6)2﹣36>0得,同上可判断x 3<a <x 4,故x <a 时,f (x )存在一个零点.(2分)综上可知当时,f (x )存在三个不同零点.且设,易知g (a )在上单调递增,故g (a )∈(0,2)∴x 1+x 2+x 3∈(0,2). ( 2分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
②求该公司可获得的最大毛利润,并求出此时相应的销售单价.
(22)(本小题满分12分)
已知函数 .
( ) 判断 的奇偶性,并说明理由;
( ) 判断函数 的单调性,并利用定义证明;
( )解不等式 .
2019-2020学年浙江省杭州二中高一(上)期末数学试卷
答 案
第Ⅰ卷(共60分)
值域为 ---12分
(21) 解:( )由图像可知, , ---2分
解得, ,
所以 . -----4分
( )①由( ),
, . -----8分
②由①可知, ,其图像开口向下,对称轴为 ,所以当 时, . ---11分
即该公司可获得的最大毛利润为62500元,此时相应的销售单价为750元/件.
---12分
( )求 , ;
( )求 .
(18)(本小题满分12分)
求值: ( )
( )
(19)(本小题满分12分)
已知一次函数 满足 , .
( )求这个函数的解析式;
( )若函数 ,求函数 的零点.
(20)(本小题满分12分)
已知 是定义在 上的奇函数,且 时, .
( )求函数 的解析式;
( )画出函数 的图象,并写出函数 单调递增区间及值域.
(22)解:( ) 是奇函数. ---1分
(23)理由如下: 由题意得,
的定义域为 ,关于原点对称 ----2分
所以, 是奇函数. ---4分
( )函数 在 上单调递减 ----5分
----6分
,所以函数 在 上单调递减----8分
( )由函数的单调性和奇偶性得:
不等式
-----10分
----------12分
一、选择题
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
B
D
C
B
A
C
A
B
D
D
A
B
第 卷(共90分)
二、填空题
(13) 9 (14) 1 (15) (16)
三、解答题:本大题共6小题,共70分.
(17) 解:( )由题意得: , -----2分
解得 ,
所以函数 的定义域 ; -----4分
因为对任意 R, ,所以 ,
(13)已知 ,则实数 的值为 _______.
(14)已知函数 ,则函数 的最小值为 _______.
(15) 已知 ,则 .
(16)设 是定义于 上的奇函数,且在 内是增函数,又 ,则 的解集是.
三、解答题:本大题共6小题,共70分.
(17)(本小题满分10分)
已知函数 的定义域为 , 的值域为 .设全集 R.
所以函数 的值域 ; -----6分
( )由( )知 ,
所以 , ----8分
所以 . -----10分
(18) 解:( )原式=
, ------3分
, -----6分
( )原式=
--------10分
------12分
(19) 解:( )设 , --1分
由条件得:
, -----3分
解得 , -----5分
7.设偶函数 在 上为减函数,且 ,则 的解集为( )
A. B.
C. D.
8.已知函数 是R上的增函数,则 的取值范围是( )
A. ≤ <0 B. ≤ ≤
C. ≤ D. <0
9.如图所示,单位圆中弧 的长为 , 表示弧 与弦 所围成的弓形(阴影部分)面积的2倍,则函数 的图象是 ( )
A. B. C. D.
(21)(本小题满分12分)
某公司销售产品,规定销售单价不低于成本单价500元/件,又不高于800元/件,经调查,发现销售量 (件)与销售单价 (元/件),可近似看做一次函数 的关系(图象如右图所示).
( )根据图象,求一次函数 的表达式;
( )设公司获得的毛利润(毛利润=销售总价-成本总价)为S元,
故 ; ---6分
( )由( )知 ,即 , -----7分
令 ,解得 或 , ----10分
所以函数 的零点是 和 . ------12分
(20) 解:( )因为 是定义在 上的奇函数,所以 ----2分
当 时, , ,即 --6分
所以 ---7分
( )函数 的图象如下图所示
------10分
根据 的图象知: 的单调递增区间为 ---11分
10.已知非空集合 ,且满足 , , ,则 的关系为( )
A. B. C. D.
(11) 若函数 在区间 上是减函数,则 的取值范围是
(A) (B) (C) (D)
(12)设 , , ,则 , , 的大小关系是
(A) (B) (C) (D)
第 卷(共90分)
二、填空题:本大题共4个小题,每小题5分,共20分.
2019-2020学年浙江省杭州二中高一(上)期末数学试卷
第Ⅰ卷(共60分)
一、选择题:本大题共12个小题,每小题5分,共60分.每小题给出的四个选项中只有一项是符合题目要求的
1.已知全集U={1,2,3,4,5,6,7,8},M={1,3,5,7},N={5,6,7, 8},则 =( )
A.{5,7} B.{2,4} C.{2,4,8}D.{1,3,5,6,7}
2.下列各组函数中,表示同一函数的是( )
A. B.
C. D.
3.函数 的值域是( )
A. B. C. D.
4.设函数 ,则 的表达式为( )
A. B. C. D.
5.设函数 则不等式 的解集是( )
A. B.
C. D.
6.若 、 是关于 的方程 9