直线与椭圆经典例题

合集下载

直线和椭圆练习题10道大题

直线和椭圆练习题10道大题

直线战椭圆位子闭系之阳早格格创做1.已知椭圆22:143x y M +=,面1F ,C 分别是椭圆M的左核心、左顶面,过面1F 的直线l (没有与x 轴沉合)接M 于,A B 二面.(Ⅰ)供M 的离心率及短轴少;(Ⅱ)是可存留直线l ,使得面B 正在以线段AC 为直径的圆上,若存留,供出直线l 的圆程;若没有存留,证明缘由.C 的核心正在本面,核心正在x 轴上,短轴少为2,离心率为2.(Ⅰ)供椭圆C 的圆程;(Ⅱ)设P 是椭圆C 少轴上的一个动面,过P 做斜率为12的直线l 接椭圆C 于A ,B 二面,供证:22||||PB PA +为定值.3.已知椭圆C :2211612x y +=的左核心为F ,左顶面为A ,离心率为e ,面(,0)(4)P m m >谦脚条件||||FA e AP =.(Ⅰ)供m 的值;(Ⅱ)设过面F 的直线l 与椭圆C 相接于M ,N 二面,记PMF ∆战PNF ∆的里积分别为1S ,2S ,供证:12||||S PM S PN =.2222:1(0)x y C a b a b+=>>过面,离心率为.过椭圆左顶面A 的二条斜率乘积为14-的直线分别接椭圆C 于,M N 二面.(Ⅰ)供椭圆C 的尺度圆程;(Ⅱ)直线MN 是可过定面D ?若过定面D ,供出面D 的坐标;若没有过,请证明缘由.5.已知椭圆)0(12222>>=+b a by a x 的离心率为23,且过面(01)B ,. (Ⅰ)供椭圆的尺度圆程;(Ⅱ)直线)2(:+=x k y l 接椭圆于P 、Q 二面,若面B 末究正在以PQ 为直径的圆内,供真数k 的与值范畴. 6.(2012北京,19).已知直线C:()()()22528m x m y m R -+-=∈(I ) 若直线C 是核心正在x 轴上的椭圆,供m 的与值范畴; (II )设4m =,直线C 与y 轴的接面为,A B (面A 位于面B 的上圆),直线4y kx =+与直线C 接于分歧的二面,M N,直线1y =与直线BM 接于面G .供证:,,A G N 三面同线.xOy 中,已知椭圆2222:1(0)x y C a b a b+=>>的离心率e =,且椭圆C上的面到(0,2)Q 的距离的最大值为3; (1)供椭圆C 的圆程; (2)正在椭圆C上,是可存留面(,)M m n 使得直线:1l mx ny +=与圆22:1O x y +=相接于分歧的二面,A B ,且AOB ∆的里积最大?若存留,供出面M 的坐标及相对于应的AOB ∆的里积;若没有存留,请证明缘由.8.已知椭圆22221(0)x y a b a b+=>>的左核心为F(1,0),且面12⎛- ⎝⎭,正在椭圆C 上.(1)供椭圆C 的尺度圆程.(2)已知动s 直线lx 轴上是可存留定面Q , 使得716QA QB •=-恒创造?若存留,供出Q 的坐标;若没有存留,请证明缘由.9.设椭圆)0(1:2222>>=+b a by a x C 的左、左核心分别为12F F 、,上顶面为A ,正在x 轴背半轴上有一面B ,谦脚112BF F F =,且2AF AB ⊥. (Ⅰ)供椭圆C 的离心率;(Ⅱ)若过2F B A 、、三面的圆与直线033:=--y x l 相切,供椭圆C 的圆程;(Ⅲ)正在(Ⅱ)的条件下,过左核心2F 做斜率为k 的直线l 与椭圆C 接于M N 、二面,线段MN 的中垂线与x 轴相接于面)0,(m P ,供真数m 的与值范畴.10.如图,椭圆22:1(01)y C x m m+=<<的左顶面为A ,M 是椭圆C 上同于面A 的任性一面,面P 与面A 闭于面M 对于称.,供m的值;(Ⅰ)若面P的坐标为9(,55(Ⅱ)若椭圆C上存留面M,使得OP OM,供m的与值范畴.。

