材料物理化学性能一、二、三章1资料

合集下载

材料物理性能及测试-作业

材料物理性能及测试-作业

第一章无机材料的受力形变1 简述正应力与剪切应力的定义2 各向异性虎克定律的物理意义3 影响弹性模量的因素有哪些?4 试以两相串并联为模型推导复相材料弹性模量的上限与下限值。

5 什么是应力松弛与应变松弛?6 应力松弛时间与应变松弛时间的物理意义是什么?7 产生晶面滑移的条件是什么?并简述其原因。

8 什么是滑移系统?并举例说明。

9 比较金属与非金属晶体滑移的难易程度。

10 晶体塑性形变的机理是什么?11 试从晶体的势能曲线分析在外力作用下塑性形变的位错运动理论。

12 影响晶体应变速率的因素有哪些?13 玻璃是无序网络结构,不可能有滑移系统,呈脆性,但在高温时又能变形,为什么?14 影响塑性形变的因素有哪些?并对其进行说明。

15 为什么常温下大多数陶瓷材料不能产生塑性变形、而呈现脆性断裂?16 高温蠕变的机理有哪些?17 影响蠕变的因素有哪些?为什么?18 粘滞流动的模型有几种?19 影响粘度的因素有哪些?第二章无机材料的脆性断裂与强度1 试比较材料的理论强度、从应力集中观点出发和能量观点出发的微裂纹强度。

2 断裂能包括哪些内容?3 举例说明裂纹的形成?4 位错运动对材料有哪两方面的作用?5 影响强度的因素有哪些?6 Griffith关于裂纹扩展的能量判据是什么?7 试比较应力与应力强度因子。

8 有一构件,实际使用应力为1.30GPa,有下列两种钢供选:甲钢:sf =1.95GPa, K1c =45Mpa·m 1\2乙钢:sf =1.56GPa, K1c =75Mpa·m 1\2试根据经典强度理论与断裂强度理论进行选择,并对结果进行说明。

9 结构不连续区域有哪些特点?10 什么是亚临界裂纹扩展?其机理有哪几种?11 介质的作用(应力腐蚀)引起裂纹的扩展、塑性效应引起裂纹的扩展、扩散过程、热激活键撕裂作用引起裂纹扩展。

12 什么是裂纹的快速扩展?13 影响断裂韧性的因素有哪些?14 材料的脆性有哪些特点?通过哪些数据可以判断材料的脆性?15 克服材料脆性和改善其强度的关键是什么?16 克服材料的脆性途径有哪些?17 影响氧化锆相变的因素有哪些?18 氧化锆颗粒粒度大小及分布对增韧材料有哪些影响?19. 比较测定静抗折强度的三点弯曲法和四点弯曲法,哪一种方法更可靠,为什么?20. 有下列一组抗折强度测定结果,计算它的weibull模数,并对该测定数据的精度做出评价。

材料的性能第一章材料的性能

材料的性能第一章材料的性能

同的标准。称为标尺A、标尺B、标尺C。洛氏硬度实验是现
今所有使用的几种普通压痕硬度实验的一种。三种标尺的初
始压力均为98.07N(10Kgf),最后根据压痕深度计算硬度值。
标尺A使用的是球锥菱形压头,然后加压至588.4N(60Kgf);
标尺B使用的是直径为1.588mm(1/16英寸)的钢球作为压头,
(3)布氏硬度适合于测试成品材料的硬度,维氏硬度可测试整体材料的硬 度;
(4)塑性材料零件可用屈服强度作为设计指标,脆性材料应用抗拉强度作 为设计指标。
第一章 材料的性能
使用性能:材料在使用过程
中所表现的性能。包括力学
神 舟
性能、物理性能和化学性能。
一 号
工艺性能:材料在加工过程
飞 船
中所表现的性能。包括铸造、
锻压、焊接、热处理和切削
性能等。
材料在外力的作用下将发生形状和尺寸变化,称 为变形。
外力去除后能够恢复的变形称为弹性变形。 外力去除后不能恢复的变形称为塑性变形。
钢球压头与 金刚石压头
HRB用于测量低硬度材料, 如 有色金属和退火、正火钢等。
HRC用于测量中等硬度材料, 如调质钢、淬火钢等。
洛氏硬度的优点:操作简便, 压痕小,适用范围广。
缺点:测量结果分散度大。
洛氏硬度压痕
洛氏硬度(HR)测试当被测样品过小或者布氏硬度(HB) 大于450时,就改用洛氏硬度计量。试验方法是用一个顶角 为120度的金刚石圆锥体或直径为1.59mm/3.18mm的钢球, 在一定载荷下压入被测材料表面,由压痕深度求出材料的硬 度。根据实验材料硬度的不同,可分为三种不同标度来表示:
A<Z 时,有颈缩,为塑性材料表征

