期权定价
期权的定价

期权的定价期权定价是金融学中重要的一部分,它可以帮助投资者确定期权的合理价值,并基于此做出相应的投资决策。
期权定价模型主要有两种,即BSM模型(Black-Scholes-Merton 模型)和二叉树模型。
BSM模型是最早也是最经典的期权定价模型之一。
该模型是由Fisher Black、Myron Scholes 和 Robert C. Merton于1973年提出的。
该模型的核心思想是建立一个无风险投资组合,其和期权组合有相同的收益率。
通过对组合进行数学推导,可以得到期权价格的解析公式。
BSM模型的前提假设包括:市场不存在摩擦成本、资产价格符合几何布朗运动、市场无风险利率恒定、无红利支付、市场不存在套利机会等。
有了这些假设,可以通过标的资产价格、行权价格、剩余期限、无风险利率、标的资产波动率和期权类型等因素来计算期权的市场价值。
与BSM模型不同,二叉树模型采用离散化的方法进行期权定价。
该模型将剩余期限分为若干个时间步长,并在每个时间步长内考虑标的资产价格的上涨和下跌情况。
通过逐步计算,可以得到期权价格的近似值。
二叉树模型的优点在于它可以应用于各种类型的期权,并且容易理解和计算。
无论是BSM模型还是二叉树模型,期权定价都是基于一定的假设和参数。
其中,最关键的参数是标的资产的波动率。
波动率代表了市场对标的资产未来价格变动的预期。
根据波动率的不同,期权的价格也会有所变化。
其他参数如标的资产价格、行权价格、剩余期限和无风险利率等也会对期权定价产生影响。
需要注意的是,期权定价模型只是对期权价格的估计,并不保证期权的实际市场价格与估计值完全相同。
实际市场存在许多因素都会导致期权价格的变动,例如市场情绪、供需关系、经济指标等。
因此,在进行期权交易时,投资者需要结合市场情况和自身风险偏好做出相应的决策。
总之,期权定价是金融学中的重要内容,通过定价模型可以帮助投资者确定期权的合理价格。
BSM模型和二叉树模型是常用的定价方法,但投资者需要注意,这些模型只是对期权价格的估计,实际市场价格可能有所变动。
金融工程中的期权定价模型

金融工程中的期权定价模型一、期权定义期权是金融工具中的一种,是指在未来某个时间,按照约定的价格、数量和期限,有权买入或者卖出某种标的资产的一种金融合约。
通过买入期权,持有人可以在未来某个时间以约定的价格买进标的资产;通过卖出期权,交易人可以获得期权费用,承担未来某个时间按照约定价格进行买卖的义务。
期权的本质是对未来的权利,是一种寄予了未来的期望和信心。
二、期权定价方法期权定价是指通过计算期权价格,来实现期权交易的方法或模型。
期权定价的理论基础主要包括两个主流模型:布莱克-斯科尔斯模型和考克斯-鲁宾斯坦模型。
下面我们分别来介绍一下这两种期权定价模型。
1. 布莱克-斯科尔斯模型布莱克-斯科尔斯模型,是由弗兰克-布莱克和梅伦-斯科尔斯在1973年提出的一种期权定价模型。
这个模型的核心思想是将期权看作是一种债券和股票组成的投资组合,通过对这个投资组合的定价,来推导出期权的价格。
布莱克-斯科尔斯模型的核心公式如下:C = SN(d1) - Xe^(-rt)N(d2)P = Xe^(-rt)N(-d2) - SN(-d1)其中,C表示看涨期权的价格,P表示看跌期权的价格;S表示标的资产的价格,X表示行权价格;N()表示标准正态分布函数的值,其中d1和d2分别表示如下:d1 = [ln(S/X) + (r + σ^2/2)t] / σ√td2 = d1 - σ√t这个模型中,需要考虑的参数有标的资产的价格S、行权价格X、波动率σ、存续期t、无风险利率r。
其中,波动率是最重要的参数,它的大小决定了标的资产的风险水平,因此,布莱克-斯科尔斯模型中的波动率是需要通过历史数据或者其他方法进行计算和估算的。