直线与椭圆的位置关系训练题

直线与椭圆的位置关系训练题

直线与椭圆的位置关系训练题一、题点全面练1.若直线mx +ny =4与⊙O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数是( )A .至多为1B .2C .1D .0解析:选B 由题意知4m 2+n2>2,即m 2+n 2<2,∴点P (m ,n )在椭圆x 29+y 24=1的内部,故所求交点个数是2.2.中心为原点,一个焦点为F (0,52)的椭圆,截直线y =3x -2所得弦中点的横坐标为12,则该椭圆的方程是( ) A.2x 275+2y225=1 B.x 275+y 225=1 C.x 225+y 275=1 D.2x 225+2y275=1 解析:选C 由题设知c =52,设椭圆方程为x 2a 2-50+y 2a 2=1,联立方程⎩⎪⎨⎪⎧x 2a 2-50+y 2a 2=1,y =3x -2,消去y ,整理得(10a 2-450)x 2-12(a 2-50)x +4(a 2-50)-a 2(a 2-50)=0,由根与系数的关系得x 1+x 2=a 2-10a 2-450=1,解得a 2=75,所以椭圆方程为x 225+y 275=1.3.斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为( ) A .2 B.455 C.4105D.8105解析:选C 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),直线l 的方程为y =x +t ,由⎩⎪⎨⎪⎧x 24+y 2=1,y =x +t ,消去y ,得5x 2+8tx +4(t 2-1)=0,则x 1+x 2=-85t ,x 1x 2=t 2-5.∴|AB |=1+k 2|x 1-x 2| =1+k 2·x 1+x 22-4x 1x 2=2·⎝ ⎛⎭⎪⎫-85t 2-4×t 2-5=425·5-t 2, 当t =0时,|AB |max =4105.4.设F 1,F 2分别是椭圆x 24+y 2=1的左、右焦点,若椭圆上存在一点P ,使(OP ―→+OF 2―→)·PF 2―→=0(O 为坐标原点),则△F 1PF 2的面积是( )A .4 B.3 C .2D .1解析:选D ∵(OP ―→+OF 2―→)·PF 2―→=(OP ―→-OF 1―→)·PF 2―→=F 1P ―→·PF 2―→=0,∴PF 1⊥PF 2,∠F 1PF 2=90°.设|PF 1|=m ,|PF 2|=n ,则m +n =4,m 2+n 2=12,2mn =(m +n )2-m 2-n 2=4,mn =2,∴=12mn =1. 5.过椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点A 且斜率为k 的直线交椭圆C 于另一点B ,且点B 在x 轴上的射影恰好为右焦点F .若13<k <12,则椭圆C 的离心率的取值范围是( )A.⎝ ⎛⎭⎪⎫14,34B.⎝ ⎛⎭⎪⎫23,1C.⎝ ⎛⎭⎪⎫12,23 D.⎝ ⎛⎭⎪⎫0,12 解析:选C 由题意可知,|AF |=a +c ,|BF |=a 2-c 2a ,于是k =a 2-c 2a a +c .又13<k <12,所以13<a 2-c 2a a +c <12,化简可得13<1-e 21+e <12,从而可得12<e <23,选C.6.已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线与椭圆C交于A ,B 两点,且|AB |=3,则C 的方程为__________.解析:设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),则c =1.因为过F 2且垂直于x 轴的直线与椭圆交于A ,B 两点,且|AB |=3,所以b 2a =32,b 2=a 2-c 2,所以a 2=4,b 2=a 2-c 2=4-1=3,椭圆的方程为x 24+y 23=1.答案:x 24+y 23=17.过点M (-2,0)的直线m 与椭圆x 22+y 2=1交于P 1,P 2两点,线段P 1P 2的中点为P ,设直线m 的斜率为k 1(k 1≠0),直线OP 的斜率为k 2,则k 1k 2的值为__________.解析:过点M (-2,0)的直线m 的方程为y -0=k 1(x +2),代入椭圆方程化简得(2k 21+1)x2+8k 21x +8k 21-2=0,所以x 1+x 2=-8k 212k 21+1,所以点P ⎝ ⎛⎭⎪⎫-4k 212k 21+1,2k 12k 21+1,直线OP 的斜率k 2=-12k 1,所以k 1k 2=-12. 答案:-128.(2019·广州模拟)已知中心在坐标原点的椭圆C 的右焦点为F (1,0),点F 关于直线y =12x 的对称点在椭圆C 上,则椭圆C 的方程为__________.解析:设椭圆方程为x 2a 2+y 2b2=1(a >b >0),由题意可知c =1,即a 2-b 2=1①,设点F (1,0)关于直线y =12x 的对称点为(m ,n ),可得n -0m -1=-2②.又因为点F 与其对称点的中点坐标为⎝ ⎛⎭⎪⎫m +12,n 2,且中点在直线y =12x 上,所以有n 2=12×m +12③,联立②③,解得⎩⎪⎨⎪⎧m =35,n =45,即对称点为⎝ ⎛⎭⎪⎫35,45,代入椭圆方程可得925a 2+1625b 2=1④,联立①④,解得a 2=95,b 2=45,所以椭圆方程为5x 29+5y24=1.答案:5x 29+5y24=19.(2019·长春监测)已知椭圆C 的两个焦点为F 1(-1,0),F 2(1,0),且经过点E ⎝ ⎛⎭⎪⎫3,32. (1)求椭圆C 的方程;(2)过F 1的直线l 与椭圆C 交于A ,B 两点(点A 位于x 轴上方),若AF 1―→=2F 1B ―→,求直线l 的斜率k 的值.解:(1)由⎩⎪⎨⎪⎧2a =|EF 1|+|EF 2|=4,a 2=b 2+c 2,c =1,解得⎩⎨⎧a =2,c =1,b =3,所以椭圆C 的方程为x 24+y 23=1.(2)由题意得直线l 的方程为y =k (x +1)(k >0),联立⎩⎪⎨⎪⎧y =k x +,x 24+y23=1,整理得⎝ ⎛⎭⎪⎫3k2+4y 2-6ky -9=0,Δ=144k2+144>0,设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=6k 3+4k 2,y 1y 2=-9k23+4k 2,又AF 1―→=2F 1B ―→,所以y 1=-2y 2, 所以y 1y 2=-2(y 1+y 2)2,则3+4k 2=8, 解得k =±52,又k >0,所以k =52. 10.(2018·成都模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),长半轴与短半轴的比值为2.(1)求椭圆C 的方程;(2)设经过点A (1,0)的直线l 与椭圆C 相交于不同的两点M ,N .若点B (0,1)在以线段MN 为直径的圆上,求直线l 的方程.解:(1)由题可知c =3,a b=2,a 2=b 2+c 2, ∴a =2,b =1.∴椭圆C 的方程为x 24+y 2=1.(2)易知当直线l 的斜率为0或直线l 的斜率不存在时,不合题意.当直线l 的斜率存在且不为0时,设直线l 的方程为x =my +1,M (x 1,y 1),N (x 2,y 2).联立⎩⎪⎨⎪⎧x =my +1,x 24+y 2=1,消去x 可得(4+m 2)y 2+2my -3=0.Δ=16m 2+48>0,y 1+y 2=-2m 4+m 2,y 1y 2=-34+m2. ∵点B 在以MN 为直径的圆上, ∴BM ―→·BN ―→=0.∵BM ―→·BN ―→=(my 1+1,y 1-1)·(my 2+1,y 2-1)=(m 2+1)y 1y 2+(m -1)(y 1+y 2)+2=0, ∴(m 2+1)·-34+m 2+(m -1)·-2m 4+m 2+2=0,整理,得3m 2-2m -5=0,解得m =-1或m =53.∴直线l 的方程为x +y -1=0或3x -5y -3=0.二、专项培优练(一)易错专练——不丢怨枉分1.已知点P 是椭圆x 216+y 28=1(x ≠0,y ≠0)上的动点,F 1,F 2分别是椭圆的左、右焦点,O 是坐标原点,若M 是∠F 1PF 2的平分线上一点,且F 1M ―→·MP ―→=0,则|OM ―→|的取值范围是( )A .[0,3)B .(0,22)C .[22,3)D .(0,4]解析:选B 如图,延长F 1M 交PF 2的延长线于点G . ∵F 1M ―→·MP ―→=0,∴F 1M ―→⊥MP ―→. 又MP 为∠F 1PF 2的平分线,∴|PF 1|=|PG |,且M 为F 1G 的中点. ∵O 为F 1F 2的中点,∴OM 綊12F 2G .∵|F 2G |=||PF 2|-|PG ||=||PF 1|-|PF 2||, ∴|OM ―→|=12|2a -2|PF 2||=|4-|PF 2||.∵4-22<|PF 2|<4或4<|PF 2|<4+22, ∴|OM ―→|∈(0,22).2.已知椭圆M :x 2a2+y 2=1,圆C :x 2+y 2=6-a 2在第一象限有公共点P ,设圆C 在点P处的切线斜率为k 1,椭圆M 在点P 处的切线斜率为k 2,则k 1k 2的取值范围为( )A .(1,6) B.(1,5) C .(3,6)D .(3,5)解析:选D 由于椭圆M :x 2a2+y 2=1,圆C :x 2+y 2=6-a 2在第一象限有公共点P ,所以⎩⎪⎨⎪⎧a 2>6-a 2,6-a 2>1,解得3<a 2<5.设椭圆M :x 2a2+y 2=1与圆C :x 2+y 2=6-a 2在第一象限的公共点P (x 0,y 0),则椭圆M 在点P 处的切线方程为x 0xa 2+y 0y =1,圆C 在P 处的切线方程为x 0x +y 0y =6-a 2,所以k 1=-x 0y 0,k 2=-x 0a 2y 0,k 1k 2=a 2,所以k 1k 2∈(3,5). 3.如图,椭圆的中心在坐标原点O ,顶点分别是A 1,A 2,B 1,B 2,焦点分别为F 1,F 2,延长B 1F 2与A 2B 2交于P 点,若∠B 1PA 2为钝角,则此椭圆的离心率的取值范围为______.解析:设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),∠B 1PA 2为钝角可转化为B 2A 2―→,F 2B 1―→所夹的角为钝角,则(a ,-b )·(-c ,-b )<0,即b 2<ac ,则a 2-c 2<ac ,故⎝ ⎛⎭⎪⎫c a2+c a-1>0,即e 2+e -1>0,解得e >5-12或e <-5-12,又0<e <1,所以5-12<e <1. 答案:⎝⎛⎭⎪⎫5-12,14.已知椭圆x 2a 2+y 2b2=1(a >b >0),A ,B 为椭圆上的两点,线段AB 的垂直平分线交x 轴于点M ⎝ ⎛⎭⎪⎫a5,0,则椭圆的离心率e 的取值范围是__________. 解析:设A (x 1,y 1),B (x 2,y 2),x 1≠x 2,则⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫x 1-a 52+y 21=⎝⎛⎭⎪⎫x 2-a 52+y 22,x 21a 2+y21b 2=1,x 22a2+y 22b 2=1,即⎩⎪⎨⎪⎧2a 5x 1-x 2=x 21-x 22+y 21-y 22,y 21=b 2-b 2a 2x 21,y 22=b 2-b 2a2x 22,所以2a 5(x 1-x 2)=a 2-b 2a 2(x 21-x 22),所以2a3a 2-b 2=x 1+x 2.又-a ≤x 1≤a ,-a ≤x 2≤a ,x 1≠x 2, 所以-2a <x 1+x 2<2a ,则2a 3a 2-b 2<2a ,即b 2a 2<45,所以e 2=1-b 2a 2>15. 又0<e <1,所以55<e <1. 答案:⎝⎛⎭⎪⎫55,1 (二)难点专练——适情自主选5.(2018·唐山模拟)在直角坐标系xOy 中,长为2+1的线段的两端点C ,D 分别在x 轴,y 轴上滑动,CP ―→= 2 PD ―→.记点P 的轨迹为曲线E .(1)求曲线E 的方程;(2)经过点(0,1)作直线与曲线E 相交于A ,B 两点,OM ―→=OA ―→+OB ―→,当点M 在曲线E 上时,求四边形AOBM 的面积.解:(1)设C (m,0),D (0,n ),P (x ,y ).由CP ―→= 2 PD ―→,得(x -m ,y )=2(-x ,n -y ),所以⎩⎨⎧x -m =-2x ,y =2n -y ,得⎩⎨⎧m =2+x ,n =2+12y ,由|CD ―→|=2+1,得m 2+n 2=(2+1)2, 所以(2+1)2x 2+2+22y 2=(2+1)2, 整理,得曲线E 的方程为x 2+y 22=1.(2)设A (x 1,y 1),B (x 2,y 2),由OM ―→=OA ―→+OB ―→,知点M 坐标为(x 1+x 2,y 1+y 2). 由题意知,直线AB 的斜率存在.设直线AB 的方程为y =kx +1,代入曲线E 的方程,得(k 2+2)x 2+2kx -1=0, 则x 1+x 2=-2k k 2+2,x 1x 2=-1k 2+2. y 1+y 2=k (x 1+x 2)+2=4k 2+2.由点M 在曲线E 上,知(x 1+x 2)2+y 1+y 222=1,即4k 2k 2+2+8k 2+2=1,解得k 2=2.这时|AB |=1+k 2|x 1-x 2|=x 1+x 22-4x 1x 2]=322,原点到直线AB 的距离d =11+k2=33, 所以平行四边形OAMB 的面积S =|AB |·d =62. 6.(2018·成都一诊)已知椭圆x 25+y 24=1的右焦点为F ,设直线l :x =5与x 轴的交点为E ,过点F 且斜率为k 的直线l 1与椭圆交于A ,B 两点,M 为线段EF 的中点.(1)若直线l 1的倾斜角为π4,求|AB |的值;(2)设直线AM 交直线l 于点N ,证明:直线BN ⊥l . 解:由题意知,F (1,0),E (5,0),M (3,0). (1)∵直线l 1的倾斜角为π4,∴斜率k =1.∴直线l 1的方程为y =x -1.代入椭圆方程,可得9x 2-10x -15=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=109,x 1x 2=-53.∴|AB |=2·x 1+x 22-4x 1x 2=2×⎝ ⎛⎭⎪⎫1092+4×53=1659. (2)证明:设直线l 1的方程为y =k (x -1). 代入椭圆方程,得(4+5k 2)x 2-10k 2x +5k 2-20=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=10k 24+5k 2,x 1x 2=5k 2-204+5k 2.设N (5,y 0),∵A ,M ,N 三点共线, ∴-y 13-x 1=y 02,∴y 0=2y 1x 1-3. 而y 0-y 2=2y 1x 1-3-y 2=2k x 1-x 1-3-k (x 2-1)=3kx 1+x 2-kx 1x 2-5kx 1-3=3k ·10k 24+5k 2-k ·5k 2-204+5k 2-5k x 1-3=0.∴直线BN ∥x 轴,即BN ⊥l .。

直线与椭圆的位置关系-高中数学复习

直线与椭圆的位置关系-高中数学复习

点, O 为坐标原点,若 AB ∥ OP ,则椭圆的焦距为(
C. 1

D. 2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
目录
高中总复习·数学
解析: 由题意知, F 1(- c ,0), A ( a ,0), B (0,1),
1
1
则点 P (- c , ),所以直线 BA 的斜率 kBA =- ,直线 PO 的斜


1

1
1
1
率 kPO = =- .由 BA ∥ PO ,得 kBA = kPO ,所以- =- ,则




c =1,所以椭圆的焦距为2 c =2.故选D.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
目录
高中总复习·数学
4.
2
(2023·新高考Ⅱ卷5题)已知椭圆 C : + y 2=1的左、右焦点分别
2

(1 +2 )(1 −2 )
=0,
1 −2
2 1 +2
2
1

=- 2 ×
=2,∴ 2 = ,
1 −2


2
1 +2
2

故椭圆的离心率 e = =

1−
2
2
= .
2

2
目录
高中总复习·数学
1
2
2
(2)已知斜率为- 且不经过坐标原点 O 的直线与椭圆 + =1相

《椭圆》方程典型例题20例(含标准答案)

《椭圆》方程典型例题20例(含标准答案)