第三章 (1) 高分子材料的物理化学性质

第三章 (1) 高分子材料的物理化学性质
热胀温度敏感型水凝胶指水凝胶的体积在某一温度附近随温度升高而突然增加这一温度叫做较高临界溶解温度ucstuppercriticalsolutiontemperatureucst以上大分子链亲水性增加因水合而伸展使水凝胶在ucst以上突然体积膨热缩温度敏感型水凝胶则是随温度升高大分子链疏水性增强发生卷曲使水凝胶体积急剧下降体积发生突变的温度叫较低临界溶解温度lcstlowercriticalsolutiontemperature
19
(ii)pH敏感水凝胶 :pH敏感性水凝胶是体积随环境pH值、 离子强度变化的高分子凝胶。这类凝胶大分子网络中具有可解 离成离子的基团,其网络结构和电荷密度随介质pH值的变化而 变化,并对凝胶的渗透压产生影响;同时因为网络中添加了离 子,离子强度的变化也引起体积变化。 一般来说,具有pH值响应性的水凝胶都是含有酸性或碱性侧 基的大分子网络,即聚电解质水凝胶。随着介质pH值、离子强 度的改变,酸、碱基团发生电离,导致网络内大分子链段间氢 键的解离,引起不连续的溶胀体积变化。
18
热可逆性水凝胶 有些聚合物水溶液在室温下呈自由流动的液态 而在体温下呈凝胶态,即形成热可逆性水凝胶(TGR)。这一体系 能够较容易地对特定的组织部位注射给药,在体内环境下很快形 成凝胶。而且这种给药系统的制备较简单,只需将药物与聚合物 水溶液进行简单地混合。 如:聚环氧乙烷(PEO)与聚环氧丙烷(PPO)嵌段共聚物是已被批 准用于药用辅料的高分子,商品名叫普流罗尼(Pluronic)或泊洛沙 姆(Poloxamer),依据其结构和浓度,这类聚合物存在两个临界相 转变温度,即溶液-凝胶转变温度(相当于LCST)和凝胶-溶液转变 温度,在这两个温度之间其水溶液呈现凝胶状态。利用这类共聚 物水溶液低温溶液状态混合药物,尤其是生物类药物,注人体内 形成凝胶,从而实现控制药物释放同时保护药物活性的功能。

材料物理性能复习资料

材料物理性能复习资料

材料物理性能复习资料材料物理性能总复习(⽆材⼀)考试题型:1 名词解释 5个*3分,共15分;2 简答 7个*5分,共35分;3 计算 2个*10分,共20分;4 论述 2个*15分,共30分。

考试时间:2013-1-14. 考试重点1 材料的受⼒形变不同材料应⼒应变曲线的区别A (A 点):⽐例极限; E (B 点):弹性极限; P (C 点):屈服极限; U (D 点):断裂极限;E ,可逆线性正⽐例关系,当应⼒在 E 和 P 之间,外⼒去除后有⼀定程度的永久变形,即发⽣塑性变形陶瓷材料⼀般没有塑性变形,发⽣脆性断裂应⼒:单位⾯积上所受内⼒。