2. 考克斯-鲁宾斯坦模型考克斯-鲁宾斯坦模型,是由约翰-考克斯和斯蒂芬-鲁宾斯坦在1979年提出的一种期权定价模型。
这个模型的最大特点是引入了离散时间的概念,将连续时间的布莱克-斯科尔斯模型离散化,以适应实际的市场需求。
期权定价的三种方法

期权定价的三种方法期权是一种权利,持有者有权买卖证券或商品的特定数量。
期权的定价对投资者来说至关重要,因为它决定了期权的价值。
为了定价期权,投资者需要先了解市场和期权的各种因素,然后选择一种有效的定价方法。
本文将介绍期权定价的三种方法,分别是Black-Scholes 模型、蒙特卡罗模拟法和实际条件定价法。
Black-Scholes模型是一种简单而有效的期权定价模型,由美国经济学家贝克-施罗斯和美国数学家史蒂文-黑格森于1973年提出。
Black-Scholes模型假设期权价格受到无风险利率、资产价格、波动率和时间等因素的影响,通过分析复杂的概率函数实现定价。
Black-Scholes模型以期权价值收益率为基准,以确定期权价格是否有利于投资者。
另一种期权定价方法是蒙特卡罗模拟法,它能够模拟出异常动态市场中期权价格的情况。
蒙特卡罗模拟法可以预测风险事件如何影响期权价格,并计算不同投资决策下期权价格的变化。
它根据投资者的投资组合来确定抗风险性,以提供可靠的期权定价评估结果。
最后一种期权定价方法是实际条件定价法,它是基于真实的市场数据定价的。
实际条件定价法主要考虑的因素包括期权的行使价格、期权期限、可买入或卖出的股票价格等。
它可以考虑期权的复杂性,从而帮助投资者做出更精确的定价决策。
总之,期权定价方法有Black-Scholes模型、蒙特卡罗模拟法和实际条件定价法。
期权投资者可以根据他们对期权的理解以及对市场变化的看法,来灵活使用这些方法,以进行有效的期权定价。
期权定价是一个有挑战性的过程,但是把握住期权定价的技巧可以帮助投资者实现更好的投资回报。
许多期权定价模型都是针对特定市场环境的,所以投资者在使用期权定价方法时,需要充分考虑当前市场环境中的多种因素,以确保最优的定价结果。
此外,投资者也需要定期更新期权定价模型,以便于更好地捕捉新的变化并且按照新的变化作出有效的期权定价决定。
第十二章 期权定价理论 《金融工程学》PPT课件

➢ 由于方程中不存在风险偏好,那么风险将不会对其解产生影响,因此 在对期权进行定价时,可以使用任何一种风险偏好,甚至可以提出一 个非常简单的假设:所有投资者都是风险中性的
12.2布莱克—斯科尔斯(B-S)模型
(6)Black-Scholes期权定价公式 Black-Scholes微分方程,对于不同的标的变量 S 的不同衍生证券,会 有许多解,解这个方程时得到的特定衍生证券的定价公式 f 取决于使用 的边界条件,对于股票的欧式看涨期权,关键的边界条件为: f=Max(ST-K,0) (12—28) 由风险中性可知,欧式看涨期权的价格C是期望值的无风险利率贴现的
第12章 期权定价理论
12.1 期权价格概述
➢ 12.1.1期权定价概述
➢ 在所有的金融工程工具中,期权是一种非常独特的工具。因为期 权给予买方一种权利,使买方既可以避免不利风险又可以保留有 利风险,所以期权是防范金融风险的最理想工具。但要获得期权 这种有利无弊的工具,就必须支付一定的费用,即期权价格
一定的假设条件下得到的,这些条件包括:股票价格满足布朗运动;
股票的收益率服从正态分布;期权的有效期内不付红利。该公式的不
足之处是它允许有负的股票价格和期权价格,这显然和实际是不相符
合的,而且该公式没有考虑货币的时间价值。由于其理论的不完备,
计算结果的不准确,再加上当时市场的不发达,因此该定价公式在当
N(d)=
1
d
e
x2
2
dx
2
(12—3)