例1 椭圆的一个顶点为()02,A 分析:解:(1)当()02,A 椭圆的标准方程为:11422=+y x (2)当()02,A 为短轴端点时,b 椭圆的标准方程为:116422=+y x 说明:横竖的,因而要考虑两种情况.例2 解:31222⨯⨯=c a c ∴23c =∴3331-=e . 说明:和c 的齐次方程,再化含e 例3 已知中心在原点,焦点在x 点,OM 的斜率为0.25解:由题意,设椭圆方程为22+ax )直线与曲线的综合问题,经常要借)22y ,与焦点()04,F 的距离成等差数BT 的斜率k .(2)因为线段AC 221=+-y y y 又∵点T 在x ()212221024x x y y x --=-又∵点()11y x A ,,(2x B ∴ ()212125259x y -=()222225259x y -= ∴ (12221259x y y +-=-将此式代入①,并利用 253640-=-x ∴ 4540590=--=x k BT例5 已知椭圆13422=+yx ,距离MN 是1MF 与2MF 解:假设M 存在,设M 2=a ,3=b ,∴=c ∵左准线l 的方程是=x ① ②.k ,利用条件求k . ⎪⎭⎫ ⎝⎛-=21x k .代入椭圆方程,并整理∵P 是弦中点,∴121=+x x 所以所求直线方程为342-+y x 分析二:设弦两端坐标为(11y x ,率:2121x x y y --.解法二:设过⎪⎭⎫⎝⎛2121,P ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+=+④1.③1②12①12212122222121y y x x y x y x ,,, ①-②得0222212221=-+-y y x x .将③、④代入⑤得212121-=--x x y y 所求直线方程为0342=-+y x 说明:(1迹;过定点的弦中点轨迹.(2(3线问题也适用.例7 (1)长轴长是短轴长的2(2)在x 12222=+b y a x 求出1482=a ,372=b ,1=. .182=a .故所求方程为191822=+y x .MF AM 2+为最小值M 到右准线的距离,从而得最小8=x l :.过A 作l AQ ⊥,垂足为AQ ,即M 为所求点,因此说明:是M 例9 求椭圆32x 分析:值.解:椭圆的参数方程为⎩⎨⎧距离为26sin cos 3=+-=θθd 当13sin -=⎪⎭⎫⎝⎛-θπ时,d 说明:例10的点的最远距离是7分析:要注意讨论b 提高逻辑推理能力.0>>b a 待定.21<b 矛盾.⎪⎭⎫-21,点⎪⎭⎫ ⎝⎛-213,到点⎪⎭⎫⎝⎛230,P 的距==θθsin cos b y a x ,其中0>>b a ,待定,πθ20≤≤,θ为参数.由22222221⎪⎭⎫ ⎝⎛-=-==a b a b a a c e 2143112=-=-=e a b ,即a 设椭圆上的点()y x ,到点 ⎝⎛0P 22222cos 23=⎪⎭⎫ ⎝⎛-+=θa y x d sin 3sin 34222--=θθb b b 421sin 3222+⎪⎭⎫ ⎝⎛+-=b b b θ如果121>b ,即21<b ,则当由题设得()22237⎪⎭⎫⎝⎛+=b 于是当b21sin -=θ时2d 由题设知()34722+=b,∴∴所求椭圆的参数方程是⎩⎨⎧y x 由21sin -=θ,cos θ例11 设x ,R ∈y ,y x 63222=+分析:考虑椭圆及圆的位置关系求得最值.0,0)点和(3,0)点. )1->.0,0)点时,半径最41=+m ,∴15=m .a 、b 如何变化, 120≠∠APB .(2分析:22222y ba a x -=解:(1 ⎩⎨⎧b x 2于是k AP=∵APB ∠∴tan ∠∵22c a >∴tan ∠故tan ∠(2)设∴tan ∠12-=k c .由21=e ,得4=k . k -1.8与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 例14 已知椭圆142222=+by b x 分析:解法一:由142222=+by b x ,得由椭圆定义,a PF PF 221=+b b b PF b PF 34421=-=-=.由椭圆第二定义,e d PF =11,∴b ePF d 3211==,即P 到左准线的距离为b 32解法二:∵e d PF =22,2d 为P ∴b ePF d 33222==. 又椭圆两准线的距离为c a 22=⋅∴P 到左准线的距离为b 338说明:圆的第二定义.3π=∠POx ,求P 点坐标.3π, 552, )0>上的一点,P 到左焦点1F 和右焦.ca 20+,∴01ex a PQ e r +==说明:例17 已知椭圆15922=+y x 上一点.(1) 求1PF PA +(2) 求223PF PA +分析:即代数方法.二是数形结合,解:(1)如上图,62=a ,)0,2(2F ,22AF PF PA -≥,∴1+PF PA 22AF PF PA -=时成立,此时P 、由22AF PF PA +≤,∴+PA 22AF PF PA +=时成立,此时P 、==45,02得两交点 ,P 点与2P 重合时,2PF PA +取Q 为垂足,由3=a ,2=c ,PQ PA PF PA +=+223,要使29=x .1,代入椭圆得满足条件的A 向相应准线作垂线段.巧用(2)分析:解:(1) ⎩⎨⎧==θθsin 2cos 3y x )(R ∈θ.(2)设椭圆内接矩形面积为S )sin 2,cos 3(θθ则2sin 12sin 2cos 34=⨯⨯=θθS 故椭圆内接矩形的最大面积为说明:问题,用参数方程形式较简便.例19 已知1F ,2F (1)(2)求证21F PF ∆分析:12222=+b y a x (0>>b a )),(11y x P ,)0,(1c F -,)0,(2c F 方程联立消去21x 得2312212-+cy b y c 出1y 可以求出21F PF ∆思路二:利用焦半径公式1PF =再利用],[1a a x -∈,可以确定离心率a 2求解.),11y ,)0,(1c F -,)0,(2c F ,0>c ,(1)在21F PF ∆︒==60sin 2sin sin cn m βα∴︒=++60sin 2sin sin cn m βα∵a n m 2=+, ∴︒=+60sin 2sin sin 2ca βα∴sin sin 60sin βα=+︒==a c e 212cos21≥-=βα.当且仅当βα=(2)在21F PF ∆-+=2)2(222mn n m c mn n m -+=22 mn n m 3)(2-+=∵a n m 2=+,∴mn a c 34422-=,即∴60sin 2121mn S F PF ︒=∆即21F PF ∆说明:椭圆上的一点P 21PF PF +的结,若这个椭圆上总存在点P ,使AP OP ⊥,转化为P 点坐的一个不等式,转化为关于e 的不等222ba b -=θ, ,又222c a b -= P 使AP OP ⊥.如何证明?。

高中数学《椭圆》方程典型例题20例(含标准答案)

高中数学《椭圆》方程典型例题20例(含标准答案)

