数学建模答案3(新)

合集下载

数学建模竞赛参考答案

数学建模竞赛参考答案

数学建模竞赛参考答案数学建模竞赛参考答案数学建模竞赛是一项旨在培养学生综合运用数学知识和解决实际问题能力的竞赛活动。

参赛者需要通过分析问题、建立数学模型、求解问题等环节,最终给出合理的答案和解决方案。

在这篇文章中,我们将为大家提供一些数学建模竞赛的参考答案,希望能够给参赛者们提供一些启示和帮助。

第一题:某公司的销售额预测问题描述:某公司希望通过过去几年的销售数据,预测未来一年的销售额。

请根据给定的销售数据,建立合适的数学模型,并给出未来一年的销售额预测值。

解答思路:根据问题描述,我们可以将销售额看作是时间的函数,即销售额随时间变化。

可以使用回归分析的方法来建立数学模型。

首先,我们将销售额作为因变量,时间作为自变量,通过拟合曲线来预测未来一年的销售额。

我们可以选择多项式回归模型来拟合曲线。

通过将时间作为自变量,销售额作为因变量,进行多项式回归分析,可以得到一个多项式函数,该函数可以描述销售额随时间变化的趋势。

然后,我们可以使用该多项式函数来预测未来一年的销售额。

将未来一年的时间代入多项式函数中,即可得到未来一年的销售额预测值。

第二题:城市交通流量优化问题描述:某城市的交通流量问题日益突出,如何优化交通流量成为了当地政府亟待解决的难题。

请根据给定的交通数据和道路拓扑结构,建立合适的数学模型,并给出交通流量优化的方案。

解答思路:根据问题描述,我们可以将城市的交通流量看作是网络中的流量分配问题。

可以使用网络流模型来建立数学模型。

首先,我们需要将城市的道路网络抽象成一个有向图,节点表示交叉口,边表示道路,边上的权值表示道路的容量。

然后,我们可以使用最小费用最大流算法来求解交通流量优化的方案。

该算法可以通过调整道路上的流量分配,使得整个网络中的流量达到最大,同时满足道路容量的限制。

通过计算最小费用最大流,可以得到交通流量优化的方案。

最后,我们可以根据最小费用最大流算法的结果,对交通流量进行合理调控。

例如,可以调整信号灯的时长,优化交通信号控制系统,减少交通拥堵现象,提高交通效率。

数学建模知到章节答案智慧树2023年山东师范大学

数学建模知到章节答案智慧树2023年山东师范大学

数学建模知到章节测试答案智慧树2023年最新山东师范大学第一章测试1.人类研究原型的目的主要有()。

参考答案:优化;预测;评价;控制2.概念模型指的是以图示、文字、符号等组成的流程图形式对事物的结构和机理进行描述的模型。

()参考答案:对3.数学建模的全过程包括()。

参考答案:模型应用;模型检验;模型求解;模型建立4.下面()不是按问题特性对模型的分类。

参考答案:交通模型5.椅子放稳问题中,如果椅子是长方形的,则不能在不平的地面上放稳。

()参考答案:错第二章测试1.山崖高度的估计模型中,测量时间中需要考虑的时间包括()。

参考答案:物体下落的时间;声音返回的时间;人体的反应时间2.落体运动模型当阻力趋于零时变为自由落体模型。

()参考答案:对3.安全行车距离与()有关。