这些公式都应有以下假设: (1)没有交易费。 (2)可以按无风险利率借入或贷出资金
12.2布莱克—斯科尔斯(B-S)模型
➢ 对期权的定价理论进行开创性研究的学者是法国的Bachelier。1900
期权定价期权定价公式

期权定价—期权定价公式什么是期权定价?期权定价是指确定期权在市场上的合理价格的过程。
期权是一种金融工具,它授予买方在未来某一特定时间点购买或出售标的资产的权利,而不是义务。
期权的价格取决于多种因素,包括标的资产价格、行使价格、到期时间、无风险利率和波动率等。
期权定价的目标是确定一个公平的市场价格,使得买卖双方在交易中均获得合理回报。
对于买方来说,期权的价格应该对应于未来可能获得的收益;对于卖方来说,期权的价格应该对应于承担的风险以及可能获得的收益。
期权定价公式的重要性期权定价公式是用于计算期权合理价格的数学模型。
它基于一些假设和前提条件,通过对相关变量进行运算,得出期权的价格。
期权定价公式对于市场参与者来说具有重要意义,它为投资者提供了一个参考,可以帮助他们做出更明智的投资决策。
期权定价公式的提出可以追溯到20世纪70年代初,当时经济学家Fischer Black 和 Myron Scholes 提出了著名的Black-Scholes模型。
该模型基于一些假设,包括期权在到期前不支付股息、标的资产价格在特定时间内的变动是连续且满足几何布朗运动以及市场不存在无风险套利机会等。
Black-Scholes模型是第一个用于计算期权价格的理论模型,它提供了一个简单而有效的方法来评估期权的价格。
在此之后,许多其他的期权定价模型相继被提出,如Binomial模型、Trinomial模型、Monte Carlo模拟和Heston模型等。
这些模型都是基于不同的假设和计算方法,用于满足不同的情景和需求。
期权定价公式的基本要素期权定价公式通常包括以下几个基本要素:1.标的资产价格(S):标的资产是期权所关联的基础资产,它可以是股票、商品、外汇等。
标的资产价格是期权定价的一个重要变量,它代表了期权的内在价值。
2.行使价格(X):行使价格是期权合约约定的价格,买方可以在到期时基于该价格购买或者出售标的资产。
行使价格与标的资产价格之间的差异会影响期权的价值。
期权的定价及策略

期权的定价及策略期权是一种金融工具,给予持有者在未来一段时间内以事先协定的价格买入或卖出标的资产的权利,而非义务。
期权的定价和策略是投资者在使用期权时需要考虑的重要因素。
下面将详细探讨期权的定价和策略。
一、期权的定价1.标的资产的价格:标的资产的价格是期权定价的主要因素之一、购买期权的投资者希望未来标的资产价格上涨,而卖出期权的投资者则希望标的资产价格下跌。
2.行权价格:期权价格中的行权价格也是影响期权定价的重要因素之一、购买看涨期权的投资者希望标的资产价格上涨超过行权价格,而购买看跌期权的投资者希望标的资产价格下跌低于行权价格。
3.波动率:波动率是期权定价中的重要因素之一、较高的波动率意味着标的资产价格可能会有更大的波动,从而增加了购买期权的投资者获利的机会,因此较高的波动率会导致期权价格上涨。
4.无风险利率:无风险利率也是影响期权定价的重要因素之一、越高的无风险利率意味着购买期权的成本更高,因此会导致期权价格的上涨。
5.行权时间:期权价格还受到行权时间的影响。
行权期限越长,购买期权的成本也越高,因此期权价格会随着行权时间的延长而上涨。
二、期权的策略根据期权在买入或卖出时的不同操作方式,期权的策略可以分为多种类型,常见的期权策略包括:1.买入看涨期权:当投资者预期标的资产价格将上涨时,可以购买看涨期权。
这种策略可以使投资者在未来以较低的价格买入标的资产,并在标的资产价格上涨时获得差价收益。
2.买入看跌期权:当投资者预期标的资产价格将下跌时,可以购买看跌期权。