《椭圆》方程典型例题20例典型例题一例1 椭圆的一个顶点为()02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程.分析:题目没有指出焦点的位置,要考虑两种位置.解:(1)当()02,A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11422=+y x ; (2)当()02,A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:116422=+y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况.典型例题二例2 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率.解:31222⨯⨯=c a c ∴223a c =, ∴3331-=e . 说明:求椭圆的离心率问题,通常有两种处理方法,一是求a ,求c ,再求比.二是列含a 和c 的齐次方程,再化含e 的方程,解方程即可.典型例题三 例3 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.解:由题意,设椭圆方程为1222=+y ax ,由⎪⎩⎪⎨⎧=+=-+101222y ax y x ,得()021222=-+x a x a , ∴222112a a x x x M +=+=,2111a x y M M +=-=,4112===ax y k M M OM ,∴42=a , ∴1422=+y x 为所求. 说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题.典型例题四例4椭圆192522=+y x 上不同三点()11y x A ,,⎪⎭⎫⎝⎛594,B ,()22y x C ,与焦点()04,F 的距离成等差数列.(1)求证821=+x x ;(2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k . 证明:(1)由椭圆方程知5=a ,3=b ,4=c . 由圆锥曲线的统一定义知:ac x ca AF =-12, ∴ 11545x ex a AF -=-=.同理 2545x CF -=.∵ BF CF AF 2=+,且59=BF , ∴ 51854554521=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-x x ,即 821=+x x .(2)因为线段AC 的中点为⎪⎭⎫⎝⎛+2421y y ,,所以它的垂直平分线方程为()42212121---=+-x y y x x y y y . 又∵点T 在x 轴上,设其坐标为()00,x ,代入上式,得 ()212221024x x y y x --=-又∵点()11y x A ,,()22y x B ,都在椭圆上,∴ ()212125259x y -=()222225259x y -= ∴ ()()21212221259x x x x y y -+-=-.将此式代入①,并利用821=+x x 的结论得 253640-=-x ∴ 4540590=--=x k BT.典型例题五例5 已知椭圆13422=+yx ,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M 到左准线l 的距离MN 是1MF 与2MF 的等比中项?若存在,则求出点M 的坐标;若不存在,请说明理由.解:假设M 存在,设()11y x M ,,由已知条件得2=a ,3=b ,∴1=c ,21=e . ∵左准线l 的方程是4-=x , ∴14x MN +=. 又由焦半径公式知:111212x ex a MF -=-=, 112212x ex a MF +=+=.∵212MF MF MN ⋅=,∴()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=+11212122124x x x .整理得048325121=++x x .解之得41-=x 或5121-=x . ① 另一方面221≤≤-x . ②则①与②矛盾,所以满足条件的点M 不存在. 说明:(1)利用焦半径公式解常可简化解题过程.(2)本例是存在性问题,解决存在性问题,一般用分析法,即假设存在,根据已知条件进行推理和运算.进而根据推理得到的结果,再作判断.(3)本例也可设()θθsin 3cos 2,M 存在,推出矛盾结论(读者自己完成).典型例题六例6 已知椭圆1222=+y x ,求过点⎪⎭⎫⎝⎛2121,P 且被P 平分的弦所在的直线方程.分析一:已知一点求直线,关键是求斜率,故设斜率为k ,利用条件求k . 解法一:设所求直线的斜率为k ,则直线方程为⎪⎭⎫ ⎝⎛-=-2121x k y .代入椭圆方程,并整理得()()0232122212222=+-+--+k k x k kx k .由韦达定理得22212122k kk x x +-=+.∵P 是弦中点,∴121=+x x .故得21-=k .所以所求直线方程为0342=-+y x .分析二:设弦两端坐标为()11y x ,、()22y x ,,列关于1x 、2x 、1y 、2y 的方程组,从而求斜率:2121x x y y --. 解法二:设过⎪⎭⎫⎝⎛2121,P 的直线与椭圆交于()11y x A ,、()22y x B ,,则由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+=+④1.③1②12①12212122222121y y x x y x y x ,,, ①-②得0222212221=-+-y y x x . ⑤ 将③、④代入⑤得212121-=--x x y y ,即直线的斜率为21-. 所求直线方程为0342=-+y x .说明:(1)有关弦中点的问题,主要有三种类型:过定点且被定点平分的弦;平行弦的中点轨迹;过定点的弦中点轨迹.(2)解法二是“点差法”,解决有关弦中点问题的题较方便,要点是巧代斜率.(3)有关弦及弦中点问题常用的方法是:“韦达定理应用”及“点差法”.有关二次曲线问题也适用.典型例题七例7 求适合条件的椭圆的标准方程.(1)长轴长是短轴长的2倍,且过点()62-,; (2)在x 轴上的一个焦点与短轴两端点的联机互相垂直,且焦距为6.分析:当方程有两种形式时,应分别求解,如(1)题中由12222=+b y a x 求出1482=a ,372=b ,在得方程13714822=+y x 后,不能依此写出另一方程13714822=+x y .解:(1)设椭圆的标准方程为12222=+b y a x 或12222=+bx a y .由已知b a 2=. ①又过点()62-,,因此有 ()1622222=-+b a 或()1262222=+-ba . ② 由①、②,得1482=a ,372=b 或522=a ,132=b .故所求的方程为13714822=+y x 或1135222=+x y .(2)设方程为12222=+b y a x .由已知,3=c ,3==c b ,所以182=a .故所求方程为191822=+y x . 说明:根据条件求椭圆的标准方程的思路是“选标准,定参数”.关键在于焦点的位置是否确定,若不能确定,应设方程12222=+b y a x 或12222=+bx a y .典型例题八例8 椭圆1121622=+y x 的右焦点为F ,过点()31,A ,点M 在椭圆上,当MF AM 2+为最小值时,求点M 的坐标.分析:本题的关键是求出离心率21=e ,把MF 2转化为M 到右准线的距离,从而得最小值.一般地,求MF eAM 1+均可用此法. 解:由已知:4=a ,2=c .所以21=e ,右准线8=x l :.过A 作l AQ ⊥,垂足为Q ,交椭圆于M ,故MF MQ 2=.显然MF AM 2+的最小值为AQ ,即M 为所求点,因此3=M y ,且M 在椭圆上.故32=M x .所以()332,M .说明:本题关键在于未知式MF AM 2+中的“2”的处理.事实上,如图,21=e ,即MF 是M 到右准线的距离的一半,即图中的MQ ,问题转化为求椭圆上一点M ,使M 到A 的距离与到右准线距离之和取最小值.典型例题九 例9 求椭圆1322=+y x 上的点到直线06=+-y x 的距离的最小值.分析:先写出椭圆的参数方程,由点到直线的距离建立三角函数关系式,求出距离的最小值.解:椭圆的参数方程为⎩⎨⎧==.sin cos 3θθy x ,设椭圆上的点的坐标为()θθsin cos 3,,则点到直线的距离为263sin 226sin cos 3+⎪⎭⎫⎝⎛-=+-=θπθθd . 当13sin -=⎪⎭⎫⎝⎛-θπ时,22=最小值d .说明:当直接设点的坐标不易解决问题时,可建立曲线的参数方程.典型例题十 例10设椭圆的中心是坐标原点,长轴在x 轴上,离心率23=e ,已知点⎪⎭⎫ ⎝⎛230,P 到这个椭圆上的点的最远距离是7,求这个椭圆的方程,并求椭圆上的点P 的距离等于7的点的坐标.分析:本题考查椭圆的性质、距离公式、最大值以及分析问题的能力,在求d 的最大值时,要注意讨论b 的取值范围.此题可以用椭圆的标准方程,也可用椭圆的参数方程,要善于应用不等式、平面几何、三角等知识解决一些综合性问题,从而加强等价转换、形数结合的思想,提高逻辑推理能力.解法一:设所求椭圆的直角坐标方程是12222=+b y a x ,其中0>>b a 待定.由222222221ab a b a ac e -=-==可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点P 的距离是d ,则4931232222222+-+⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+=y y b y a y x d 34213493342222++⎪⎭⎫ ⎝⎛+-=+--=b y y y b其中b y b ≤≤-. 如果21<b ,则当b y -=时,2d (从而d )有最大值. 由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾.因此必有21≥b 成立,于是当21-=y 时,2d (从而d )有最大值. 由题设得()34722+=b,可得1=b ,2=a .∴所求椭圆方程是11422=+y x . 由21-=y 及求得的椭圆方程可得,椭圆上的点⎪⎭⎫ ⎝⎛--213,,点⎪⎭⎫ ⎝⎛-213,到点⎪⎭⎫⎝⎛230,P 的距离是7.解法二:根据题设条件,可取椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x ,其中0>>b a ,待定,πθ20≤≤,θ为参数.由22222221⎪⎭⎫⎝⎛-=-==a b a b a a c e 可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点⎪⎭⎫⎝⎛230,P 的距离为d ,则22222223sin cos 23⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+=θθb a y x d49sin 3sin 34222+--=θθb b b 3421sin 3222++⎪⎭⎫ ⎝⎛+-=b b b θ如果121>b ,即21<b ,则当1sin -=θ时,2d (从而d )有最大值.由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾,因此必有121≤b成立. 于是当b21sin -=θ时2d (从而d )有最大值. 由题设知()34722+=b,∴1=b ,2=a .∴所求椭圆的参数方程是⎩⎨⎧==θθsin cos 2y x .由21sin -=θ,23cos ±=θ,可得椭圆上的是⎪⎭⎫ ⎝⎛--213,,⎪⎭⎫ ⎝⎛-213,.典型例题十一例11 设x ,R ∈y ,x y x 63222=+,求x y x 222++的最大值和最小值.分析:本题的关键是利用形数结合,观察方程x y x 63222=+与椭圆方程的结构一致.设m x y x =++222,显然它表示一个圆,由此可以画出图形,考虑椭圆及圆的位置关系求得最值.解:由x y x 63222=+,得123492322=+⎪⎪⎪⎪⎭⎫ ⎝⎛-y x 可见它表示一个椭圆,其中心在⎪⎭⎫⎝⎛023,点,焦点在x 轴上,且过(0,0)点和(3,0)点.设m x y x =++222,则 ()1122+=++m y x它表示一个圆,其圆心为(-1,0)半径为()11->+m m .在同一坐标系中作出椭圆及圆,如图所示.观察图形可知,当圆过(0,0)点时,半径最小,即11=+m ,此时0=m ;当圆过(3,0)点时,半径最大,即41=+m ,∴15=m .∴x y x 222++的最小值为0,最大值为15.