参考答案:车辆速度;车辆品牌;驾驶员水平4.人体反应时间的确定一般使用测试估计法进行。

()参考答案:对5.当车速为80-120千米/小时时,简便的安全距离判断策略是()。

参考答案:等于车速1.存贮模型的建模关键是()。

参考答案:一个周期内存贮量的确定2.下面对简单的优化模型的描述()是正确的。

参考答案:没有约束条件的优化模型3.商品生产费用因为数值太小,所以不需要考虑。

()参考答案:错4.同等条件下,允许缺货时的生产周期比不允许缺货时的生产周期()。

参考答案:偏大5.开始灭火后,火灾蔓延的速度会()。

参考答案:变小1.如果工人工作每小时的影子价格是2元,则雇佣工人每小时的最高工资可以是3元。

()参考答案:错2.下面关于线性规划的描述正确的是()。

参考答案:可行域是凸多边形;最优解可以在可行域内部取得;目标函数是线性的;约束条件是线性的3.在牛奶加工模型中,牛奶资源约束是紧约束。

()参考答案:对4.在牛奶加工模型中,A1的价格由24元增长到25元,应该生产计划。

()参考答案:错5.求整数规划时,最优解应该采用()获得。

参考答案:使用整数规划求解方法重新求解1.人口过多会带来()。

数学建模题目附标准答案

数学建模题目附标准答案
数学建模的几个过程 1 模型准备:了解问题的实际背景,明确其实际意义,掌握对象的
各种信息。用数学语言来描述问题。 2 模型假设:根据实际对象的特征和建模的目的,对问题进行必要
的简化,并用精确的语言提出一些恰当的假设。猫虿驢绘燈鮒诛髅貺庑。 3 模型建立:在假设的基础上,利用适当的数学工具来刻划各变量
现在,我们来证明:如果上述假设条 件成立,那么答案是肯定的。以长方桌的中 心为坐标原点作直角坐标系如图所示,方桌 的四条腿分别在 A、B、C、D 处,A、B,C、D 的初始位置在与 x 轴平行,再假设有一条在 x 轴上的线 ab,则 ab 也与 A、B,C、D 平行。当方桌绕中心 0 旋转时, 对角线 ab 与 x 轴的夹角记为 。矚慫润厲钐瘗睞枥庑赖。
本题就是让我们根据本题就是让我们根据本题就是让我们根据aa来确定每日进购数来确定每日进购数来确定每日进购数nn基本假设基本假设基本假设111假设报童现在要与报社签定一个长期的订购合同所以要确假设报童现在要与报社签定一个长期的订购合同所以要确假设报童现在要与报社签定一个长期的订购合同所以要确定每日的订购量定每日的订购量定每日的订购量nn假设报纸每日的需求量是假设报纸每日的需求量是假设报纸每日的需求量是rr但报童是一个初次涉足卖报行业但报童是一个初次涉足卖报行业但报童是一个初次涉足卖报行业的菜鸟毫无经验无法掌握需求量的菜鸟毫无经验无法掌握需求量的菜鸟毫无经验无法掌握需求量rr的分布函数的分布函数的分布函数只知道每份报纸只知道每份报纸只知道每份报纸的进价的进价的进价bbb售价售价售价aa及退回价及退回价及退回价cc333假设每日的定购量是假设每日的定购量是假设每日的定购量是nn444报童的目的是尽可能的多赚钱
最后重点分析(2)式。
显然式中 r 表需求量,n 表订购量,(b-c)表示退回一份儿报纸赔