这种策略可以使投资者在未来以较低的价格卖出标的资产,并在标的资产价格下跌时获得差价收益。
3.卖出看涨期权:当投资者预期标的资产价格将保持稳定或下跌时,可以卖出看涨期权。
这种策略可以使投资者通过卖出期权的权利金获得收益,同时如果标的资产价格保持不变或下跌,投资者还可以保留权利金作为收益。
4.卖出看跌期权:当投资者预期标的资产价格将保持稳定或上涨时,可以卖出看跌期权。
期权定价

第三节期权定价期权定价:如果某一期权合约在未来某个日子到期,那么,什么是该期权合约在今天的公平(真实)价值?权利金的价值应该是多少?二项式定价模型、风险中性概率、布莱克-斯科尔斯定价模型(一)二项式定价模型(BOPM)1.单期两状态期权定价假定在期权到期时股票价格只有两种可能:股票价格或者涨到给定的较高水平,或者降到给定的较低的价格。
举例:考虑经过1期后到期的欧式看涨期权,期权的执行价格为50元。
假设今天的股票价格为50元。
假设标的股票不支付股利(除非明确说明)。
在1期后,股价有可能上升10元或者下降10元。
单期无风险利率为6%。
将这些信息汇总,由如下的二叉树来表示。
二叉树为具有两个分支的时间线,每个时点代表着那段时间内可能发生的事件:01股票债券看涨期权股票债券∆表示购买的股票数量,B表示对债券的初令始投资。
∆+=B60 1.0610∆+=40 1.060B求解关于∆和B的联立方程,方程的解为:∆= 0.5,B = -18.8679。
看涨期权的价格必定等于复制组合的当前市场价值。
复制组合的当前价值等于:50500.518.87 6.13B ∆+=⨯-= 元看涨期权的当前价格为6.13元。
既然已经清楚了期权定价的基本理念,将上述定价过程一般化股票期权确定股票的数量∆和债券的头寸B ,以便使得复制组合的支付在股价上涨或下跌时,与期权的支付相匹配:(1)u f u S r B C ∆++=(1)d f d S r B C ∆++= (7.3.11式) 求解∆和B ,得到二项式模型中的复制组合:u d u d C C S S -∆=-1d d f C S B r -∆=+ (7.3.12式) 期权在今天的价值C 就等于复制组合的成本: C S B =∆+ (7.3.13式) 上式相对简单,它不要求待估价的期权必须为看涨期权,也可应用它来为未来支付取决于股价的任何证券进行估值。
[例7-14] 假设某股票的现行市价为60元,经过1期后,股价将上涨20%或下跌10%。
期权定价公式

期权定价公式期权定价公式是:期权价格=内在价值+时间价值。
期权定价模型,由布莱克与斯科尔斯在20世纪70年代提出。
该模型认为,只有股价的当前值与未来的预测有关;变量过去的历史与演变方式与未来的预测不相关。
模型表明,期权价格的决定非常复杂,合约期限、股票现价、无风险资产的利率水平以及交割价格等都会影响期权价格。
期权是购买方支付一定的期权费后所获得的在将来允许的时间买或卖一定数量的基础商品的选择权。
期权价格是期权合约中唯一随市场供求变化而改变的变量,其高低直接影响到买卖双方的盈亏状况,是期权交易的核心问题。
在国际衍生金融市场的形成发展过程中,期权的合理定价是困扰投资者的一大难题。
随着计算机、先进通讯技术的应用,复杂期权定价公式的运用成为可能。
简单期权定价模型。
我们把股价随机末态简化为两个等效的等概率量子态,要么50%的概率上涨到+1X的右边一个标准差处,要么50%的概率下跌到-1X的左边一个标准差处。
显然,对于认购期权,在-1X末态的行权收益是0;在+1X末态的行权收益是S*(1+σ)-K。
其中S是当前(初态)股价,K是到期日的行权价。
根据初态=末态期望值的原理,认购期权价格C=0.5*0+0.5*[S*(1+σ)-K]= 0.5*[S*(1+σ)-K]。