ζ=F/A由于材料的⾯积在外⼒作⽤下,可能有变化,A 就有变化,有名义应⼒和实际(真实)应⼒ P4. 应变:描述物质内部各质点之间的相对位移名义位移的应变:实际应变和L0有关,可以通过公式推导获得由于材料的不同⽅向的应变,因此考虑可以采⽤和应⼒分解的办法来解决,具体看教材第6-7页虎克定律:σ=E ε⽐例系数E 成为弹性模量(Elastic Modulus ),⼜称弹性刚度相关概念:应⼒应变虎克定律弹性模量001L L L L L ?=-=ε三种应变类型的弹性模量杨⽒模量E ;剪切模量G ;体积模量B 弹性模量:原⼦间结合强度的标志之⼀两类原⼦间结合⼒与原⼦间距关系曲线弹性模量实际与曲线上受⼒点的曲线斜率成正⽐结合键、原⼦之间的距离、外⼒作⽤也将改变弹性模量的值温度升⾼,原⼦之间距离变⼤,弹性模量下降弹性模量的本质特征;弹性模量的影响因素;晶粒、异相、⽓孔、杂质等,弹性模量的计算公式及⽅法;把材料看成材料的串联或者并联,我们可以得到其上限模量和下限模量,如下⾯的公式表⽰:(P13)复合材料弹性模量及应⼒的计算。

陶瓷材料弹性常数和⽓孔率关系多⽓孔陶瓷材料可以看成⼆相材料,其中⼀相的刚度为0 陶瓷材料的弹性模量随⽓孔率变化的表达式是:b 是与制备⼯艺有关常数.当泊松⽐0.3,f1和f2分别是1.9和0.9,和教材上p13公式1.21⼀样粘弹性:⼀些⾮晶体,有时甚⾄多晶体在⽐较⼩的应⼒时同时表现出粘性和弹性。

材料物理与性能_耿桂宏_课后答案[1-10章]

材料物理与性能_耿桂宏_课后答案[1-10章]

σ b 并不
σ b 代表实际工件在静拉伸条件下的最大承载能力,所
σ b 是工程上金属材料的重要力学性能指标之一。加之 σ b 易于测定,重现性好,所以广泛
用作产品规格说明或质量控制指标。
第四章
1、试说明经典自由电子论、量子自由电子论和能带理论的区别?
) 答: (1)经典电子理论 (自由电子论 (自由电子论) : 认为:连续能量分布的价电子在均匀势场中运动。 无法解释一价金属和二价金属的导电问题。 按照自由电子的概念, 二价金属的价电子比 一价金属的多,似乎二价金属的导电性比一价金属好,但是,实际情况却是一价金属的导电 性比二价金属好。 : 问题的根源 问题的根源: 忽略了电子之间的排斥作用和正离子点阵周期场的作用。 经典电子理论它 是立足于牛顿力学(宏观运动) ,而对微观粒子的运动问题应用量子力学的概念来解决。
会产生明显的蠕变变形及应力松弛。
3.8 断裂强度σc 与抗拉强度σb 有何区别?
答:断裂强度σc 是指材料断裂时所受力的大小,而抗拉强度为材料拉伸实验时所承载 的最大力。其中抗拉强度的实际意义如下:标志塑性金属材料的实际承载能力,但这种承载 能力也仅限于光滑试样单向拉伸的受载条件。如果材料承受更复杂的应力状态,则 代表材料的实际有用强度。正是由于 以
3.4 决定金属屈服强度的因素有哪些?
答:影响金属屈服强度的因素有很多,主要包括内因和外因两个部分。详见书中影响金 属材料屈服强度的因素部分。
3.5 试举出能显著强化金属而不降低其塑性的方法。
答:细化晶粒不仅能够提高金属材料的强度,而且还可以提高其塑性。详见书中屈服强 度以及塑性的影响因素部分。
3.6 试说明高温下金属蠕变变形的机理与常温下金属塑性变形的机理有何不 同?

