单级低频电压放大电路(基础)实验报告模板
低频放大电路实验报告

低频放大电路实验报告
实验名称:低频放大电路实验
实验目的:
1. 理解低频放大电路的工作原理;
2. 掌握低频放大电路的电路构成;
3. 掌握低频放大电路的实验方法。
实验原理:
低频放大电路是指通频带范围在几十Hz到几千Hz之间,使用交流电源作为工作电源的放大电路。
实验中我们使用了基本的压接放大电路。
实验设备:
1. 三极管放大电路实验箱;
2. 万用表;
3. 示波器;
4. 变压器;
5. 电容,电阻等元器件。
实验步骤:
1. 按照实验原理连接电路,将三极管、电容、电阻等元器件依次连接。
2. 接通电源,调节可变电阻和三极管盖片电位,调整电路工作点,使其稳定。
3. 测量输出电压和输入电压,计算电路的放大倍数。
4. 改变输入信号频率,观察输出电压变化情况。
5. 调整各元器件的参数,观察输出波形和幅度的变化。
实验结果:
按照实验步骤进行实验,我们得到了输出电压和输入电压随频率变化的曲线,并计算出了电路的放大倍数,在实验中成功掌握了低频放大电路的基础原理和实验方法。
实验结论:
通过实验我们发现,随着输入信号频率的升高,电路的放大倍数也逐渐降低,因此低频放大电路常常被用于放大低频信号。
我们还发现,通过调整电路中的元器件参数,可以有效地改变电路的放大倍数和输出波形,这对于电路的应用和调试都非常重要。
总之,低频放大电路是电子电路中非常基础和常见的电路,它的实验对于电路和信号处理的理解和应用都有非常重要的意义。
单级放大电路实验报告

单级放大电路实验报告摘要:本实验通过搭建单级放大电路并进行测量,探讨了放大电路的工作原理、电压放大倍数、输入和输出阻抗等参数的影响。
实验结果表明,单级放大电路在合适的设计和调试下能够实现电压信号的有效放大,但也存在一定的局限性。
引言:放大电路是电子技术中的重要组成部分,能够将弱小的电信号放大为更大的信号,以便后续电路进行处理或驱动。
本实验中,我们研究的是单级放大电路,它是放大电路中最基本的一种,并且具有较为简单的电路结构。
材料与方法:实验所需材料如下:1.1个NPN型晶体管2.2个电阻(分别为R1和R2)3.1个直流电源4.1个信号发生器实验步骤如下:1.按照电路图搭建单级放大电路。
2.调节电阻R1和R2的值,使其满足所需的放大倍数。
3.将信号发生器的输出接入放大电路的输入端。
4.通过示波器观察输出信号,并记录相关数据。
结果与讨论:在本实验中,我们设置放大倍数为20,即输出信号的幅度是输入信号的20倍。
调节电路中的电阻值后,我们成功地获得了期望的输出信号。
我们进一步探讨了输入和输出阻抗对于放大电路性能的影响。
实验结果表明,输入阻抗较大时,放大电路能够更好地接受输入信号,减小了信号源与放大电路之间的负载效应。
而当输出阻抗较小时,放大电路能够更好地推动负载电路,使得输出信号更加稳定。
同时,我们还研究了电压放大倍数与电压源频率的关系。
实验结果显示,当电压源频率较低时,放大倍数较高;而当电压源频率超过一定值后,放大倍数会逐渐减小。
这是因为晶体管的内部电容、电感等因素导致了对高频信号的损耗。
结论:本实验通过搭建单级放大电路并测量,探讨了放大电路的工作原理、电压放大倍数、输入和输出阻抗等参数的影响。
实验结果表明,在合适的设计和调试下,单级放大电路能够实现电压信号的有效放大。
其中,输入和输出阻抗的选择对于放大电路的性能有着重要影响。
此外,电压放大倍数与电压源频率之间存在一定的关联关系,需要根据实际情况进行设计和选择。
单级低频电压放大电路(基础)实验报告模板

东南大学电工电子实验中心实验报告课程名称:第次实验实验名称:院(系):专业:姓名:学号:实验室: 实验组别:同组人员:实验时间:年月日评定成绩:审阅教师:实验三单级低频电压放大电路(基础)一、实验目的1、掌握单级放大电路的工程估算、安装和调试;2、了解三极管各项基本器件参数、工作点、偏置电路、输入阻抗、输出阻抗、增益、幅频特性等的基本概念以及测量方法;3、掌握基本的模拟电路的故障检查和排除方法,深化示波器、稳压电源、交流电压表、函数发生器的使用技能训练。
