VAR模型及其在投资组合中的应用
投资组合风险评估报告:VaR模型与应用

投资组合风险评估报告:VaR模型与应用I. 前言A. 引言B. 市场背景C. 目的和方法II. VaR模型介绍A. VaR的定义B. VaR的计算方法C. VaR的优劣势分析III. VaR模型的应用A. 投资组合风险评估1. 投资组合的概念与分类2. 投资组合的风险特征3. VaR模型在投资组合中的应用案例B. 风险管理与决策支持1. VaR模型在风险管理中的作用2. VaR模型在投资决策中的应用IV. VaR模型的局限性与扩展A. VaR模型的局限性1. 假设条件的不准确性2. 非线性风险的挑战3. 短期市场波动性的忽略4. 难以捕捉系统性风险B. VaR模型的扩展1. Historical VaR2. Monte Carlo VaR3. Conditional VaR4. Stress TestingV. VaR模型的实践与案例分析A. 金融市场中的VaR应用1. 证券投资组合的VaR评估2. 期货市场中的VaR风险分析B. 跨行业的VaR模型应用1. 制造业的VaR模型评估2. 零售行业的VaR风险控制VI. VaR模型在风险管理中的挑战与前景展望A. 流动性风险的考量B. 非线性风险的应对C. 模型的优化与改进D. 数字化技术的应用前景VII. 结论A. VaR模型在投资组合风险评估中的重要性B. VaR模型的应用前景与挑战C. 总结I. 前言A. 引言在投资组合管理中,风险评估是不可或缺的一环。
VaR模型作为一种常用的风险评估方法,在金融界得到了广泛应用。
本报告将详细介绍VaR模型的概念、计算方法及其在投资组合风险评估中的应用。
B. 市场背景随着金融市场的复杂性和波动性的增加,传统的风险评估方法已经无法满足投资者对风险敞口的需求。
VaR模型的应用能够更准确地评估投资组合的风险水平,有助于投资者制定更有效的风险管理策略。
C. 目的和方法本报告旨在系统地介绍VaR模型的原理与计算方法,并以案例分析的方式展示VaR模型在投资组合风险评估中的应用。
金融风险管理中的VaR模型及应用研究

金融风险管理中的VaR模型及应用研究在金融投资中,风险管理是一项关键性工作。
为了规避风险,投资者需要采用不同的方法对风险进行测算、监控和控制。
而其中,以“价值-at-风险”(Value-at-Risk,VaR)模型为代表的方法,成为许多金融机构和投资者对风险管理进行实践的重要途径。
本文将从VaR模型的概念、计算方法、应用研究等方面进行分析探讨。
一、VaR模型的概念和计算方法VaR是指某一风险投资组合在未来一段时间内,尝试以一定置信度(通常为95%、99%)估计其最大可能损失金额。
VaR分析的目的是定量化风险,并作为投资者制定投资决策的重要参考依据。
VaR模型的计算方法包括历史模拟法、蒙特卡洛模拟法和正态分布法。
历史模拟法利用历史价格数据,模拟投资组合的未来价值变化;蒙特卡洛模拟法则采用随机方式,给出多种可能的结果;正态分布法基于正态分布假设,可以采用数学公式得出VaR数值。
在实际应用中,不同的计算方法适用于不同的投资组合和风险管理要求。
二、VaR模型应用研究的进展VaR模型在金融投资中的应用已经逐步成为一项主流的风险管理方法。
然而,在实践应用中,VaR模型存在一些局限性和问题,如对极端事件的处理能力不足、对交易流动性和市场风险变化的关注不足等。
针对这些问题,学者们开展了一系列研究,并不断改进VaR模型。
例如,将VaR模型与条件风险价值(CVaR)模型相结合,可更好地处理极端风险;利用高频数据和机器学习等方法,可提高计算结果的准确性和实时性;同时,还可以通过分层支持向量回归(Layered Support Vector Regression)等方法,对VaR值进行修正和预测。