典型例题十二例12 已知椭圆()012222>>=+b a by a x C :,A 、B 是其长轴的两个端点.(1)过一个焦点F 作垂直于长轴的弦P P ',求证:不论a 、b 如何变化,120≠∠APB .(2)如果椭圆上存在一个点Q ,使 120=∠AQB ,求C 的离心率e 的取值范围.分析:本题从已知条件出发,两问都应从APB ∠和AQB ∠的正切值出发做出估计,因此要从点的坐标、斜率入手.本题的第(2)问中,其关键是根据什么去列出离心率e 满足的不等式,只能是椭圆的固有性质:a x ≤,b y ≤,根据120=∠AQB 得到32222-=-+a y x ay ,将22222y ba a x -=代入,消去x ,用a 、b 、c 表示y ,以便利用b y ≤列出不等式.这里要求思路清楚,计算准确,一气呵成.解:(1)设()0,c F ,()0,a A -,()0,a B . ⎪⎪⎭⎫⎝⎛⇒⎩⎨⎧=+=a b c P b a y a x b c x 2222222, 于是()a c a b k AP+=2,()a c ab k BP -=2.∵APB ∠是AP 到BP 的角.∴()()()2222242221tan ca a c ab ac a b a c a b APB -=-++--=∠ ∵22c a > ∴2tan -<∠APB故3tan -≠∠APB ∴ 120≠∠APB . (2)设()y x Q ,,则a x y k QA +=,ax y k QB -=. 由于对称性,不妨设0>y ,于是AQB ∠是QA 到QB 的角.∴22222221tan a y x ay a x y a x ya x y AQB -+=-++--=∠∵ 120=∠AQB , ∴32222-=-+ay x ay整理得()023222=+-+ay a y x∵22222y ba a x -=∴0213222=+⎪⎪⎭⎫ ⎝⎛-ay y b a∵0≠y , ∴2232c ab y = ∵b y ≤, ∴b c ab ≤2232 232c ab ≤,()222234c c a a ≤-∴04444224≥-+a c a c ,044324≥-+e e ∴232≥e 或22-≤e (舍),∴136<≤e .典型例题十三例13 已知椭圆19822=++y k x 的离心率21=e ,求k 的值. 分析:分两种情况进行讨论.解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12-=k c .由21=e ,得4=k .当椭圆的焦点在y 轴上时,92=a ,82+=k b ,得k c -=12.由21=e ,得4191=-k ,即45-=k . ∴满足条件的4=k 或45-=k .说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论.典型例题十四例14 已知椭圆142222=+by b x 上一点P 到右焦点2F 的距离为b )1(>b ,求P 到左准线的距离.分析:利用椭圆的两个定义,或利用第二定义和椭圆两准线的距离求解.解法一:由142222=+by b x ,得b a 2=,b c 3=,23=e .由椭圆定义,b a PF PF 4221==+,得b b b PF b PF 34421=-=-=. 由椭圆第二定义,e d PF =11,1d 为P 到左准线的距离,∴b ePF d 3211==,即P 到左准线的距离为b 32. 解法二:∵e d PF =22,2d 为P 到右准线的距离,23==a c e , ∴b ePF d 33222==.又椭圆两准线的距离为b c a 33822=⋅. ∴P 到左准线的距离为b b b 32332338=-. 说明:运用椭圆的第二定义时,要注意焦点和准线的同侧性.否则就会产生误解.椭圆有两个定义,是从不同的角度反映椭圆的特征,解题时要灵活选择,运用自如.一般地,如遇到动点到两个定点的问题,用椭圆第一定义;如果遇到动点到定直线的距离问题,则用椭圆的第二定义.典型例题十五例15 设椭圆⎩⎨⎧==.sin 32,cos 4ααy x (α为参数)上一点P 与x 轴正向所成角3π=∠POx ,求P 点坐标.分析:利用参数α与POx ∠之间的关系求解.解:设)sin 32,cos 4(ααP ,由P 与x 轴正向所成角为3π, ∴ααπcos 4sin 323tan=,即2tan =α.而0sin >α,0cos >α,由此得到55cos =α,552sin =α, ∴P 点坐标为)5154,554(.典型例题十六例16 设),(00y x P 是离心率为e 的椭圆12222=+by a x )0(>>b a 上的一点,P 到左焦点1F 和右焦点2F 的距离分别为1r 和2r ,求证:01ex a r +=,02ex a r -=. 分析:本题考查椭圆的两个定义,利用椭圆第二定义,可将椭圆上点到焦点的距离转化为点到相应准线距离.解:P 点到椭圆的左准线c a x l 2-=:的距离,ca x PQ 20+=,由椭圆第二定义,e PQPF =1,∴01ex a PQ e r +==,由椭圆第一定义,0122ex a r a r -=-=.说明:本题求证的是椭圆的焦半径公式,在解决与椭圆的焦半径(或焦点弦)的有关问题时,有着广泛的应用.请写出椭圆焦点在y 轴上的焦半径公式.典型例题十七例17 已知椭圆15922=+y x 内有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点.(1) 求1PF PA +的最大值、最小值及对应的点P 坐标;(2) 求223PF PA +的最小值及对应的点P 的坐标. 分析:本题考查椭圆中的最值问题,通常探求变量的最值有两种方法:一是目标函数当,即代数方法.二是数形结合,即几何方法.本题若按先建立目标函数,再求最值,则不易解决;若抓住椭圆的定义,转化目标,运用数形结合,就能简捷求解.解:(1)如上图,62=a ,)0,2(2F ,22=AF ,设P 是椭圆上任一点,由6221==+a PF PF ,22AF PF PA -≥,∴26222211-=-=-+≥+AF a AF PF PF PF PA ,等号仅当22AF PF PA -=时成立,此时P 、A 、2F 共线.由22AF PF PA +≤,∴26222211+=+=++≤+AF a AF PF PF PF PA ,等号仅当22AF PF PA +=时成立,此时P 、A 、2F 共线.建立A 、2F 的直线方程02=-+y x ,解方程组⎩⎨⎧=+=-+4595,0222y x y x 得两交点 )2141575,2141579(1+-P 、)2141575,2141579(2-+P . 综上所述,P 点与1P 重合时,1PF PA +取最小值26-,P 点与2P 重合时,2PF PA +取最大值26+.(2)如下图,设P 是椭圆上任一点,作PQ 垂直椭圆右准线,Q 为垂足,由3=a ,2=c ,∴32=e .由椭圆第二定义知322==e PQ PF ,∴223PF PQ =,∴PQ PA PF PA +=+223,要使其和最小需有A 、P 、Q 共线,即求A 到右准线距离.右准线方程为29=x .∴A 到右准线距离为27.此时P 点纵坐标与A 点纵坐标相同为1,代入椭圆得满足条件的点P 坐标)1,556(. 说明:求21PF ePA +的最小值,就是用第二定义转化后,过A 向相应准线作垂线段.巧用焦点半径2PF 与点准距PQ 互化是解决有关问题的重要手段.典型例题十八例18 (1)写出椭圆14922=+y x 的参数方程; (2)求椭圆内接矩形的最大面积.分析:本题考查椭圆的参数方程及其应用.为简化运算和减少未知数的个数,常用椭圆的参数方程表示曲线上一点坐标,所求问题便化归为三角问题.解:(1) ⎩⎨⎧==θθsin 2cos 3y x )(R ∈θ.(2)设椭圆内接矩形面积为S ,由对称性知,矩形的邻边分别平行于x 轴和y轴,设)sin 2,cos 3(θθ为矩形在第一象限的顶点,)20(π<θ<,则122sin 12sin 2cos 34≤=⨯⨯=θθθS 故椭圆内接矩形的最大面积为12.说明:通过椭圆参数方程,转化为三角函数的最值问题,一般地,与圆锥曲线有关的最值问题,用参数方程形式较简便.典型例题十九 例19 已知1F ,2F 是椭圆的两个焦点,P 是椭圆上一点,且︒=∠6021PF F .(1)求椭圆离心率的取值范围;(2)求证21F PF ∆的面积与椭圆短轴长有关. 分析:不失一般性,可以设椭圆方程为12222=+b y a x (0>>b a ),),(11y x P (01>y ). 思路一:根据题设容易想到两条直线的夹角公式,即3160tan 1212=+-=︒PF PF PF PF K K K K ,设),(11y x P ,)0,(1c F -,)0,(2c F ,化简可得03233212121=--+c cy y x .又1221221=+by a x ,两方程联立消去21x 得0323412212=-+b cy b y c ,由],0(1b y ∈,可以确定离心率的取值范围;解出1y 可以求出21F PF ∆的面积,但这一过程很繁.思路二:利用焦半径公式11ex a PF +=,12ex a PF -=,在21F PF ∆中运用余弦定理,求1x ,再利用],[1a a x -∈,可以确定离心率e 的取值范围,将1x 代入椭圆方程中求1y ,便可求出21F PF ∆的面积.思路三:利用正弦定理、余弦定理,结合a PF PF 221=+求解.解:(法1)设椭圆方程为12222=+by a x (0>>b a ),),(11y x P ,)0,(1c F -,)0,(2c F ,0>c ,则11ex a PF +=,12ex a PF -=. 在21F PF ∆中,由余弦定理得))((24)()(2160cos 1122121ex a ex a c ex a ex a -+--++==︒, 解得2222134ea c x -=. (1)∵],0(221a x ∈,∴2222340a ea c <-≤,即0422≥-a c . ∴21≥=a c e . 故椭圆离心率的取范围是)1,21[∈e .(2)将2222134ea c x -=代入12222=+b y a x 得 24213c b y =,即cb y 321=.∴22213332212121b cb c y F F S F PF =⋅⋅=⋅=∆. 即21F PF ∆的面积只与椭圆的短轴长有关.(法2)设m PF =1,n PF =2,α=∠12FPF ,β=∠21F PF , 则︒=+120βα.(1)在21F PF ∆中,由正弦定理得︒==60sin 2sin sin cn m βα. ∴︒=++60sin 2sin sin cn m βα∵a n m 2=+, ∴︒=+60sin 2sin sin 2ca βα,∴2cos 2sin 260sin sin sin 60sin βαβαβα-+︒=+︒==a c e 212cos21≥-=βα.当且仅当βα=时等号成立.故椭圆离心率的取值范围是)1,21[∈e .(2)在21F PF ∆中,由余弦定理得:︒-+=60cos 2)2(222mn n m cmn n m -+=22 mn n m 3)(2-+=∵a n m 2=+,∴mn a c 34422-=,即22234)(34b c a mn =-=.∴23360sin 2121b mn S F PF =︒=∆. 即21F PF ∆的面积与椭圆短轴长有关.说明:椭圆上的一点P 与两个焦点1F ,2F 构成的三角形为椭圆的焦点三角形,涉及有关焦点三角形问题,通常运用三角形的边角关系定理.解题中通过变形,使之出现21PF PF +的结构,这样就可以应用椭圆的定义,从而可得到有关a ,c 的关系式,使问题找到解决思路.典型例题二十例20 椭圆12222=+by a x )0(>>b a 与x 轴正向交于点A ,若这个椭圆上总存在点P ,使AP OP ⊥(O 为坐标原点),求其离心率e 的取值范围.分析:∵O 、A 为定点,P 为动点,可以P 点坐标作为参数,把AP OP ⊥,转化为P 点坐标的一个等量关系,再利用坐标的范围建立关于a 、b 、c 的一个不等式,转化为关于e 的不等式.为减少参数,易考虑运用椭圆参数方程.解:设椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x )0(>>b a ,则椭圆上的点)sin ,cos (θθb a P ,)0,(a A , ∵AP OP ⊥,∴1cos sin cos sin -=-⋅aa b a b θθθθ,即0cos cos )(22222=+--b a b a θθ,解得1cos =θ或222cos b a b -=θ,∵1cos 1<<-θ ∴1cos =θ(舍去),11222<-<-b a b ,又222c a b -= ∴2022<<ca ,∴22>e ,又10<<e ,∴122<<e . 说明:若已知椭圆离心率范围)1,22(,求证在椭圆上总存在点P 使AP OP ⊥.如何证明?。