数学建模复习资料参考答案

数学建模复习资料参考答案

《数学建模》复习资料参考答案一、不定项选择1、建模能力包括 A、B、C、D 。

A、理解实际问题的能力B、抽象分析问题的能力C、运用工具知识的能力D、试验调试的能力2、按照模型的应用领域分的模型有 A、E 。

A、传染病模型B、代数模型C、几何模型D、微分模型E、生态模型3、对黑箱系统一般采用的建模方法是 C 。

A、机理分析法B、几何法C、系统辩识法D、代数法4、一个理想的数学模型需满足 A、B 。

A、模型的适用性B、模型的可靠性C、模型的复杂性D、模型的美观性5、按照建立模型的数学方法分的模型有 B、C、D 。

A、传染病模型B、代数模型C、几何模型D、微分模型E、生态模型6、下列说法正确的有 A、C 。

A、评价模型优劣的唯一标准是实践检验。

B、模型误差是可以避免的。

C、生态模型属于按模型的应用领域分的模型。

D、白箱模型意味着人们对原型的内在机理了解不清楚。

7、力学中把 A 的量纲作为基本量纲。

A、质量、长度、时间B、密度、时间、长度C、质量、密度D、时间、长度8、下列说法错误的有 B 。

A、评价模型优劣的唯一标准是实践检验。

B、模型误差是可以避免的。

C、生态模型属于按模型的应用领域分的模型。

D、白箱模型意味着人们对原型的内在机理了解清楚。

9、建立数学模型的方法和步骤有ABCDE。

A、模型假设。

B、模型求解。

C、模型构成。

D、模型建立。

E、模型分析。

10、模型按照替代原型的方式可以简单分为AB。

A、形象模型B、抽象模型C、生态模型D、白箱模型11、形象模型可以具体分为ABC。

A.直观模型B、物理模型C、分子结构模型等;12、抽象模可以具体分为ABC。

A 思维模型B符号模型C数学模型D分子结构模型13建模的一般原则为ABCD。

A目的性原则B简明性原则C真实性原则D全面性原则;14 模型的结构大致分为ABC。

A、灰箱模型B、白箱模型C、黑箱模型15A、建立递阶层次结构模型;B、构造出各层次中的所有判断矩阵;C、层次单排序及一致性检验;D、层次总排序及一致性检验。

数学建模答案 (3)

数学建模答案 (3)

一、解释下列词语,并举例说明(每小题满分5分,共15分)1.模型答:为了某种特定的目的将原型的某一部分信息简化、压缩、提炼而构成的原型替代物。

如地图。

苯分子图等。

2.数学模型答:由数字、字母、或其他数学符号组成的,描述现实对象(原型)数量规律的数学结构。

3.抽象模型答:通过人们对原型的反复认识,将获取的知识以经验的形式直接存储在大脑中的模型称之谓思维模型。

从实际的人、物、事和概念中抽取所关心的共同特性,忽略非本质的细节把这些特性用各种概念精确地加以描述。

二、简答题(每小题满分8分,共24分)1.模型的分类按照模型替代原型的方式,模型可以简单分为形象模型和抽象模型两类。

形象模型:直观模型,物理模型,分子模型等;抽象模型:思维模型,符号模型,数学模型等。

2.数学建模的基本步骤(1) 建模准备:确立建模课题的过程;(2) 建模假设:根据建模的目的将原型进行抽象,简化.有目的性的原则。

简明性原则,真实性原则和全面性原则。

(3) 构造模型:在模型假设的基础上,进一步分析建模假设的各条款,选择恰当的数学工具和构造模型的方法对其进行表征,构造出根据已知条件和数据,分析模型的特征和模型的结构特点,设计或选择求解模型的数学刻画实际问题的数学模型;(4) 模型求解:构造数学模型之后,方法和算法,并借助计算机完成对模型的求解;(5) 模型分析:根据建模的目的的要求,对模型求解的数字结果,或进行稳定性分析,或进行系统参数的灵敏度分析,或进行误差分析等;(6) 模型检验:模型分析符合要求之后,还必须回到客观中去对模型进行检验,看它是否符合客观实际;(7) 数学应用:模型应用是数学建模的宗旨,将其用于分析,研究和解决实际问题,充分发挥建模在生产和科研中的特殊作用。

3.数学模型的作用数学模型的根本作用在于他将客观原型化繁为简,化难为易,便于人们采用定量的方法去分析和解决实际问题。

正应为如此,数学建模在科学发展,科学预见,科学预测,科学管理,科学决策,驾控市场乃至个人高效工作和生活等众多方面发挥着特殊的重要作用。

数学建模答案(完整版)

数学建模答案(完整版)