随着技术和数据处理手段的不断改进,VaR模型在未来的风险管理中的应用将更加广泛和完善。
三、VaR模型的局限性虽然VaR模型在风险管理中有着广泛的应用,但也有一些局限性。
首先,VaR 模型往往基于假设性条件,对于一些极端风险和非线性风险等难以做出准确预测。
VAR模型及其在投资组合中地应用

二〇一五年七月VAR模型及其在投资组合中的应用内容提要20世纪90年代以来,随着金融衍生产品市场的迅猛发展,加剧了金融市场的波动,2008年的金融危机使得大量的金融机构和投资者破产,风险管理再一次成为金融活动的核心内容。
基于VaR的风险管理理论也在巴塞尔协议II的推广下开始广泛地被金融机构所运用,成为目前市场上主流的风险管理工具。
本文将VaR及其延伸概念边际VaR和成分VaR的风险管理理论运用到证券市场的投资组合风险调整过程中,选取能够覆盖多数行业的40只个股构成一个投资组合,运用蒙特卡洛法分别计算投资组合在95%的置信水平和持有期为1天的条件下组合的VaR,以此来分析投资组合的风险分布及单只个股的风险贡献度;同时将VaR 运用均值-VaR的组合优化理论确定投资组合的最小VaR投资组合,对比调整前后的损益走势图来说明VaR在投资组合风险调整优化过程中的有效性。
【关键词】投资组合风险管理 VaR 均值-VaR 组合优化理论一、序言(一)研究背景及意义20 世纪 90 年代以来,随着世界金融市场在业务范围和产品规模上的急剧扩张,使得世界各国经济体之间的一体化和联动性不断增强,近些年的金融危机在国家之间的传导也更为迅速,往往带来整个行业的衰退和大量金融机构的破产。
08 年的全球金融危机最初只是美国房地产市场上的次债危机,但由于涉及大量金融衍生产品如 CDO、MBO 和全球范围内的大量机构投资者,使得次债危机最终演变为全球范围内的金融危机,雷曼兄弟等众多金融机构破产倒闭,全球经济也迅速进入衰退周期。
因此可以总结出:世界经济一体化和联动性的增强在横向上扩大了金融风险影响的范围。
对此,以巴塞尔委员会为首的全球金融监管机构开始重新制定金融风险管理标准,风险管理再次成为金融活动的核心内容。
尤其对于证券公司、基金公司来说,他们持有的不再是单一的一种资产,而是众多资产组成的一揽子投资组合,如何运用一种有效的风险管理标准全面地衡量组合的风险,成为他们首要考虑的问题,VaR 正是在这种背景下产生并快速发展起来的。
VaR模型及其在证券投资管理中的应用

首先,VaR方法具备科学性和简便性。VaR计算方法是建立在数理统计和概率论基础之上,其摒弃了主观随意性,对金融机构面临的风险能够给出综合考量的建议,且在操作方法上提供了简便性;其次,VaR方法具有预先性。VaR计算防范可以在事前就对投资组合进行计算风险,通过VaR方法的应用,投资者可以动态的了解资产组合风险,进而进行增持或减持,是一种预先性的风险管理方法,能够提升资产收益和运营效益。
参考文献:
[1]陈之楚,王永霞.金融市场风险之测定工具—— VaR法的原理及应用[J].现代财经,2001,21(7):16- 20。VaR方法在本质上只能向我们展示特定分布当中和一定置信水平下的分位数,无法提供分为数左侧相应的分位数分布状况,因此无法充分考量“左尾损失”;其次,VaR方法存在模型风险。运用大量模型计算是VaR方法的核心所在,然而被使用的模型的参数、操作或者模型本身一旦出现错误,则会给VaR的计算带来巨大的误差,进而影响其金融风险的度量准确性。
3.3 VaR模型在基金投资业绩评价中的应用。
金融市场发展至今天,证券投资业绩评价的方法有很多种,如:夏普比率法、特雷诺指数法、詹森阿尔法α测度法等,但是VaR技术而得到的绩效评价方法RAROC是当前应用最科学、最有效的绩效评价方法,基于VaR的绩效评价方法RAROC能够克服之前诸多绩效评价方法的弊端,还能够拓展到证券投资管理中的更多方面。RAROC能够反映出优于市场基准组合的投资业绩,也能够反映出地域市场基准组合的投资业绩,这种方法的最大优势在于能够对投资组合的总体风险投资收益进行评价,还能够通过对公式变量的调整来对投资组合中的各个头寸或者各个交易员分别进行业绩评价。