工程材料 第一章 材料的性能及应用意义

工程材料 第一章 材料的性能及应用意义
4. 硬度与工艺性能之间有联系,可作为评定材料工艺性能的参考。
5. 硬度能较敏感地反映材料的成分与组织结构的变化,可用来检验原材料和 控制冷热加工质量。
2020/12/11
一、力学性能
§1.2 材料的使用性能
硬度测试方法:
1. 布氏硬度 GB231-1984 2. 洛氏硬度 GB230-1991 3. 维氏硬度 GB4342-1984
2)磨粒磨损:是指滑动摩擦时,在零件表面摩擦区内存在硬质磨粒, 使磨面发生局部塑性变形、磨料嵌入和被磨料切割等过程,以致磨面材 料逐步磨耗。
2020/12/11
一、力学性能
§1.2 材料的使用性能
粘着磨损示意图
2020/12/11
粘着磨损磨痕
一、力学性能
§1.2 材料的使用性能
磨粒磨损示意图
2020/12/11
§1.2 材料的使用性能
2020/12/11
一、力学性能
§1.2 材料的使用性能
2020/12/11
一、力学性能
§1.2 材料的使用性能
(六)韧性——材料在塑性变形和断裂的全过程中吸收能量的能 力,它是材料强度和塑性的综合表现。
韧性不足可用脆性来表达。 韧性高低决定是韧性断裂,还是脆性断裂。
2020/12/11
2020/12/11
§1.3 材料的工艺性能
金属材料零件的一般加工过程
2020/12/11
§1.3 材料的工艺性能
1. 铸造性能:包括流动性、收缩、疏松、成分偏析、铸造应力、冷热裂纹倾向。 2. 锻造性能:通常用材料的塑性和强度及形变强化能力来综合衡量。 3. 焊接性能:包括焊接接头产生缺陷的倾向性和焊接接头的使用可靠性。 4. 切削加工性能:一般用材料的切削的难易程度、切削后表面粗糙度和刀具寿 命等方面来衡量。 5. 热处理性能:包括淬透性、淬硬性、耐回火性、氧化与脱碳倾向及热处理变 形与开裂倾向。

现代材料物理化学

现代材料物理化学

现代材料物理化学作业参考资料(全面)一.材料物理-材料的电学性能1.何谓能带结构?满带,导带,价带,空带和禁带?能带结构:由多条能带组成,是指各原子中能量相近的能级将分裂成一系列和原能级接近的新能级,这些新能级基本上连成一片,形成能带(energy band)。

满带:能带中各能级都被电子填满。

导带:被电子部分填充的能带及空带(一般与价带相邻)。

价带:价电子能级分裂后形成的能带。

一般情况下,价带是被电子所填充的能量最高的能带。

空带:所有能级均未被电子填充的能带。

禁带:在能带之间的能量间隙区,电子不能填充。

2.简述绝缘体、半导体与导体的能带结构差异及对其导电性的影响;导体:分两类,一类是价带和导带交叠,加电压后电子能够很容易从价带顶部跃迁到导带底部而导电。

另一类是价带和导带不交叠,但它的价带未填满,因而加电压后电子也能够很容易从价带顶部跃迁到导带底部而导电绝缘体:价带和导带不交叠存在很大的能量间隙,且价带被填满因而因而加电压后电子不能够很容易从价带顶部跃迁到导带底部,故不导电。

半导体:1.本征半导体:价带和导带不交叠,但能隙很小,2. n型半导体3. p型半导体3.简述造成半导体材料与金属材料在电导温度函数上的差别原因;半导体的导电特性:即热敏性当环境温度升高时,温度愈高,载流子的数目愈多导电能力显著增强,正比关系金属电导温度函数:随着温度的升高,金属电阻也在增加。