二、实验原理三、预习思考1、器件资料:上网查询本实验所用的三极管9013的数据手册,画出三极管封装示意图,标出每个管脚的名称,将相关参数值填入下表:2教材图1-3中偏置电路的名称是什么,简单解释是如何自动调节BJT的电流I C以实现稳定直流工作点的作用的,如果R1、R2取得过大能否再起到稳定直流工作点的作用,为什么?答:3、电压增益:(I)对于一个低频放大器,一般希望电压增益足够大,根据您所学的理论知识,分析有哪些方法可以提高电压增益,分析这些方法各自优缺点,总结出最佳实现方案。
答:(II)实验中测量电压增益的时候用到交流毫伏表,试问如果用万用表或示波器可不可以,有什么缺点。
答:4、输入阻抗:(I)放大器的输入电阻R i反映了放大器本身消耗输人信号源功率的大小,设信号源内阻为R S,试画出图1-3中放大电路的输入等效电路图,回答下面的连线题,并做简单解释:R i = R S放大器从信号源获取较大电压R i << R S放大器从信号源吸取较大电流R i >> R S放大器从信号源获取最大功率答:(II)教材图1-4是实际工程中测量放大器输入阻抗的原理图,试根据该图简单分析为什么串接电阻R S的取值不能太大也不能太小。
答:(III)对于小信号放大器来说一般希望输入阻抗足够高,根据您所学的理论知识,分析有哪些方法可以提高教材图1-3中放大电路的输入阻抗。
单级低频放大器实验报告

单级低频放大器实验报告单级低频放大器实验报告引言:在电子学领域中,放大器是一种基本的电路元件,用于增加电信号的幅度。
放大器的种类繁多,其中单级低频放大器是一种常见且重要的类型。
本实验旨在通过搭建单级低频放大器电路,探究其工作原理和性能特点。
一、实验目的本实验的主要目的如下:1. 掌握单级低频放大器的基本原理;2. 理解放大器的电压放大倍数和频率响应特性;3. 学会使用实验仪器测量放大器的性能参数。
二、实验原理1. 单级低频放大器的基本原理单级低频放大器是一种简单的放大器电路,通常由一个晶体管、电容和电阻组成。
其基本工作原理为:输入信号经过耦合电容进入晶体管的基极,晶体管将输入信号放大后,经过输出电容输出到负载电阻上。
通过合理选择电容和电阻的数值,可以实现对输入信号的放大。
2. 放大器的电压放大倍数电压放大倍数是衡量放大器性能的重要指标之一。
在本实验中,我们将通过测量输入和输出信号的电压,计算出放大器的电压放大倍数。
电压放大倍数的计算公式如下:电压放大倍数 = 输出电压幅度 / 输入电压幅度3. 放大器的频率响应特性频率响应特性描述了放大器在不同频率下的放大效果。
在本实验中,我们将通过改变输入信号的频率,并测量输出信号的幅度来研究放大器的频率响应特性。
通过绘制Bode图,可以清晰地观察到放大器的增益随频率变化的情况。
三、实验步骤1. 搭建单级低频放大器电路,将晶体管的引脚依次连接到电容和电阻上,并连接电源和负载电阻。
2. 使用信号发生器产生一个正弦波信号作为输入信号,并将其连接到放大器的输入端。
3. 使用示波器分别测量输入信号和输出信号的电压幅度,记录测量结果。
4. 改变输入信号的频率,并重复步骤3,记录不同频率下的输出信号幅度。
5. 根据测量结果,计算放大器的电压放大倍数,并绘制放大器的频率响应特性曲线。
四、实验结果分析根据实验测量结果,我们得到了放大器的电压放大倍数和频率响应特性曲线。
通过分析这些数据,我们可以得出以下结论:1. 放大器的电压放大倍数随输入信号频率的增加而减小,表现出一定的频率衰减特性。
电子技术实验报告—实验4单级放大电路