直线与椭圆关系试题

直线与椭圆关系试题

直线与椭圆一.选择题1.椭圆两焦点F1、F2,过F1作直线AB与椭圆交于A、B两点,△ABF2为正三角形,则椭圆的离心率为()A.B.C.D.2.过椭圆+y2=1的左焦点F1的直线与椭圆相交于A、B两,F2为椭圆的右焦点,则△ABF2的周长为()A.4B.8C.12 D.16二.解答题3.已知椭圆的中心在原点,左焦点F1(﹣2,0),过左焦点且垂直于长轴的弦长为.(1)求椭圆的标准方程;(2)过(﹣3,0)点的直线l与椭圆相交于A,B两点,若以线段A,B为直径的圆过椭圆的左焦点,求直线l的方程.4.如图,椭圆的中心在坐标原点O,左右焦点分别为F1,F2,右顶点为A,上顶点为B,离心率,三角形△BF1F2的周长为16.直线y=kx(k>0)与AB相交于点D,与椭圆相交于E,F两点.(1)求该椭圆的标准方程.(2)求四边形AEBF面积的最大值.、5.已知焦点在x轴上,对称轴为坐标轴的椭圆的离心率为,且以该椭圆上的点和椭圆的两焦点F1,F2为顶点的三角形的周长为6,(1)求椭圆的标准方程;(2)设过点N(1,0)斜率为k直线l与椭圆相交与A、B两点,若,求直线l斜率k的取值范围.6.过椭圆x2+2y2=2的左焦点引一条倾斜角为450的直线,求以此直线与椭圆的两个交点及椭圆中心为顶点的三角形的面积.7.已知椭圆(a>b>0)的离心率为,以该椭圆上的点和椭圆的左、右焦点F1,F2为顶点的三角形的周长为(1)求椭圆的标准方程;(2)设n是过原点的直线,l是与n垂直相交于P点、与椭圆相交于A,B两点的直线,,是否存在上述直线l使成立?若存在,求出直线l的方程;若不存在,请说明理由.8.已知椭圆C:的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为.(1)求椭圆C的方程;(2)已知动直线y=k(x+1)与椭圆C相交于A、B两点,若线段AB中点的横坐标为,求斜率k的值.9.已知椭圆的右焦点F与抛物线y2=4x的焦点重合,短轴长为2.椭圆的右准线l与x轴交于E,过右焦点F的直线与椭圆相交于A、B两点,点C在右准线l上,BC∥x轴.(1)求椭圆的标准方程,并指出其离心率;(2)求证:线段EF被直线AC平分.10.已知椭圆C:(a>b>0)的两个焦点和短轴的两个端点都在圆x2+y2=1上.(1)求椭圆C的方程;(2)若斜率为k的直线过点M(2,0),且与椭圆C相交于A,B两点.试探讨k为何值时,三角形OAB为直角三角形.11.已知椭圆E的右焦点F(1,0),右准线l:x=4,离心率e=.(1)求椭圆E的方程;(2)设A是椭圆E的左顶点,一经过右焦点F的直线与椭圆E相交于P、Q两点(P、Q与A不重合),直线AP、AQ分别与右准线l相交于点M、N,求证:直线PN、直线QM与x轴相交于同一点.12.椭圆C:的离心率为e=,点A是椭圆上的一点,且点A到椭圆C两焦点的距离之和为4.(1)求椭圆C的方程;(2)若P(m,n)(m>0,n>0)为椭圆C上一动点,直线L:mx+4ny﹣4=0与圆C′:x2+y2=4相交于A、B两点,求三角形OAB面积的最大值及此时直线L的方程.13.已知椭圆C的中心在原点,对称轴为坐标轴,焦点在x轴上,右焦点F到其左顶点A的距离为3,到右顶点B 的距离为1.(1)求椭圆C的标准方程;(2)P是椭圆C上不同于A,B的任意一点,直线AP,BP分别与直线x=3相交于点M,N,直线BM与椭圆C 相交于异于点B的另一点Q.(i)求的值;(ii)求证:A,Q,N三点共线.14.已知椭圆E的中心在坐标原点,焦点在x轴上,短轴长与焦距相等,直线x+y﹣1=0与E相交于A,B两点,与x轴相交于C点,且.(1)求椭圆E的方程;(2)如果椭圆E上存在两点M,N关于直线l:y=4x+m对称,求实数m的取值范围.15.已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,最小值为1.(1)求椭圆C的标准方程;(2)若直线l:y=kx+m与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的图过椭圆C的右顶点.求证:直线l过定点,并求出该定点的坐标.参考答案与试题解析一.选择题(共2小题)1.椭圆两焦点F1、F2,过F1作直线AB与椭圆交于A、B两点,△ABF2为正三角形,则椭圆的离心率为()A.B.C.D.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由题意,AB⊥F1F2,则,由此可得a,c的方程,即可求得椭圆的离心率.解答:解:由题意,AB⊥F1F2,则∵,∴∴∴∴e=故选A.点评:本题考查椭圆的几何性质,考查学生分析解决问题的能力,属于中档题.2.过椭圆+y2=1的左焦点F1的直线与椭圆相交于A、B两,F2为椭圆的右焦点,则△ABF2的周长为()A.4B.8C.12 D.16考点:椭圆的简单性质.专题:计算题.分析:首先根据椭圆方程求出椭圆的长半轴a,再根据椭圆的定义得到AF1+AF2=BF1+BF2=2a=4,最后将此式代入到三角形ABF2的周长表达式中,即可得到答案.解答:解:∵椭圆方程为:+y2=1∴椭圆的长半轴a=2由椭圆的定义可得,AF1+AF2=2a=4,且BF1+BF2=2a=4∴△ABF2的周长为AB+AF2+BF2=(AF1+BF1)+(AF2+BF2)=4a=8故选:B点评:本题以椭圆中的三角形为例,考查椭圆的定义、标准方程,以及椭圆简单性质的应用,属于基础题.二.解答题(共13小题)3.已知椭圆的中心在原点,左焦点F1(﹣2,0),过左焦点且垂直于长轴的弦长为.(Ⅰ)求椭圆的标准方程;(Ⅱ)过(﹣3,0)点的直线l与椭圆相交于A,B两点,若以线段A,B为直径的圆过椭圆的左焦点,求直线l的方程.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)设出椭圆方程,表示出通径,由其长等于,联立c=2及a2=b2+c2求解a,b的值,所以椭圆的标准方程可求;(Ⅱ)设出直线l的方程,和椭圆方程联立后化为关于y的一元二次方程,由根与系数的关系得到两交点A,B的纵坐标的和与积,代入向量数量积等于0求解答案.解答:解:(Ⅰ)设椭圆方程为.令x=﹣c,代入椭圆方程得,.所以,又a2=b2+c2,解得.∴椭圆的标准方程为;(Ⅱ)设直线l的方程为x=my﹣3,A(x1,y1),B(x2,y2)联立直线与椭圆的方程,得(m2+3)y2﹣6my+3=0,,由题意可知AF1⊥BF1,即,∴=整理得:(m2+1)y1y2﹣m(y1+y2)+1=0.∴,解得m=.代入△=36m2﹣12(m2+3)=24×3﹣36=36>0.所以直线l的方程为或x﹣+3=0.点评:本题考查了椭圆的标准方程,考查了直线和椭圆的关系,直线和圆锥曲线的关系问题,常采用根与系数的关系来解决,考查了学生的计算能力,属有一定难度题目.4.如图,椭圆的中心在坐标原点O,左右焦点分别为F1,F2,右顶点为A,上顶点为B,离心率,三角形△BF1F2的周长为16.直线y=kx(k>0)与AB相交于点D,与椭圆相交于E,F两点.(1)求该椭圆的标准方程.(2)求四边形AEBF面积的最大值.考点:椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(1)设中心在原点,长轴在x轴上的椭圆方程,焦距为2c.由题意可得a,c的关系,结合a2=b2+c2,可求a,b,c进而可求椭圆的方程;(2)解法一:将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程:(16+25k2)x2=400如图,设E(x1,kx1),F(x2,kx2),表示出四边形AEBF的面积,最后利用基本不等式求S的最大值;解法二:由题设,|BO|=4,|AO|=5.再设y1=kx1,y2=kx2,表示出四边形AEBF的面积为S=S△BEF+S△AEF=4x2+5y2,最后利用基本不等式求其最大值即可.解答:解:(1)设椭圆的方程为,焦距为2c,依题意有,解得∴椭圆的方程为,(5分)(2)解法一:由消去y,得(16+25k2)x2=400如图,设E(x1,kx1),F(x2,kx2),其中x1<x2,∴.①(8分)∵直线AB的方程分别为即4x+5y﹣20=0,∴点E,F到AB的距离分别为,(10分)又,所以四边形AEBF的面积为====,当且仅当16=25k2即时,上式取等号.所以S的最大值为.(14分)解法二:由题设,|BO|=4,|AO|=5.设y1=kx1,y2=kx2,由①得x2>0,y2=﹣y1>0,且故四边形AEBF的面积为S=S△BEF+S△AEF=4x2+5y2(10分)===,当且仅当4x2=5y2时,上式取等号.所以S的最大值为.(14分)点评:本题主要考查了由椭圆的性质求解椭圆方程,直线与椭圆的位置关系的应用,体现了方程的思想的应用,要注意弦长公式的应用.5.已知焦点在x轴上,对称轴为坐标轴的椭圆的离心率为,且以该椭圆上的点和椭圆的两焦点F1,F2为顶点的三角形的周长为6,(1)求椭圆的标准方程;(2)设过点N(1,0)斜率为k直线l与椭圆相交与A、B两点,若,求直线l斜率k的取值范围.考点:直线与圆锥曲线的综合问题;椭圆的标准方程.专题:计算题.分析:(1)直接利用离心率为,以及三角形的周长为6列出关于a,b,c的方程,求出a,b,c即可得椭圆的标准方程;(2)先设直线l的方程为y=k(x﹣1),再把直线方程与椭圆的标准方程联立求出A、B两点的坐标与k之间的关系,代入,整理后即可直线l斜率k的取值范围.解答:解:(1)设椭圆的标准方程为,依题有2a+2c=6,即a+c=6,又因为,所以a=2,c=1,∴b2=a2﹣c2=3,所以椭圆的标准方程为(2)设过点N(1,0)的斜率为k直线l的方程为y=k(x﹣1),A(x1,y1),B(x2,y2)由可得(3+4k2)x2﹣8k2x+4k2﹣12=0∴,∵=(1+k2)[x1•x2﹣(x1+x2)+1]=,∴,∴点评:本题主要考查直线与圆锥曲线的综合问题.在解决直线与圆锥曲线的位置关系时,韦达定理是一个必不可少的工具,比如本题的第二问.6.(2007•汕头二模)过椭圆x2+2y2=2的左焦点引一条倾斜角为450的直线,求以此直线与椭圆的两个交点及椭圆中心为顶点的三角形的面积.考点:直线与圆锥曲线的关系.专题:综合题;圆锥曲线的定义、性质与方程.分析:化椭圆的方程为标准方程,求出椭圆的左焦点坐标,写出直线l的方程,和椭圆方程联立后求出两个交点的横坐标,由此可得三角形是以半短轴为底的三角形,直接利用面积公式求面积.解答:解:由x2+2y2=2,得椭圆方程,∴a2=2,b2=c2=1,∴c=1,∴左焦点为F1(﹣1,0),∴过左焦点F1的直线为y=tan45°(x+1),即y=x+1.代入椭圆方程得3x2+4x=0,∴,∴所求三角形以半短轴为底,其面积为.点评:本题考查了直线和圆锥曲线的关系,考查了方程思想方法,训练了学生的计算能力,是中档题.7.已知椭圆(a>b>0)的离心率为,以该椭圆上的点和椭圆的左、右焦点F1,F2为顶点的三角形的周长为(Ⅰ)求椭圆的标准方程;(Ⅱ)设n是过原点的直线,l是与n垂直相交于P点、与椭圆相交于A,B两点的直线,,是否存在上述直线l使成立?若存在,求出直线l的方程;若不存在,请说明理由.考点:直线与圆锥曲线的综合问题;直线的一般式方程;椭圆的标准方程.专题:综合题;压轴题.分析:(Ⅰ)设椭圆的半焦距为c,由题意知,由此能求出椭圆的标准方程.(Ⅱ)设A,B两点的坐标分别为(x1,y1),(x2,y2),假设使成立的直线l存在,当l不垂直于x轴时,设l的方程为y=kx+m,由l与n垂直相交于P点且得,由,,知x1x2+y1y2=0.将y=kx+m代入椭圆方程,得(1+2k2)x2+4kmx+(2m2﹣8)=0,由韦达定理能够导出k2=﹣1,即此时直线l不存在;当l垂直于x轴时,满足的直线l的方程为x=1或x=﹣1,由此能够导出此时直线l不存在.所以使成立的直线l不存在.解答:解:(Ⅰ)设椭圆的半焦距为c,由题意知所以,又a2=b2+c2,因此b=2故椭圆的标准方程为(6分)(Ⅱ)设A,B两点的坐标分别为(x1,y1),(x2,y2),假设使成立的直线l存在,(ⅰ)当l不垂直于x轴时,设l的方程为y=kx+m,由l与n垂直相交于P点且得,即m2=k2+1∵,,∴==1+0+0﹣1=0,即x1x2+y1y2=0将y=kx+m代入椭圆方程,得(1+2k2)x2+4kmx+(2m2﹣8)=0由求根公式可得,0=x1x2+y1y2=x1x2+(kx1+m)(kx2+m)=x1x2+k2x1x2+km(x1+x2)+m2=(1+k2)x1x2+km(x1+x2)+m2因此(1+k2)(2m2﹣8)﹣4k2m2+m2(1+2k2)=0将m2=k2+1代入上式并化简得k2=﹣1,即此时直线l不存在;(10分)(ⅱ)当l垂直于x轴时,满足的直线l的方程为x=1或x=﹣1,当x=1时,A,B,P的坐标分别为,∴,∴当x=﹣1时,同理可得,矛盾,即此时直线l不存在综上可知,使成立的直线l不存在.(14分)点评:本题考查直线和圆锥曲线的位置关系,解题时要认真审题,注意计算能力的培养,提高解题能力和解题技巧.8.已知椭圆C:的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为.(Ⅰ)求椭圆C的方程;(Ⅱ)已知动直线y=k(x+1)与椭圆C相交于A、B两点,若线段AB中点的横坐标为,求斜率k的值.