在低温下“电子-电子”散射对电阻的贡献可能是显著的,但高温下,金属的电阻都决定于“电子-声子”散射。

划分这两个区域的温度θD称为德拜温度或特征温度。

且金属的电阻在不同的温度区域内表现出不同幂次(升幂)的温度函数关系。

4.简述导电高分子的类型?及导电机理上的差异?分类:导电高分子分成两大类。

一类是复合型导电聚合物,另一类是结构型(本征型)导电聚合物。

差异:复合型导电聚合物是在本身不具备导电性的聚合物材料中掺混入大量导电物质,聚合物材料本身并不具备导电性,只充当了粘合剂的角色。

材料物理性能

材料物理性能

参考书:
材料物理性能 哈尔滨工业大学出版社 邱成军等 TB303/Q712
材料物理性能
机械工业出版社,陈騑騢
TB303/C417
金属材料物理性能
冶金工业出版社 王润
75.211 W35
无机材料物理性能
清华大学出版社 关振铎等
71.2241/460
工程材料的性能、设计与选材 机械工业出版社,柴惠芬,石德珂编
通过材料性能的学习,可以掌握材料性能的基本概念、物理本质、 变化规律及性能指标的工程意义,了解影响材料性能的各种因素及材料 性能与其化学成分、组织结构间的关系,掌握改善和提高材料性能、充 分发挥材料性能潜力的主要途径,同时了解材料性能的测试原理、方法 及相关仪器设备。
只有这样才能在合理选用材料、提高材料性能和开发新材料过程中 具有必须的基本知识、基本技能和明确的思路。
(3)T→0时,热容为0,与事实相符。
1.爱因斯坦模型
进步:能量量子化,考虑了温度因素。 不足:在T<<θE温区理论值较实验值下降得过快。 原因:前提、没有考虑低频率振动对热容的贡献。德拜模型在这一方面 作了改进,故能得到更好结果。
2. 德拜模型
前提:①考虑了晶体中各质点的相互作用;②对热容的贡献主要是频率 较低的声频支振动(0~ωmax),光频支振动对热容的贡献很小,忽略; ③把晶体看作连续介质;④ ωmax由分子密度和声速决定。
材料在不同制造工艺条件下所表现出来的承受加工的能力,是物理、 化学性能的综合。如铸造性能、塑性加工性能、焊接性能、切削加工 性能等。直接影响材料使用的方式、成本、生产效率等。
2.为什么要学习和研究材料的性能
材料性能学是材科科学与工程一级学科专业基础课。因为材料科 学的根本任务是:材料制备、提高材料性能、开发性能优异的新材料、 研究材料的应用,以满足各行业对材料性能要求日益提高的需要。最终 归结到材料性能上。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1-4) (1-5)
6
对于固体材料的热容,在上世纪已发现了两
个经验定律:
恒压下元素的
原子热容等于
元素的热容定律——杜隆—珀替定律 25J/(K·mol)
2020/9/14
化合物分子热容等于 化合物热容定律——柯普定律 构成此化合物各元素
原子热容之和
8
经典热容理论
在固体中用谐振子来代表每个原子在一个自由度的振动
的情况
2 2020/9/14
第一章 热学性能分析
1.1 表征热学性能的基本参数及热学性能 1.2热容的测量、热分析法的应用
3 2020/9/14
1.1 表征热学性能的基本参数及热学性能
一.热容的基本概念
材料在温度上升或下降时要吸热或放热,在没有相 变或化学反应的条件下,材料温度升高1K时所吸收的热 量(Q)称做该材料的热容,单位为J/K,所以在温度T时 材料的热容可表达为
材料物理化学性能
主讲教师:韩立影
2020/9/14
1
第一章 热学性能分析
材料及其制品在使用过程中,将对不同的温度作 出反映,表现出不同的热物理性能.
本章讨论 热容的物理概念 物理本质 测量方法 热容测量在材料研究中的应用
金属组织变化 产生热效应
从热效应可以 确定出组织转 变的类型,转 变温度和进行
2020/9/14
h i
CV ,m
3N
A
k
h i
kT
2
e kT
h i
2
e kT 1
式中 vi —谐振子的振动频率;
(1-9)
适当的选取频率v ,可以使理论与实验吻合。又因为 R N Ak
令E
பைடு நூலகம்
h。则式(1-9)可以改写成
k
E
CV ,m
3R E
T
2
eT
E
2
3Rf
E
E
T
e T 1
(2)相变时,由于热量的不连续变化,热容 出现突变。
(3)在室温以上不发生相变的温度范围,合 金的热容与温度间呈线性关系,一旦发生 相变,热容偏离直线规律,向下拐折。