电子技术实验报告实验名称:单级放大电路系别:班号:实验者:学号:实验日期:实验报告完成日期:目录一、实验目的 (3)二、实验仪器 (3)三、实验原理 (3)(一)单级低频放大器的模型和性能 (3)(二)放大器参数及其测量方法 (4)四、实验容 (5)1、搭接实验电路 (5)2、静态工作点的测量和调试 (6)3、基本放大器的电压放大倍数、输入电阻、输出电阻的测量 (6)4、放大器上限、下限频率的测量 (7)5、电流串联负反馈放大器参数测量 (8)五、思考题 (8)六、实验总结 (8)一、实验目的1.学会在面包板上搭接电路的方法;2.学习放大电路的调试方法;3.掌握放大电路的静态工作点、电压放大倍数、输出电阻和通频带测量方法;4.研究负反馈对放大器性能的影响;了解射级输出器的基本性能;5.了解静态工作点对输出波形的影响和负载对放大电路倍数的影响。
二、实验仪器1.示波器 1台2.函数信号发生器 1台3. 直流稳压电源 1台4.数字万用表 1台5.多功能电路实验箱 1台6.交流毫伏表 1台三、实验原理(一)单级低频放大器的模型和性能1. 单级低频放大器的模型单级低频放大器能将频率从几十Hz~几百kHz的低频信号进行不失真地放大,是放大器中最基本的放大器,单级低频放大器根据性能不同科分为基本放大器和负反馈放大器。
从放大器的输出端取出信号电压(或电流)经过反馈网络得到反馈信号电压(或电流)送回放大器的输入端称为反馈。
若反馈信号的极性与原输入信号的极性相反,则为负反馈。
根据输出端的取样信号(电压或电流)与送回输入端的连接方式(串联或并联)的不同,一般可分为四种反馈类型——电压串联反馈、电流串联反馈、电压并联反馈和电流并联反馈。
负反馈是改变房卡器及其他电子系统特性的一种重要手段。
负反馈使放大器的净输入信号减小,因此放大器的增益下降;同时改善了放大器的其他性能:提高了增益稳定性,展宽了通频带,减小了非线性失真,以及改变了放大器的输入阻抗和输出阻抗。
单级低频电压放大电路(基础)-单级放大

2021/3/2108
东南大学电工电子实验中心
10
三、实验原理——放大倍数测量
示波器 CH1
10mV@ 1000Hz
示波器 CH2
R短路
2021/3/2108
东南大学电工电子实验中心
11
三、实验原理——放大倍数测量
用毫伏表测 量电压
用毫伏表测 量电压
2021/3/2108
东南大学电工电子实验中心
▪ 4. 预习中有问题可以登录电工电子实验中心的网站查 找解答或提出问题。
▪ 5.手机13776620667,Email:
2021/3/2108
东南大学电工电子实验中心
19
六、实验用仪器
电子技术实验室1~4室
2021/3/18
20
六、实验用仪器
电子技术实验室5~8室
2021/3/18
21
六、实验用仪器
4
三、实验原理——放大电路技术指标
1.电压放大倍数: A=Uo/Ui; 2.输入阻抗:
Ri=Ui/Ii;
3.输出阻抗: Ro=U/I(U:负载(开路)为无穷时的输出电压,负载短
路时的电流); 4.最大输出电压:
放大电路输出信号电压在其非线性失真系数不超 过额定值时的最大输电压值;
2021/3/2108
2021/3/2108
东南大学电工电子实验中心
14
三、实验原理——测量原理
2021/3/2108
东南大学电工电子实验中心
15
三、实验原理——逐点法测量通频带宽BW
Rs短路,保持输入信号vi的幅度不变,按频率对数等间 隔Δf,逐点改变输入信号的频率,测量放大器的输出 电压vo,由公式AV =vo/vi
单管低频放大电路实验报告

单管低频放大电路实验报告单管低频放大电路实验报告引言:在电子学的学习过程中,我们经常会接触到各种各样的电路。
其中,放大电路是一种常见的电路类型,它可以将输入信号放大到所需的幅度。
本次实验我们将研究单管低频放大电路的性能和特点。
实验目的:1. 了解单管低频放大电路的工作原理;2. 掌握搭建和调试单管低频放大电路的方法;3. 分析和评估单管低频放大电路的性能。
实验器材:1. NPN型晶体管;2. 电阻、电容等基本电子元件;3. 功率放大器;4. 示波器等实验仪器。