这对于平值和浅度虚值期权是适用的。
对于平值期权K=S,C=0.5*S*σ。
比如,当前股价S=3.3元,月波动率为σ=6%,那么行权价K=3.3元,剩余T=30天期限的平值认购期权价格就是,C=0.5*3.3*6%=0.0990元。
对于深度实值期权,当股价末态为-1X处,仍然会有行权收益。
所以,认购期权价格C=0.5*[S*(1-σ)-K]+0.5*[S*(1+σ)-K]=S-K。
比方说,对于深度实值期权实三K=3.0元,当股价从当前价S=3.3元下跌至末态(-1X处)ST=3.1元,仍然会有3.1-3.0=0.1元的行权收益。
所以,实三期权价格C=S-K=3.3-3.0=0.3元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章期权定价自从期权交易产生以来,尤其是股票期权交易产生以来,学者们一直致力于对期权定价问题的探讨。
1973年,美国芝加哥大学教授F. Black和M. Scholes 发表《期权定价与公司负债》一文,提出了著名的Black-Scholes期权定价模型,在学术界和实务界引起强烈的反响,Scholes并由此获得1997年的诺贝尔经济学奖。
在他们之后,其他各种期权定价模型也纷纷被提出,其中最著名的是1979年由J. Cox、S. Ross和M. Rubinstein三人提出的二叉树模型。
在本章中,我们将介绍以上这两个期权定价模型,并对其进行相应的分析和探讨。
第一节二叉树与风险中性定价对期权定价的研究而言,Black-Scholes模型的提出是具有开创性意义的。
然而,由于该模型涉及到比较复杂的数学问题,对大多数人而言较难理解和操作。
1979年,J. Cox、S. Ross和M. Rubinstein三人发表《期权定价:一种被简化的方法》一文,用一种比较浅显的方法导出了期权定价模型,这一模型被称为“二叉树定价模型(the Binomial Model)”,是期权数值定价方法的一种。
二叉树模型的优点在于其比较简单直观,不需要太多的数学知识就可以加以应用。
同时,它应用相当广泛,目前已经成为金融界最基本的期权定价方法之一。
1.1 二叉树模型概述二叉树(binomial tree)是指用来描述在期权存续期内股票价格变动的可能路径。
二叉树定价模型假定股票价格服从随机漫步,股票价格的波动只有向上和向下两个方向,且在树形的每一步,股票价格向上或者向下波动的概率和幅度保持不变。
根据第一章我们学到的知识,不难得出:3个月后,如果股票上涨至12元,则该股票期权的价格应为1元,如果股票下跌至8元,则该股票期权的价格应为0元。
这些可以通过下图的二叉树来表示。
股票价格=12元期权价格=1元股票价格=10元期权价格=?股票价格=8元期权价格=0元图2-1现在我们来考虑建立一个无风险投资组合,这个投资组合由两部分组成:买入∆只该股票,同时卖出一份以该股票为标的的看涨期权,即同时持有∆只股票的多头头寸和一份看涨期权的空头头寸。
我们假设市场上不存在套利机会,因此我们总能找到一个∆,使得该投资组合是无风险组合。
我们接下来计算出使得该组合无风险的∆。
当股票价格由10元上涨为12元时,组合中股票头寸的价值为12∆,期权头寸的价值为-1元(我们持有的是空头头寸),该组合的整体价值则为12∆-1;当股票价格由10元下跌至8元时,组合中股票头寸的价值为8∆,期权头寸的价值为0,该组合的整体价值为8∆。
只有当该投资组合在上述两种情况下的终端价值相等时,该组合才是无风险组合。
即:12∆-1=8∆∆=0.25因此,该无风险投资组合是由0.25只股票的多头持仓和1份看涨期权的空头持仓所构成。
注意,在此我们假定了股票是无限可分割的,并且不存在佣金等交易税费。