一个摩尔固体中有NA个原子,总能量为
2020/9/14
E 3N AkT 3RT
9
2020/9/14
1mol单原子固体物质的摩尔定容热容为:
CV ,m
E T V
3N AkT T V
3N Ak
3R 25J /K mol (1-8)
由式(1-8)可知,热容是与温度无关的常数,这就 是杜隆—珀替定律的实质.
(1-3)
当加热过程在恒压条件下进行时,所测定的 比热容称为比定压热容;
加热过程是在保持物体容积不变的条件下进 行时,所测定的热容称为比定容热容。
5
比定压热容和比定容热容的表达式
2020/9/14
比较比定压热容和比定容热容的大小?
cP cV
式中: Q 为热量,
E 为内能, H为焓。
cV可以直接从系统的能量增量来计算.
(1-1)
2020/9/14
单位质量材料的热容又称之为“比热容”或“质量 热容”,单位为J/(kg·K).
1mol材料的热容则称为“摩尔热容”,单位为J/ (mol·K)。
4
平均比热容是指单位质量的材料从温度T1到T2所 吸收的热量的平均值:
(1-2)
当温度T2无限趋近于T1时,材料的比热容,即
2020/9/14
都是爱因斯坦模型与实验相符之处。
但是在低温下,T«
E,时.e
E T
»1,故式(1-10)得到如下形式:
CV ,m
3R E
T
2
e
T
E
(1-12)
上式表明,CV,m 依指数规律随温度而变化,而不是从试验中
得出的按T 3 变化的规律.导致这一差异的原因是爱因斯坦采用了
过于简化的假设.
忽略振动之间频率的差别是此模型在低温时不准确的原 因.德拜模型在这一方面作了改进,故能得到更好的结果。
D
T
式中:
D
h max
4.8 1011 max
为德拜特征温度;
fD
D T
3
T D
D T 0
e ex
xx4 1
2
d
x
为德拜比热函数;。
根据式(1-13)还可以得到如下的结论:
(1-13)
(1)当温度较高时,即T»θD,CV,m≈3R这就是杜隆—珀替定律。
(2)当温度很低时,即T«θD,则经计算:
(1-10)
式中:
E
为爱因斯坦特征温度;f E
E T
为爱因斯坦比热函数.
13
E
当温度较高时T» E,则将 e T 展开成
2020/9/14
略去e
E T
的高次项,式(1-10)可化为
(1-11)
这就是杜隆—珀替定律的形式。
式(1-10)中,当T趋于零时,CV,m逐渐减小,当T=0时,CV,m =0,这
二、固体热容的量子理论
假设前提:
而且振动 能量是量 子化的.
在热容量子理论的数学模型中,爱因斯坦模型和德拜模 型与实验较为相符,下面将作简要介绍.
1.爱因斯坦模型 爱因斯坦模型认为:晶体中每一个原子都是一个
独立的振子,原子都以相同的频率振动,这样就推导 出如下的热容温度关系式
12 2020/9/14
对于双原子的固态化合物,1mol中原子为2NA, 故摩尔定容热容为Cv,m=2×25J/(K·mol)
三原子固态化合物的摩尔定容热容Cv,m=3×25 J/(K·mol),余类推.
杜隆—珀替定律在高温时与实验结果是很符合的, 但在低温时却相差较大.
10
实验结果表明,材料的摩尔热容如下图1-1(P139图 8-2)所示,是随温度而变化的.
CV ,m
12 4 R
5
T
D
3
(1-14)
15
这表明当 T 趋于0K时,CV,m 与 T 3成比例地趋于零,它和实验
结果十分符合,温度越低,近似越好。 德拜理论在低温下不能完全符合事实,由于晶体毕竟不是一个连 续体。
16 2020/9/14
三.影响材料热容的因素
(1)对于固体材料,热容与材料的组织结构 关系不大,见P141图 8-3
14
2020/9/14
2.德拜模型
德拜考虑到了晶体中原子的相互作用。 晶体中对热容的主要 贡献是弹性波的振动。由于声频波的波长远大于晶体的晶格常数, 就把晶体近似视为连续介质,所以声频支的振动也近似地看作是
连续的,具有频率从0到 的 m谱ax带。
由这样的假设导出的热容表达式为 :
CV ,m
3Rf
D
2020/9/14
图1-1 NaCl的摩尔热容—温度曲线
在高温区,摩尔热容的变化很平缓;在低温 区,CV,m 、CP,m ∝ T 3,温度接近0K时,CV,m、CP,m =0。
由此可见,经典的热容理论在低温下是不适用的, 热容随温度的变化只能用量子理论来解释。
11
1.1 表征热学性能的基本参数及热学性能
相关文档
最新文档