实验步骤:1. 按照电路图搭建单管低频放大电路;2. 连接电源并调节电源电压;3. 连接示波器,观察输入和输出信号;4. 调节电阻和电容的数值,观察输出信号的变化;5. 记录实验数据,并进行分析。
实验结果与分析:通过实验,我们观察到了单管低频放大电路的性能和特点。
首先,我们发现输入信号的幅度越大,输出信号的放大倍数也越大。
这是因为晶体管在工作时,会根据输入信号的大小来调节电流的流动,从而实现信号的放大。
其次,我们发现当电容的数值增大时,输出信号的频率会降低。
这是因为电容的作用是通过储存和释放电荷来调节电流的流动速度,从而影响输出信号的频率。
此外,我们还观察到了晶体管的饱和现象。
当输入信号的幅度过大时,晶体管会饱和,无法再继续放大信号。
这会导致输出信号失真,无法准确地反映输入信号的变化。
结论:通过本次实验,我们了解了单管低频放大电路的工作原理和性能特点。
我们发现输入信号的幅度、电容的数值和晶体管的饱和状态等因素都会对输出信号产生影响。
因此,在实际应用中,我们需要根据具体需求来选择合适的电阻、电容和晶体管等元件,以获得所需的放大效果。
总结:本次实验通过搭建和调试单管低频放大电路,我们深入了解了该电路的工作原理和性能特点。
同时,我们也认识到了电子学的重要性和应用价值。
在今后的学习和实践中,我们将进一步探索电子学的知识,不断提升自己的实践能力和创新能力。
单管低频放大电路实验报告

单管低频放大电路实验报告实验名称:单管低频放大电路实验报告实验目的:1. 掌握单管低频放大电路的工作原理;2. 学习电路设计和实验的基本方法;3. 熟悉基本仪器的使用和电路测试方法。
实验原理:单管低频放大电路是由一个晶体管、若干电阻和电容组成的电路。
电源通过电阻分压接入到晶体管的基极,控制晶体管的输出功率。
通过改变电阻和电容的数值,可以调整电路的增益和频率响应。
实验器材和材料:1. 晶体管(小信号NPN型);2. 电阻(1kΩ、4.7kΩ、10kΩ);3. 电容(0.1μF、1μF、10μF);4. 电源(DC 12V);5. 信号源(可变电阻、实验箱);6. 示波器。
实验步骤:1. 确定电路连接方式和元器件数值;2. 搭建电路;3. 调整电源电压到合适数值;4. 调整信号源输出信号频率和电压;5. 接入示波器,测量电路的输出信号波形和频率响应;6. 调整电路参数,改变电路的增益和频率响应;7. 记录实验数据。
实验结果:在完成实验后,我们得到了实验数据和结果。
通过对数据的分析和比较,我们发现,在改变电路元器件数值时,电路的增益和频率响应会发生变化。
不同数值的电容和电阻对电路的影响也是不同的。
我们也发现,在增加电容和减小电阻时,电路的增益和频率响应也会相应增加。
实验结论:通过本次实验,我们学会了单管低频放大电路的基本原理和设计方法。
这个电路是一个非常基础的电路,在电子电路的设计和实验中都有广泛应用。
通过掌握这个电路的原理和特性,我们可以更好地理解和应用其他电子电路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
东南大学电工电子实验中心
实验报告
课程名称:
第次实验
实验名称:
院(系):专业:
姓名:学号:
实验室: 实验组别:
同组人员:实验时间:年月日评定成绩:审阅教师:
实验三单级低频电压放大电路(基础)
一、实验目的
1、掌握单级放大电路的工程估算、安装和调试;
2、了解三极管各项基本器件参数、工作点、偏置电路、输入阻抗、输出阻抗、增益、幅频
特性等的基本概念以及测量方法;
3、掌握基本的模拟电路的故障检查和排除方法,深化示波器、稳压电源、交流电压表、
函数发生器的使用技能训练。
二、实验原理
三、预习思考
1、器件资料:
上网查询本实验所用的三极管9013的数据手册,画出三极管封装示意图,标出每个管脚的名称,将相关参数值填入下表:
2
教材图1-3中偏置电路的名称是什么,简单解释是如何自动调节BJT的电流I C以实现稳定直流工作点的作用的,如果R1、R2取得过大能否再起到稳定直流工作点的作用,为什么?