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:综合题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)利用椭圆的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为,建立方程,即可求椭圆C的方程;(Ⅱ)将y=k(x+1)代入椭圆方程,利用韦达定理,及线段AB中点的横坐标为,可求斜率k的值.解答:解:(Ⅰ)由题意,满足a2=b2+c2,,…(3分)解得,则椭圆方程为…(6分)(Ⅱ)将y=k(x+1)代入中得(1+3k2)x2+6k2x+3k2﹣5=0…(8分)△=36k4﹣4(3k2+1)(3k2﹣5)=48k2+20>0,所以…(10分)因为AB中点的横坐标为,所以,解得…(12分)点评:本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查学生的计算能力,属于中档题.9.已知椭圆的右焦点F与抛物线y2=4x的焦点重合,短轴长为2.椭圆的右准线l与x轴交于E,过右焦点F的直线与椭圆相交于A、B两点,点C在右准线l上,BC∥x轴.(1)求椭圆的标准方程,并指出其离心率;(2)求证:线段EF被直线AC平分.考点:圆锥曲线的综合;椭圆的标准方程.专题:计算题;综合题;分类讨论.分析:(1)先设出椭圆的标准方程,根据抛物线的方程求得其焦点坐标,进而求得椭圆的c,短半轴b求得a,则椭圆的方程和离心率可得.(2)根据(1)中的椭圆方程求得其准线l的方程,求得点E的坐标,设EF的中点为M,则M的坐标可得,先看当AB垂直于x轴,则设出点A,B,C的坐标,求得AC中点的坐标,判断出线段EF的中点与AC的中点重合;再看AB不垂直于x轴,则可设直线AB的方程与椭圆方程联立消去y,根据韦达定理表示出x1+x2和x1x2的表达式,可表示出AM和CM的斜率,求得二者相等,进而推断出A、M、C三点共线,即AC过EF的中点M,最后综合证明题设.解答:解:(1)由题意,可设椭圆的标准方程为(a>b>0)∵y2=4x的焦点为F(1,0)∴c=1,又2b=2,∴b=1,a2=b2+c2=2,所以,椭圆的标准方程为其离心率为e=(2)证明:∵椭圆的右准线1的方程为:x=2,∴点E的坐标为(2,0)设EF的中点为M,则M(,0)若AB垂直于x轴,则A(1,y1),B(1,﹣y1),C(2,﹣y1)∴AC的中点为N(,0)∴线段EF的中点与AC的中点重合,∴线段EF被直线AC平分,若AB不垂直于x轴,则可设直线AB的方程为y=k(x﹣1),k≠0,A(x1,y1),B(x2,y2)则C(2,﹣y2)把y=k(x﹣1)代入得(1+2k2)x2﹣4k2x+2(k2﹣1)=0则有x1+x2=,x1x2=∴k AM==,k CM=,∵k AM﹣k CM=2k\frac{({x}_{1}﹣1)﹣({x}_{2}﹣1)}{2{x}_{1}﹣3}2({x}_{1}﹣3)=0=∴k AM=k CM∴A、M、C三点共线,即AC过EF的中点M,∴线段EF被直线AC平分.点评:本题主要考查了圆锥曲线的综合运用.考查了学生综合分析问题和分类讨论思想的运用.属中档题.10.已知椭圆C:(a>b>0)的两个焦点和短轴的两个端点都在圆x2+y2=1上.(I)求椭圆C的方程;(Ⅱ)若斜率为k的直线过点M(2,0),且与椭圆C相交于A,B两点.试探讨k为何值时,三角形OAB为直角三角形.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)由题意可知b和c,利用隐含条件求出a,则椭圆方程可求;(Ⅱ)设出直线AB的方程,联立直线方程和椭圆方程,由判别式大于0求出k的范围,利用根与系数关系得到A与B的横坐标的和与积,讨论O与A(或B)为直角顶点两种情况,O为直角顶点时,直接由列式求解k的值,若A(或B)为直角顶点时,由斜率之积等于﹣1求出OA的斜率,由两直线联立解出A点(或B)点坐标,代入椭圆方程求得k的值.解答:解:(Ⅰ)因为焦点与短轴的端点都在圆x2+y2=1上,∴c=1,b=1,∴a2=b2+c2=1+1=2.则椭圆方程为:;(Ⅱ)由已知直线AB的斜率存在,设直线AB的方程为y=k(x﹣2).联立,得(1+k2)x2﹣8k2x+8k2﹣2=0.由△=64k4﹣4(1+k2)(8k2﹣2)>0,得.所以k.设A(x1,y1),B(x2,y2).则.若O为直角顶点,则,即x1x2+y1y2=0.y1y2=k(x1﹣2)k(x2﹣2).所以上式可整理得:.解得k=.满足k.若A或B为直角顶点,不妨设A为直角顶点,,则A满足,解得代入椭圆方程得k4+2k2﹣1=0.解得k=.满足k.综上,k=或k=时三角形OAB为直角三角形.点评:本题考查了椭圆的标准方程,考查了直线和圆锥曲线的关系,考查了分类讨论的数学思想方法哈数学转化思想方法,训练了平面向量在解题中的应用,考查了学生的计算能力,是难题.11.已知椭圆E的右焦点F(1,0),右准线l:x=4,离心率e=.(1)求椭圆E的方程;(2)设A是椭圆E的左顶点,一经过右焦点F的直线与椭圆E相交于P、Q两点(P、Q与A不重合),直线AP、AQ分别与右准线l相交于点M、N,求证:直线PN、直线QM与x轴相交于同一点.考点:直线与圆锥曲线的综合问题;椭圆的标准方程.专题:圆锥曲线中的最值与范围问题.分析:(1)设椭圆E的标准方程为(a>b>0).由题意可得c=1,利用离心率公式及a2=b2+c2,即可.(2)设P(x1,y1),Q(x2,y2),由于直线l的斜率不为0,可设直线l的方程为my=x﹣1,与椭圆方程联立得到根与系数的关系.利用点斜式分别写出直线AP、AQ的方程即可得出点M,N的坐标.只要证明k BM﹣k QB为0,即可得到三点Q,B,M共线,即直线QM与x轴相交于右顶点B.同理直线PN与x轴相交于右顶点B,所以直线PN、直线QM与x轴相交于同一点B.解答:解:(1)设椭圆E的标准方程为(a>b>0).由题意可得,解得.∴椭圆E的标准方程为.(2)设P(x1,y1),Q(x2,y2),由于直线l的斜率不为0,可设直线l的方程为my=x﹣1.联立.消去x得到(3m2+4)y2+6my﹣9=0.∴,.直线AP的方程为,令x=4,得到y=,∴M.直线AQ的方程为:,令x=4,得到,∴N.∴k BM﹣k QB=﹣==,其分子=3y1(my2+1﹣2)﹣y2(my1+1+2)=2my1y2﹣3(y1+y2)==0,∴k BM﹣k QB=0,即k BM=k QB,∴三点Q,B,M共线,即直线QM与x轴相交于右顶点B.同理直线PN与x轴相交于右顶点B,所以直线PN、直线QM与x轴相交于同一点B.点评:本题中考查了椭圆的方程及其性质、直线与椭圆相交问题转化为一元二次方程的根与系数的关系、利用斜率相等证明三点共线等基础知识与基本技能,考查了分析问题和解决问题的能力、推理能力和计算能力.12.椭圆C:的离心率为e=,点A是椭圆上的一点,且点A到椭圆C两焦点的距离之和为4.(1)求椭圆C的方程;(2)若P(m,n)(m>0,n>0)为椭圆C上一动点,直线L:mx+4ny﹣4=0与圆C′:x2+y2=4相交于A、B两点,求三角形OAB面积的最大值及此时直线L的方程.考点:椭圆的标准方程;直线与圆的位置关系.专题:计算题.分析:(1)依题意可求得a=2,再利用其离心率e===可求得b,从而可求得椭圆C的方程;(2)设圆心O到直线L的距离为d,可求得d=,结合n∈(0,1],可求得d的范围;利用基本不等式可求得S△OAB最大值为2,继而可得n,m的值,从而可求得直线L的方程.解答:解:(1)由椭圆定义知2a=4,∴a=2,又e===得b=1,∴所求椭圆方程为+y2=1.(2)设圆心O到直线L的距离为d,则d=,又有+n2=1,所以d==,又n∈(0,1],∴d∈[1,2),S△OAB=|AB|•d=•d=≤=2(当d2=4﹣d2即d=时S△OAB最大),∴S△OAB最大值为2,d=⇒=,n>0,∴n=,m2=4﹣4n2=,又m>0,∴m=.所以直线L的方程为x+y﹣12=0,即x+y﹣3=0.点评:本题考查椭圆的标准方程,考查直线与圆的位置关系,突出考查基本不等式的应用,考查分析、运算的能力,属于难题.13.已知椭圆C的中心在原点,对称轴为坐标轴,焦点在x轴上,右焦点F到其左顶点A的距离为3,到右顶点B 的距离为1.(I)求椭圆C的标准方程;(Ⅱ)P是椭圆C上不同于A,B的任意一点,直线AP,BP分别与直线x=3相交于点M,N,直线BM与椭圆C 相交于异于点B的另一点Q.(i)求的值;(ii)求证:A,Q,N三点共线.考点:直线与圆锥曲线的综合问题;椭圆的简单性质.专题:圆锥曲线中的最值与范围问题.分析:(I)设椭圆C的标准方程为(a>b>0),利用右焦点F到其左顶点A的距离为3,到右顶点B的距离为1,建立方程,求出几何量,即可求椭圆C的标准方程;(Ⅱ)(i)设出直线AP,BP的方程,求出M,N的坐标,利用向量的数量积公式,结合P在椭圆上,即可求的值;(ii)设出直线MB,AN的方程,求出交点坐标,验证在椭圆上,即可证明A,Q,N三点共线.解答:(I)解:设椭圆C的标准方程为(a>b>0)∵右焦点F到其左顶点A的距离为3,到右顶点B的距离为1,∴,∴a=2,c=1∴b2=a2﹣c2=3∴椭圆C的标准方程为;(Ⅱ)设P(x0,y0)(﹣2<x0<2),则直线AP:,联立直线AP与直线x=3,可得M(3,);直线BP:,联立直线AP与直线x=3,可得N(3,),(i)解:∵F(1,0),∴∴=4+∵∴∴=4+=;(ii)证明:直线MB的方程为y=(x﹣2),直线AN的方程为y=(x﹣2)联立直线MB,NA,可得交点坐标为(,)∵∴∴直线MB,NA的交点在椭圆上,∴A,Q,N三点共线.点评:本题考查椭圆的标准方程,考查向量知识的运用,考查直线的方程,考查交点坐标的求解,考查学生的计算能力,综合性强.14.已知椭圆E的中心在坐标原点,焦点在x轴上,短轴长与焦距相等,直线x+y﹣1=0与E相交于A,B两点,与x轴相交于C点,且.(Ⅰ)求椭圆E的方程;(Ⅱ)如果椭圆E上存在两点M,N关于直线l:y=4x+m对称,求实数m的取值范围.考点:椭圆的标准方程;直线与圆锥曲线的综合问题.专题:综合题;转化思想;待定系数法.分析:(Ⅰ)根据短轴与焦距相等得到b与c相等,且a等于b,则b2=c2,a2=2c2设出椭圆的标准方程,设出已知直线与E的交点A与B的坐标,然后把直线方程代入到设出的椭圆方程中,消去y得到关于x的一元二次方程,利用韦达定理得到两个之和和两根之积的关系式,同时利用求出C的坐标,和设出的A和B的坐标,由得到A与B横坐标之间的关系式,三者联立即可求出A与B的横坐标及c的值,把c的值代入所设的椭圆方程即可得到椭圆E的方程;(Ⅱ)设出椭圆E上两点M与N的坐标,把设出的两点坐标分别代入到(Ⅰ)求出的椭圆方程得到两个关系式并设出MN的中点坐标,把两个关系式相减并利用中点坐标公式化简即可得到MN中点横纵坐标之间的关系式,然后根据M与N关于直线l对称得到MN的中点在直线l上,把MN的中点坐标代入直线l的方程又得到中点横纵坐标之间的关系式,两个关系式联立即可求出横纵坐标关于m的中点坐标,然后根据中点在椭圆内部,所以把中点坐标代入椭圆方程后其值小于1,列出关于m的不等式,求出不等式的解集即可得到m的取值范围.解答:解:(Ⅰ)设所求的椭圆E的方程为(c>0),A(x1,y1)、B(x2,y2),将y=x+1代入椭圆得3x2﹣4x+2﹣2c2=0,∵,又C(1,0),∴,∴,∴所求的椭圆E的方程为;(Ⅱ)设M(x1,y1)、N(x2,y2),则,,又设MN的中点为(x0,y0),则以上两式相减得:,⇒,又点(x0,y0)在椭圆内,∴,即,化简得:9m2﹣8<0,因式分解得:(3m+2)(3m﹣2)<0,解得:.点评:此题考查学生会求直线与曲线的交点坐标,掌握椭圆的简单性质,会利用待定系数法求椭圆的标准方程,掌握一点在椭圆的内部所满足的条件,灵活运用中点坐标公式及对称知识解决实际问题,是一道综合题.15.已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,最小值为1.(1)求椭圆C的标准方程;(2)若直线l:y=kx+m与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的图过椭圆C的右顶点.求证:直线l过定点,并求出该定点的坐标.考点:直线与圆锥曲线的综合问题;椭圆的标准方程.专题:综合题;圆锥曲线的定义、性质与方程.分析:(1)由已知椭圆C上的点到焦点距离的最大值为3,最小值为1,可得:a+c=3,a﹣c=1,从而可求椭圆的标准方程;(2)直线与椭圆方程联立,利用以AB为直径的圆过椭圆的右顶点D(2,0),结合根的判别式和根与系数的关系求解,即可求得结论.解答:(1)解:由题意设椭圆的标准方程为,由已知椭圆C上的点到焦点距离的最大值为3,最小值为1,可得:a+c=3,a﹣c=1,∴a=2,c=1∴b2=a2﹣c2=3∴椭圆的标准方程为;(2)证明:设A(x1,y1),B(x2,y2)联立,消去y可得(3+4k2)x2+8mkx+4(m2﹣3)=0,则又因为以AB为直径的圆过椭圆的右顶点D(2,0),∴k AD k BD=﹣1,即∴y1y2+x1x2﹣2(x1+x2)+4=0,∴∴7m2+16mk+4k2=0解得:,且均满足3+4k2﹣m2>0当m1=﹣2k时,l的方程y=k(x﹣2),直线过点(2,0),与已知矛盾;当时,l的方程为,直线过定点所以,直线l过定点,定点坐标为点评:本题考查椭圆的性质及应用,考查直线与椭圆的位置关系,考查韦达定理的运用,综合性强,属于中档题.。