三、VaR方法在证券投资管理中的应用。
3.1运用VaR模型进行风险控制和监测。
金融风险管理中的VaR模型及应用

金融风险管理中的VaR模型及应用随着金融市场的不断发展,金融风险管理变得越来越重要。
金融风险管理是指通过对风险的识别、量化和控制,以及对风险的管理和监测,使企业能够在风险控制的范围内保持稳健的发展。
VaR(Value at Risk)是一种量化风险的方法,随着其在金融中的广泛应用,VaR已经成为了金融风险管理的主要工具之一。
VaR是指在一定时间内,特定置信水平下,资产或投资组合可能面临的最大损失。
VaR模型是通过数学方法对投资组合的风险进行分析和量化,来计算投资组合在未来一段时间内的最大可能亏损。
VaR模型最初是由瑞士银行家约翰·布鲁纳尔在1994年提出的,该模型被广泛应用于银行、保险、证券等金融机构的风险管理中。
在VaR模型中,置信水平是非常重要的一个参数。
置信水平是指VaR计算时所选择的风险分布中,有多少的概率是不会超过VaR值的。
通常,置信水平选择95%或99%。
如果置信水平为95%,则意味着在未来一段时间内,该投资组合亏损超过VaR值的概率小于5%。
VaR模型的核心是风险分布。
常用的风险分布有正态分布、t分布和蒙特卡罗模拟法,其中,正态分布和t分布是最常用的风险分布。
在计算VaR时,需要对投资组合的风险分布进行估计,然后根据选择的置信水平来计算VaR值。
如果VaR值很大,则表明投资组合的风险很高,需要采取相应的风险控制措施。
VaR模型的应用范围非常广泛,它主要用于投资组合的风险管理。
在投资组合的构建中,VaR模型可以用来优化投资组合,使得风险最小化。
同时,在投资组合的风险管理中,VaR模型也可以用来进行风险监测和风险控制。
此外,VaR模型还可以用来进行波动率计算。
波动率是衡量金融市场风险的重要指标,其代表了价格或投资组合价值的波动程度。
在金融市场中,波动率越大,表明风险越高。
VaR模型可以通过对历史数据的分析,估计出资产或投资组合的波动率,以便更好地进行风险管理和预测。
虽然VaR模型已经被广泛应用于金融风险管理中,但是VaR模型也存在一些局限性。
投资组合的VaR风险价值分析

投资组合的VaR风险价值分析投资组合的VaR风险价值分析一、引言在投资领域中,风险是无法回避的,投资者必须面对自身资产的风险。
为了有效地管理风险,投资组合的VaR(Valueat Risk)风险价值分析成为一种常见的方法。
本文将探讨投资组合的VaR风险价值分析的原理、计算方法以及应用。
二、VaR风险价值的概念VaR是指在特定的置信水平下,投资组合的预期最大损失。
换言之,VaR是对投资组合在给定时间段内可能遭受的最大亏损的度量。
VaR通常以货币单位表示,在一定的置信水平下,投资者能够有多大的把握确保其投资组合不会超过一定的亏损额度。
例如,置信水平为95%的VaR为100万元,那么投资者有95%的把握确保其投资组合不会在特定时间段内亏损超过100万元。
三、VaR计算方法1. 历史模拟法历史模拟法是最常用的VaR计算方法之一,它基于历史数据对未来风险进行估计。
具体的计算步骤如下:(1)收集投资组合相关的历史数据,包括每日收益率或价格。
(2)对历史数据进行排序,按照从小到大的顺序排列。
(3)确定置信水平和时间段,例如95%置信水平的VaR计算。
(4)根据置信水平和时间段,选择对应的历史数据,确定VaR值。
2. 方差-协方差法方差-协方差法是另一种常用的VaR计算方法,它基于投资组合的协方差矩阵来估计风险。