答:
3、电压增益:
(I)对于一个低频放大器,一般希望电压增益足够大,根据您所学的理论知识,分析有
哪些方法可以提高电压增益,分析这些方法各自优缺点,总结出最佳实现方案。
答:
(II)实验中测量电压增益的时候用到交流毫伏表,试问如果用万用表或示波器可不可以,有什么缺点。
答:
4、输入阻抗:
(I)放大器的输入电阻R i反映了放大器本身消耗输人信号源功率的大小,设信号源内阻
为R S,试画出图1-3中放大电路的输入等效电路图,回答下面的连线题,并做简单解释:
R i = R S放大器从信号源获取较大电压
R i << R S放大器从信号源吸取较大电流
R i >> R S放大器从信号源获取最大功率答:
(II)教材图1-4是实际工程中测量放大器输入阻抗的原理图,试根据该图简单分析为什么串接电阻R S的取值不能太大也不能太小。
答:
(III)对于小信号放大器来说一般希望输入阻抗足够高,根据您所学的理论知识,分析有哪些方法可以提高教材图1-3中放大电路的输入阻抗。
答:
5、输出阻抗:
(I)放大器输出电阻R O的大小反映了它带负载的能力,试分析教材图1-3中放大电路的
输入阻抗受那些参数的影响,设负载为R L,画出输出等效电路图,回答下面的连线题,并做简单解释。
R O = R L负载从放大器获取较大电压
R O << R L负载从放大器吸取较大电流
R O >> R L负载从放大器获取最大功率答:
(II)教材图1-5是实际工程中测量放大器输出阻抗的原理图,试根据该图简单分析为什么电阻R L的取值不能太大也不能太小。
答:
(III)对于小信号放大器来说一般希望输出阻抗足够小,根据您所学的理论知识,分析有哪些方法可以减小教材图1-3中放大电路的输出阻抗。
答:
6、计算教材图1-3中各元件参数的理论值,其中
已知:V CC=12V,V i=5mV,R L=3KΩ,R S=50Ω,T为9013
指标要求:A V>50,R i>1 KΩ,R O<3KΩ,f L<100Hz,f H>100kHz(建议I C取2mA)
答:
四、实验内容
1、除1-(1)外的全部实验(所有波形必须定量记录,包括幅度、频率等,输入和输出波形
必须记录在同一坐标内)。
2、实验修改内容
(II)
图1 截止失真输入输出波形
图2 完全截止失真输入输出波形(实验提示:此时可以加大输入信号幅度)图3 饱和失真输入输出波形
3、测量放大器的最大不失真输出电压
带负载时测量V EQ=,Vomax =
4、选做实验
1、1-(1)全部内容。
测得三极管ß =
2、利用失真度仪测量4-(1)、4-(2)中失真波形的失真度。
截止失真度为
饱和失真度为
五、思考题
1、如将实验电路中的NPN管换为PNP管,试问:
(1)这时电路要作哪些改动才能正常工作?
答:
(2)经过正确改动后的电路其饱和失真和截止失真波形是否和原来相同?为什么? 答:
2、图1-3电路中上偏置串接R1’起什么作用?
答:
3、在实验电路中,如果电容器C2漏电严重,试问当接上RL后,会对放大器性能产生哪些影响?
答:。