无套利均衡定价是金融工程学中对金融工具进行定价的基本思路。
其基本做法是,构建两个资产组合,若令其终值(期末的价值)相等,则其现值(当前的价值)也一定相等;否则就将产生套利机会,即我们可以卖出现值较高的资产组合,买入现值较低的资产组合,并持有到期,套利者就可以获取无风险收益。
在上例中,如果股票价格上涨为12元,该组合价值为12×0.25-1=2 元如果股票价格下跌至8元,则该组合的价值为8×0.25=2 元由于该投资组合是无风险的,因此其收益率一定等于无风险收益率。
假设当前无风险收益率为4%,那么该组合的现值应为终值2元的贴现值;在此我们使用连续复利进行计算,即该组合的现值为4%3/122e-⨯=1.98 元假定期权当前的价格为f,已知股票当前价格为10元,那么该交易组合的现值为10×0.25-f=2.5-f=1.98元f=0.52 元因此,本例中看涨期权当前的价格应为0.52元。
1.2 推广——单步二叉树期权定价接下来,我们将上面例子得到的结论进行推广。
假定股票的当前价格为0S ,看涨期权当前的价格为f ,该期权的有效期为T ;在这段时间内,股票价格或者会从0S 上涨至0u S ,或者会从0S 下跌至0d S ,其中u>1,0<d<1;相对应地,期权价格为u f 或者d f 。
因此,若股票价格上涨,其涨幅为u-1;若股票价格下跌,其跌幅为1-d 。
如图2-2所示:图2-2与上面的例子相同,我们考虑构建一个由∆只股票的多头持仓和一份期权的空头持仓多组成的无风险投资组合。
若股票价格上涨,在期权到期时该组合的价值为u 0-uS f ∆若股票价格下跌,在期权到期时该组合的价值为d 0-dS f ∆令以上两式相等,即u 0-uS f ∆=d 0-dS f ∆可以求出f 0S uf 0uSd f 0dS00du dS -uS -f f =∆ (式2-1) 由于投资组合是无风险的,其收益率必须等于无风险利率。
假定无风险利率为r ,那么该投资组合的贴现值为rT u e f uS --∆)(0而该组合的当前价值为f -S 0∆因此有f -S 0∆=rT u e f uS --∆)(0将式2-1中的∆带入并化简,即可求得期权的价格[]rT d u e f p pf f --+=)1( (式2-2) 其中d -u de p rT -=- (式2-3) 综上所述,当股票价格的变动路径可由一步二叉树给出时,我们可以用式2-2及式2-3对期权进行定价。
当然,用二叉树方法对期权进行定价是建立在一些基本假设上的,如不存在套利机会、不存在交易税费、股票是无限可分割的等。
1.3 风险中性定价现在我们将式2-2中的p 定义为股票价格上涨的概率,看看会得到什么意想不到的收获。
既然p 为股票价格上涨的概率,相应地,1-p 也就是股票价格下跌的概率;而(1)u d pf p f +-则为期权价格的数学期望,这样式2-2表达的意思就是:期权的价格等于其期望的贴现。
我们知道,T 时刻股票价格的期望为()00)1(dS p puS S E T -+=将式2-3中的p 代入后可得()rT T e S S E 0= (式2-4) 上式说明:股票价格是按无风险利率增长。
这就是说,股票价格上涨的概率为p 的假设等价于股票的收益率为无风险利率。
在这里我们引入风险中性定价(risk-neutral valuation )的概念。
在一个风险中性世界(risk-neutral world )中,投资者对风险都秉持中性的态度,也就是说投资者对风险不要求任何形式的补偿,因而在这样的世界里,所有证券的期望收益率均等于无风险利率。
因此,式2-4同时说明:股票价格上涨的概率为p 的假设等价于世界为风险中性世界的假设,P 也被称为风险中性概率。
式2-2说明:在风险中性世界里,期权的价格等于其数学期望按无风险利率进行贴现所得数值。