具体的计算步骤如下:(1)确定投资组合的权重分配。
(2)计算投资组合的预期收益率和协方差矩阵。
(3)确定置信水平和时间段,例如95%置信水平的VaR计算。
(4)根据置信水平和时间段,利用投资组合的收益率和协方差矩阵计算VaR值。
3. 蒙特卡洛模拟法蒙特卡洛模拟法是一种基于随机模拟的VaR计算方法。
具体的计算步骤如下:(1)确定投资组合的权重分配。
(2)利用历史数据或概率分布函数生成随机数,模拟未来的收益率。
(3)根据模拟的收益率和权重分配计算投资组合的价值。
(4)根据模拟的价值排序,确定置信水平和时间段,计算VaR值。
金融风险管理中的VaR模型及其应用

金融风险管理中的VaR模型及其应用随着金融市场的不断发展,相对应的金融风险也越来越复杂和多样化。
如何有效的管理金融风险,成为了金融从业者面临的一个重要挑战。
为了解决这个问题,现代金融学中出现了大量风险管理工具和方法。
其中,VaR模型是最为广泛应用的一种方法。
本文主要探讨VaR模型的理论和应用,以及VaR方法存在的问题和不足。
一、VaR模型的理论及原理VaR是Value-at-Risk(风险价值)的缩写,是指在一定时间内,金融资产或投资组合可能面临的最大损失额。
VaR的计算基于统计学和概率论的方法,通过建立某一信赖度下的损失分布模型,来评估风险承受的能力和预算分配。
VaR模型一般可以分为历史模拟法、蒙特卡罗模拟法和参数法。
历史模拟法是通过分析历史数据,估计未来的风险情况。
蒙特卡罗模拟法则是对未来的随机走势进行模拟,计算出在不同情况下的风险承受能力。
而参数法则是利用历史数据和统计分析的方法,建立确定性模型,通过拟合数据和计算偏差来确定最终的VaR值。
二、VaR模型的应用VaR模型从早期在金融领域的应用,逐渐扩展至其他行业领域。
目前,VaR模型在证券、银行、保险、商品交易等金融市场中被广泛应用。
VaR模型的应用可以帮助金融机构更好的定量化风险,评估预算和风险承受能力,以便更好地进行风险管理和投资决策。
金融机构和投资者可以通过对VaR值的计算和应用,有效降低风险损失,增强风险管理和监控能力。
三、VaR模型的问题和不足尽管VaR模型已经成为金融风险管理的一个重要工具,但是该模型还存在一些问题和不足。
首先,VaR模型对强尾风险和极端事件的敏感度较低。
因为VaR是基于历史数据和概率论的方法,只能分析相对稳定的市场环境和正态分布的情况,不能充分考虑市场变异性和不确定性,对非线性风险和风险爆炸的情况表现较弱。
其次,VaR模型在计算时对模型的可靠性具有一定要求。
如果数据缺失或者偏差较大,模型的精度和有效性将大大降低。
金融风险管理中的VaR模型应用

金融风险管理中的VaR模型应用VaR模型(Value at Risk)是金融风险管理中一种常用的风险度量方法。
它通过对金融资产组合进行风险评估,帮助投资者和金融机构在风险控制和决策制定方面做出合理的选择。
本文将探讨VaR模型在金融风险管理中的应用,并分析其优缺点。
一、VaR模型的基本原理VaR模型是通过对金融资产组合进行统计分析,计算出在一定置信水平下的最大可能损失额。
具体来说,VaR模型将风险分析转化为一个统计问题,通过对历史数据或模拟模型进行分析,估计出资产组合的收益分布情况,并确定出在一定置信水平下,可能的最大损失额。
二、VaR模型的应用场景1. 投资组合管理:VaR模型可以帮助投资者对资产组合进行风险评估,从而制定出相应的风险控制策略。
通过计算VaR指标,投资者可以了解到在不同置信水平下可能的最大可能损失额,以便根据自身的风险承受能力和投资目标制定出合理的投资策略。
2. 风险控制:金融机构在日常运营中面临着各种风险,包括市场风险、信用风险等。
VaR模型可以帮助金融机构对这些风险进行量化和管理。