椭圆与直线间的关系例题祥解

椭圆与直线间的关系例题祥解

椭圆与直线间的关系例题祥解(1)相离→①相离无解⇔+==+⎧⎨⎪⎩⎪x a y b y kx b 22221(2)相切①相切有一解⇔+==+⎧⎨⎪⎩⎪x a y b y kx b 22221②过椭圆上一点,的椭圆的切线方程为P x y xx a yy b00002021()+= ()312222相交有两解⇔+==+⎧⎨⎪⎩⎪x a y b y kx b①弦长公式: ||()()AB x x y y =-+-122122=++-14212212kx x x x ()=+-1212k x x || =+12k a ·∆||例题1:椭圆141622=+y x 上的点到直线02y 2x =-+的最大距离是( ). A .3 B .11 C .22 D .10法一,参数方程法设椭圆上的点为P (4cos θ,2sin θ),P 点到直线的距离为:10522252)4sin(24524)cos 4sin(852)22)cos(22sin(2(452sin 4)2sin(421|2sin 4cos 4|d 22=--≤-θ+π=-πθ+π=-θ-θ+πθ+θ+π=-θ+θ+π=+-θ+θ=法二,数形结合,求平行线间距离设与直线02y 2x =-+平行的直线为x+2y+m=0,与椭圆联立得,016y 4)m y 2(22=-+--,即 0m 16m y 4y 822=+-+,到直线02y 2x =-+的最大距离点是切点,上述方程的判别式0512m 16m 32512m 16222=+-=-+=∆,∴32m 2=,24m ±=两平行线间的距离为:10524221242d 22=--≤+-=即24m =时,距离最大,为10练习1. 已知椭圆,在椭圆上求一点,使到直线:x y P P l x y 228840+=-+= 的距离最小并求出距离的最小值(或最大值)? 解一 设,由参数方程得P (cos sin )()22θθ则d =-+=--|cos sin ||sin()|2242342θθθϕ 其中,当时,tan min ϕθϕπ=-===2221222d 此时,cos sin sin cos θϕθϕ=-=-==22313即点坐标为,P P ()-8313解二 因与椭圆相离,故把直线平移至,使与椭圆相切,则与的距离,l l l l l l '''即为所求的最小值,切点为所求点最大('')l →设:,则由消得l x y m x y m x y x '-+=-+=+=⎧⎨⎩0088229280449802222y my m m m -+-==--=,令×∆() 解之得±,为最大,由图得m m =-=-333()此时,,由平行线间距离得P l ()min -=831322附录:1. 点到直线的距离公式: 点),(000y x P 到直线0:=++C By Ax l的距离为:2200||BA C By Ax d +++=2. 两平行线0:11=++C By Ax l 、0:22=++C By Ax l 间的距离公式为:2221||BA C C d +-=3. 三角函数公式:sina+sinb=2sin 2b a +cos 2b a - sin(2π+a) = cosa 4. 椭圆参数方程如图以原点为圆心,分别以a 、b (a>b>0)为半径作两个圆,点B 是大圆半径OA 与小圆的交点,过点A 作AN ⊥Ox ,垂足为N ,过点B 作BN ⊥AN ,垂足为M ,求当半径OA 绕O 旋转时点M 的轨迹的参数方程。

直线与椭圆的位置关系典型例题及答案

直线与椭圆的位置关系典型例题及答案

直线与椭圆的位置关系典型例题1.设椭圆C :22221(0)x y a b a b +=>>的左焦点为F ,过点F 的直线与椭圆C 相交于A ,B 两点,直线l的倾斜角为60o,2AF FB = .(1) 求椭圆C 的离心率;(2)如果|AB|=154,求椭圆C 的方程. 设1122(,),(,)A x y B x y ,由题意知1y <0,2y >0.(Ⅰ)直线l 的方程为()y x c -,其中c联立2222),1y x c x y ab ⎧=-⎪⎨+=⎪⎩得22224(3)30a b y cy b ++-=解得12y y ==因为2AF FB =,所以122y y -=.即2=得离心率 23c e a ==. ……6分(Ⅱ)因为21AB y y =-2221534a b=+.由23c a =得b =.所以51544a =,得a=3,b =椭圆C 的方程为22195x y +=. ……12分2、在平面直角坐标系xoy 中,如图,已知椭圆15922=+y x 的左、右顶点为A 、B ,右焦点为F 。

设过点T (m t ,)的直线TA 、TB 与椭圆分别交于点M ),(11y x 、),(22y x N ,其中m>0,0,021<>y y 。

(1)设动点P 满足422=-PB PF ,求点P 的轨迹; (2)设31,221==x x ,求点T 的坐标; (3)设9=t ,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关).23、设椭圆2222:1(0)x y C a b a b+=>>过点M,且着焦点为1(F(Ⅰ)求椭圆C 的方程;(Ⅱ)当过点(4,1)P 的动直线l 与椭圆C 相交与两不同点,A B 时,在线段AB 上取点Q,满足=,证明:点Q 总在某定直线上.4、已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OA OB + 与(3,1)a =-共线.(Ⅰ)求椭圆的离心率;(Ⅱ)设M 为椭圆上任意一点,且 (,)OM OA OB R λμλμ=+∈ ,证明22μλ+为定值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【直线与椭圆】典例精讲
已知直线:1l y kx =+与椭圆2
2
:14y C x +=相交于两点,A B .
(1)若AB 的中点的横坐标等于
14,求k 的值;
(2)若AB 的中点在直线14x =
上,求k 的值;
(3)若AB 的中点在直线12y =
上,求k 的值;
(4)若AB 的中点的横坐标大于
15
,求k 的取值范围;
(5)求AB 的中点横坐标的取值范围;
(6)求A B x x 的取值范围;
(7)若AB 的中点在圆2212
x y +=上,求k 的值;
(8)若AB 的中点与短轴右顶点的连线斜率为1-,求k 的值;
(9)若0OA OB =,求k 的值;
(10)设点(2,0)N ,若0NA NB =,求k 的值;
(11)设点(2,0)N ,若ABN 为直角三角形,是否与(13)同解,为什么?
(12)设1(,0)2
P ,若PA PB =,求k 的值;
(13)设过AB 的中点且与l 垂直的直线为m ,求直线m 与x 轴交点横坐标的取值范围;
(14)设直线l 与y 轴交于点M ,若2AM MB =,求k 的值;
(15)若AB 求k的值;
(16)求OAB面积的最大值及此时k的值;
1. 如图,,A B 是椭圆2
2:13
x W y +=的两个顶点,过点A 的直线与椭圆W 交于另一点C . (Ⅰ)当AC 的斜率为3
1时,求线段AC 的长; (Ⅱ)设D 是AC 的中点,且以AB 为直径的圆恰过点D . 求直线AC 的斜率.
2. 已知直线:l y x n =+与椭圆:G 22(3)(3)m x my m m -+=-交于两点,B C .
(Ⅰ)若椭圆G 的焦点在y 轴上,求m 的取值范围;
(Ⅱ)若(0,1)A 在椭圆上,且以BC 为直径的圆过点A ,求直线l 的方程.
3. 已知椭圆)0(12222>>=+b a b
y a x 的长轴长为22,离心率22=e ,过右焦点F 的直线l 交椭圆于P ,Q 两点。

(Ⅰ)求椭圆的方程;(Ⅱ)当直线l 的斜率为1时,求△POQ 的面积;(Ⅲ)若以OP ,OQ 为邻边的平行四边形是矩形,求满足该条件的直线l 的方程。

x y O A B C D
4. 已知椭圆22
143
x y +=,经过点(0,3)A 的直线与椭圆交于,P Q 两点. ( I ) 若||||PO PA =,求点P 的坐标;
( II ) 若=OAP OPQ S S △△,求直线PQ 的方程.
5. 如图,已知椭圆2222:1(0)x y C a b a b +=>>,一个顶点是(0,1)B . (Ⅰ)求椭圆C 的方程;
(Ⅱ)设P ,Q 是椭圆C 上异于点B 的任意两点,且BP BQ ⊥.试问:直线PQ 是否恒过一定点?若是,求出该定点的坐标;若不是,说明理由.
6. 椭圆W 的中心在坐标原点O ,以坐标轴为对称轴,且过点0(,其右焦点为10F (,).过原点O 作直线1l 交椭圆W 于,A B 两点,过F 作直线2l 交椭圆W 于,C D 两点,且AB //CD .
(Ⅰ)求椭圆W 的标准方程;
(Ⅱ)求证:2
4AB CD =.
7. 已知椭圆C :22221(0)+=>>x y a b a b 的离心率为21,其短轴的一个端点到它的左焦点的距离为2,直线kx y l =:与椭圆C 交于N M ,两点,P 为椭圆C 上异于,M N 的一点. (Ⅰ)求椭圆C 的方程;
(Ⅱ)若直线,PM PN 的斜率都存在,判断,PM PN 的斜率之积是否为定值?若是,求出此定值,若不是,请说明理由;
(Ⅲ)求PMN ∆的面积的最大值.。

相关文档
最新文档