这就是风险中性定价原理在期权定价领域的重要应用。
用上述思想来对资产进行定价就叫做风险中性定价。
首先,我们定义p 为风险中性概率。
由于在风险中性世界里,股票的期望收益率等于无风险利率,这就意味着p 必须要满足12/3%410)-8(112⨯=+e p p计算可得p=0.525,1-p=0.475。
因而,3个月后,看涨期权价格为1的概率为0.525,价格为0的概率为0.475,期权价格的数学期望为0.525×1+0.475×0=0.525在风险中性世界中,期权的当前价格应等于其期望值以无风险利率进行贴现,因此期权的当前价格为4%3/120.525e-⨯,即0.52元。
这与前面的计算结果相同,说明用无套利均衡定价方法与风险中性定价方法计算所得到的结果是一致的。
事实上,我们可以证明,在对期权进行定价时可以放心地假设世界是风险中性的,由此得到的结果不仅在风险中性世界里是正确的,在现实世界也是成立的。
利用风险中性定价原理可以大大简化问题的分析。
因为在风险中性世界里,所有资产都要求同的收益率,即无风险利率;而且所有资产的定价都可以运用风险中性概率计算出未来收益的预期值,再以无风险利率贴现得到。
最后再将所得到结果放回到现实世界中,就获得了有实际意义的结果。
利用风险中性定价方法对金融资产进行定价,其核心环节是构造出风险中性概率。
第二节两步二叉树期权定价模型我们可以将以上单步二叉树的分析推广到如图2-3所示的两步二叉树情形。
图2-3在此,我们反复使用风险中性定价方法来对这个期权进行定价。
在下图中的各个节点,上面的数字代表股票价格,下面的数字代表期权价格。
10 0.9191280 14.4 3.4 9.6 0 6.40 A 1012814.49.66.4图2-4中最右边节点上的期权价格不难求出:在节点D ,股票的价格为()210?1+20%=14.4,期权价格则为14.4-11=3.4;在节点E 和F ,期权价格显然为0。
由于节点C 的价值来自于节点E 和F ,因此在节点C 上期权的价格为也0。
为求节点B 上的期权价格,我们将u=1.2,d=0.8,r=4%,和T=0.25代入式2-2,因此节点B 上的期权价格为768.104750.4.3525.012/3%4-=⨯+⨯⨯)(e 我们的目的是要计算出节点A 上的期权价格。
我们现已知期权在节点B 上的价格为1.768,在节点C 上的价格为0,代入式2-2便可算出期权的初始价格为199.004750.687.1525.012/3%4-=⨯+⨯⨯)(e假定无风险利率为r ,股票的初始价格为0S ,二叉树的步长为T ,看涨期权的初始价格为f ,该期权的有效期为2T ;在二叉树的每一步,股票价格或者上涨至初始价格的u 倍,或者下跌至初始价格的d 倍,其中u>1,0<d<1。
根据上面的分析过程,我们很容易得出两步二叉树期权定价模型的一般公式,如图2-5所示:f 0S ufuS d f dS uu f 02S u ud f 0udS dd f 02S d A通过反复应用式2-2,我们不难得出:[]rTud uu u e f p pf f --+=)1( (式2-5) []rTdd ud d e f p pf f --+=)1( (式2-6) []rT d u e f p pf f --+=)1( (式2-7) 将式2-5、式2-6代入式2-7,我们得到:[]rT dd ud uu e f p f p p f p f 222)1()1(2--+-+= (式2-8) 式2-8完全可以用中性定价理论进行解释。
式中2p 、2(1)p p -、2(1)p -分别对应于股票价格取上、中、下三个节点上值的概率,期权价格仍然等于其在风险中性世界里的期望收益以无风险利率进行贴现所得数值。