通过计算出资产组合的VaR值,金融机构可以设定相应的风险暴露限额,并及时采取相应的风险控制措施,以降低可能的损失。
三、VaR模型的优点1. 简单易懂:VaR模型的计算方法相对简单,基于历史数据或模拟模型进行分析,可以很好地反映金融资产的风险水平。
2. 强调风险集中度:VaR模型关注的是整个资产组合的风险水平,可以帮助投资者和金融机构更好地了解持仓的风险集中度,从而降低投资和运营中的潜在风险。
3. 可比较性:不同金融机构可以使用VaR模型对风险进行度量,从而实现不同机构之间的风险比较和风险管理。
四、VaR模型的局限性1. 假设缺陷:VaR模型在计算风险时通常基于历史数据或模拟模型,但这些方法都存在一定的假设,无法完全反映真实世界的复杂性。
例如,历史数据可能无法覆盖全面的市场情况,模拟模型可能无法准确预测未来的市场变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二〇一五年七月VAR模型及其在投资组合中的应用内容提要20世纪90年代以来,随着金融衍生产品市场的迅猛发展,加剧了金融市场的波动,2008年的金融危机使得大量的金融机构和投资者破产,风险管理再一次成为金融活动的核心内容。
基于VaR的风险管理理论也在巴塞尔协议II的推广下开始广泛地被金融机构所运用,成为目前市场上主流的风险管理工具。
本文将VaR及其延伸概念边际VaR和成分VaR的风险管理理论运用到证券市场的投资组合风险调整过程中,选取能够覆盖多数行业的40只个股构成一个投资组合,运用蒙特卡洛法分别计算投资组合在95%的置信水平和持有期为1天的条件下组合的VaR,以此来分析投资组合的风险分布及单只个股的风险贡献度;同时将VaR 运用均值-VaR的组合优化理论确定投资组合的最小VaR投资组合,对比调整前后的损益走势图来说明VaR在投资组合风险调整优化过程中的有效性。
【关键词】投资组合风险管理 VaR 均值-VaR 组合优化理论一、序言(一)研究背景及意义20 世纪90 年代以来,随着世界金融市场在业务范围和产品规模上的急剧扩张,使得世界各国经济体之间的一体化和联动性不断增强,近些年的金融危机在国家之间的传导也更为迅速,往往带来整个行业的衰退和大量金融机构的破产。
08 年的全球金融危机最初只是美国房地产市场上的次债危机,但由于涉及大量金融衍生产品如CDO、MBO 和全球范围内的大量机构投资者,使得次债危机最终演变为全球范围内的金融危机,雷曼兄弟等众多金融机构破产倒闭,全球经济也迅速进入衰退周期。
因此可以总结出:世界经济一体化和联动性的增强在横向上扩大了金融风险影响的范围。
对此,以巴塞尔委员会为首的全球金融监管机构开始重新制定金融风险管理标准,风险管理再次成为金融活动的核心内容。
尤其对于证券公司、基金公司来说,他们持有的不再是单一的一种资产,而是众多资产组成的一揽子投资组合,如何运用一种有效的风险管理标准全面地衡量组合的风险,成为他们首要考虑的问题,VaR 正是在这种背景下产生并快速发展起来的。
早期的VaR只是作为一种衡量风险的方式,便于向管理层和决策者汇报,是一种消极被动的运用;随后管理者发现可以运用VaR进行主动的风险调控和绩效评估,为优化资源配置提供依据,此时VaR已经演变成为一种主动的积极的管理策略。
目前,VaR作为风险管理领域的主流工具,广泛地被银行、保险公司、机构投资者、非金融机构及监管层机构所运用,应用的范围不仅限于单个的资产或者项目,还包括投资组合、衍生金融工具如理财产品定价、信用风险的度量等方面。
而我国的资本市场起步晚,但是在规模和数量上却发展迅速。
在全球经济联动性增强、我国资本市场开放程度不断加大的趋势下,投资者面临的风险将会更加复杂、国际化、多样化,这对投资者的管理能力和风险控制能力提出了更高的要求。
尤其是对于管理资金庞大的基金管理人来说,任何细微的失误都会造成重大的损失。
因此,VaR风险衡量法的推广在我国资本市场上具有很大的意义。
首先,对于证券市场上的投资者或是基金管理人来说,随着投资组合中的股票数量逐渐增多,投资者希望了解组合整体的风险水平,VaR作为风险控制依据,基金公司可以为每个交易员设定VaR数额限制,能够有效地约束交易员的过度投机行为,避免一些重大的损失。
同时,VaR 可以作为基金业绩评估标准,在投资活动中风险和收益呈正向关系,高收益往往伴随着高风险,因此目前基金业绩评估指标中不再简单地以收入高低来评价业绩,而是开始将风险因素考虑到绩效评估中,防止基金管理人过度追求高收益而忽略对风险的防范。
(二)文献综述1.VaR研究现状关于VaR的研究,最早由JP.Morgan 推出的VaR(Value-at-Risk)模型,之后发展成为“信用风险估价”(Credit Value at Risk)模型,主要是在正态分布的假定下用RiskMetrics 计算VaR。
随后其他学者将VaR的风险管理理论运用到投资组合、衍生金融工具如理财产品定价、信用风险的度量等各个方面,并在此基础上延伸出CVaR、MVaR 等概念。
Rachel Campbell 和Ronald Huisman、Kees Kodeijk 在2001 年通过实证研究用历史模拟法和VaR风险管理模型对资产组合进行选择,然后同基于收益率正态分布假设的均值—方差模型资产组合的结果进行对比,得出传统的均值—方差模型会低估风险资产组合所面临的市场风险的结论。
Giuseppe AlesiiT 在2005 年认为现金流的管理在实值期权的风险管理中具有重要地位,因此将VaR引入到现金流风险管理中,用马尔科夫链的蒙特卡洛模拟法对现金流的净现值建模,定义未来每一个时期的现金流CFs,从而对代表波动性的VaR进行估算,在此基础上考虑实值期权的最优决策问题,结论是基于净现值的VaR不仅能够保值,还可以降低操作风险。
Chonghui Jiang, Yongkai Ma, Yunbi An 在2013 年将VaR的风险管理思想运用到保险策略中,提出了基于VaR的保险组合策略(VBPI)。
结合中国保险市场的分析,假定风险资产符合几何布朗运动,通过把VBPI 策略和传统的买入持有策略(B&H)、固定投资比例CPPI 策略的对比,用组合收益率表现来说明VBPI 法的优越性。
结果显示在考虑交易成本的条件下CPPI 策略只能维持最低价值,而VBPI 能在很大程度上解释组合保护条约的内涵;同时两种策略都能够对冲风险下行带来的损失,保险价值和置信水平越高,则限制风险下行的效果越明显。
在国内,VaR 作为一种新的衡量风险的方法,主要运用在资本市场中。
彭寿康在2003 年利用上证 A 股指数、上证30 指数收益率,用VaR的历史模拟法对股价指数进行了考察,结果表明我国股价指数收益率存在明显的尖峰厚尾特征,用历史模拟法和Iosistic 分布模型比较适合度量股价指数的市场风险。
目前,基于VaR度量金融风险已成为国外大多数金融机构广泛采用的衡量金融风险大小的方法。
VaR 模型提供了衡量市场风险和信用风险的大小,不仅有利于金融机构进行风险管理,而且有助于监管部门有效监管。
2. 投资组合优化问题的研究现状投资组合优化理论最早源于马克维茨的组合选择理论,目的在于通过多样化的投资来分散风险。
目前学术界以均值-方差组合优化模型为基础,衍生出一系列组合优化模型,如考虑VaR、CVaR 等因素,在国际上的研究进展有:Gordon J. Alexandera, Alexandre M. Baptistab 在2002 年就将VaR运用到投资组合选择中,通过对均值-VaR 模型四个方面的研究来证明其优越性。
第一,对比了均值-方差模型和均值-VaR 模型的有效前沿的变化;第二,怎么将均值-V aR 与期望效用函数最大求解相结合;对比机构运用方差和VaR分别代替风险时的最优化结果,进行实际经济含义的验证。
Robert J. Elliott、Tak Kuen Siu 和Alex Badescu 在2010 年提出了一种基于马尔科夫链主导控制下的BS 经济考虑下的均值方差组合优化模型的解决方式。
他们认为主流的马克维茨的均值方差模型是基于均值和方差这两个静态变量的数学模型,只考虑了单一时期经济内的组合最优化,并且这种假设只有在收益率分布符合正态假定,同时经济体的效用函数是二次函数时才有效。
在基于马尔科夫链的模型中连续时间和马尔科夫链的假定暗含着经济体的不同状态,通过分离定理和随即最大化原则,可以放宽马尔科夫链的限制,为均值方差模型提供一种更直接详细的解。
投资组合优化理论在国内主要的运用是结合沪深股市的股票组合,对组合的风险进行衡量,以达到降低风险的目的;或是结合交易费用、卖空等因素下的最有投资策略解,国内主要的研究现状如下:王波、高岳林在2008 年将基于VaR的条件风险价值CVaR 运用到中国沪深两市的组合风险管理中,因为CVaR 可以度量置信水平下的平均损失,可以很好地处理厚尾问题。
在实证中选取沪深股市的16 只股票构成投资组合,考虑市场不允许卖空和整手买入的约束机制下建立CVaR 投资组合,运用差分进化法进行求解,通过计算不同收益阈值下的买入量、损失值、收益值、资金投入量等有效地验证了CVaR的有效性。
蒋翠侠、许启发、张世英在2013 年提出由于金融资产收益多数具有的非正态性和厚尾分布,同时消费者的效用函数可能是二阶以上函数时,需要考虑更高阶矩的时变特性,为此建立基于多目标优化技术和效用理论的高阶距动态投资模型。
实证中通过对全球几个主要股票市场的研究发现:金融市场收益率存在高阶矩、并且具有时变性,对组合投资决策有显著的影响。
二、VaR理论概述风险管理的首要任务是选定合适的风险度量方法。
市场上的风险度量方法很多,主要有资产收益率的标准差σ法、β系数、判定系数R、及在险价值VaR法。
而VaR凭借其独特优势成为国际上风险管理的主流方法,下面我们将详细介绍VaR的理论及其优越性。
(一)VaR的定义VaR(Value at Risk)即在险价值,衡量投资者对某项金融资产在Δt的持有期内,给定置信水平c的条件下,投资组合P的最大损失值是多少,用公式表示为:prob p VaR c∆≥-=-()1其中,ΔP=P−P为在时间内的损益函数;P0为期初价值;Pt为期末价值。
VaR的定义中首要涉及持有期和置信水平的设定。
常用的置信水平是99%、95%、90%,风险管理部门会根据自己的风险偏好来选择置信水平。
比如社保基金、养老基金等机构对风险比较敏感,就会要求相对较高的置信水平,而如股票型基金等追求高风险高收益的机构,则会选择相对低一点的置信水平。
持有期一般与投资组合波动率的大小呈正比,持有期越长,波动率越大。
期货市场及衍生品市场对风险波动比较敏感,适合以每日为周期计算VaR,其他一些期限较长的头寸如养老基金等可以每周作为计算周期。
(二)VaR的计算原理假定投资组合的期初价值为P0,在Δt的投资期限内收益率为R,则期末价值为P=P0(1+R)。
在置信度为c的条件下,投资组合的最低价值P*=P0(1+R*),R*假定为持有期内的最低收益率。
此时,可以算出投资组合最低价值状态下相对于其均值的风险差值,即为相对VaR ,公示表示为:**0()()r VaR E p p p R =-=--μ也可以计算出最低价值相对于期初状态时的风险差值,即为绝对VaR ,用公式表示为:**00a VaR p p p R =-=-由定义可以看出,求解VaR 的实质就是求解一段时期内在一定的置信水平下,投资组合的最低收益值P* 或者最低收益率 R *。
假定投资组合的年收益率 是随机变量,服从均值为μ 和波动率为σ 的分布。