1 建立一个命令M 文件:求数60.70.80,权数分别为1.1,1.3,1.2的加权平均数。

在指令窗口输入指令edit ,打开空白的M 文件编辑器;里面输入s=60*1.1+70*1.3+80*1.2;ave=s/3然后保存即可2 编写函数M 文件SQRT.M;函数 x=567.889与0.0368处的近似值(保留有()f x =效数四位)在指令窗口输入指令edit ,打开空白的M 文件编辑器;里面输入syms x1 x2 s1 s2 zhi1 zhi2 x1=567.889;x2=0.368;s1=sqrt(x1);s2=sqrt(x2);zhi1=vpa(s1,4)zhi2=vpa(s2,4)然后保存并命名为SQRT.M 即可3用matlab 计算的值,其中a=2.3,b=4.89.()f x >> syms a b >> a=2.3;b=4.89;>> sqrt(a^2+b^2)/abs(a-b)ans = 2.08644用matlab 计算函数在x=处的值.()f x =3π>> syms x >> x=pi/3;>> sqrt(sin(x)+cos(x))/abs(1-x^2)ans = 12.09625用matlab 计算函数在x=1.23处的值.()arctan f x x =+>> syms x >> x=1.23;>> atan(x)+sqrt(log(x+1))ans = 1.78376 用matlab 计算函数在x=-2.1处的值.()()f x f x ==>> syms x >> x=-2.1;>> 2-3^x*log(abs(x))ans =1.92617 用蓝色.点连线.叉号绘制函数在[0,2]上步长为0.1的图像.>> syms x y>> x=0:0.2:2;y=2*sqrt(x);>> plot(x,y,'b.-')8 用紫色.叉号.实连线绘制函数在上步长为0.2的图像.ln 10y x =+[20,15]-->> syms x y>> x=-20:0.2:-15;y=log(abs(x+10));>> plot(x,y,'mx-')ln 10[20,y x =+--9 用红色.加号连线 虚线绘制函数在[-10,10]上步长为0.2的图像.sin(22x y π=->> syms x y;>> x=-10:0.2:10;y=sin(x/2-pi/2);>> plot(x,y,'r+--')10用紫红色.圆圈.点连线绘制函数在上步长为0.2的图像.sin(2)3y x π=+[0,4]πsin(2)sin()[0,4]322x y x y πππ=+=->> syms x y >> x=0:0.2:4*pi;y=sin(2*x+pi/3);>> plot(x,y,'mo-.')11 在同一坐标中,用分别青色.叉号.实连线与红色.星色.虚连线绘制y=与.y =>> syms x y1 y2>> x=0:pi/50:2*pi;y1=cos(3*sqrt(x));y2=3*cos(sqrt(x));>> plot(x,y1,'cx-',x,y2,'r*--')12 在同一坐标系中绘制函数这三条曲线的图标,并要求用两种方法加234,,y x y x y x ===各种标注.234,,y x y x y x ===>> syms x y1 y2 y3;>> x=-2:0.1:2;y1=x.^2;y2=x.^3;y3=x.^4;plot(x,y1,x,y2,x,y3);13 作曲线的3维图像2sin x t y t z t ⎧=⎪=⎨⎪=⎩>> syms x y t z >> t=0:1/50:2*pi;>> x=t.^2;y=sin(t);z=t;>> stem3(x,y,z)14 作环面在上的3维图像(1cos )cos (1cos )sin sin x u v y u v z u =+⎧⎪=+⎨⎪=⎩(0,2)(0,2)ππ⨯>> syms x y u v z>> u=0:pi/50:2*pi;v=0:pi/50:2*pi;>>x=(1+cos(u)).*cos(v);y=(1+cos(u)).*sin(v);z=sin(u);>> plot3(x,y,z)15 求极限0lim x +→0lim x +→>> syms x y >> y=sin(2^0.5*x)/sqrt(1-cos(x));>> limit(y,x,0,'right') ans = 216 求极限1201lim (3x x +→>> syms y x >> y=(1/3)^(1/(2*x));>> limit(y,x,0,'right') ans = 017求极限lim x >> syms x y >> y=(x*cos(x))/sqrt(1+x^3);>> limit(y,x,+inf) ans = 018 求极限21lim (1x x x x →+∞+->> syms x y >> y=((x+1)/(x-1))^(2*x);>> limit(y,x,+inf) ans = exp(4)19 求极限01cos 2lim sin x xx x →->> syms x y >> y=(1-cos(2*x))/(x*sin(x));>> limit(y,x,0) ans = 220 求极限 x →>> syms x y >> y=(sqrt(1+x)-sqrt(1-x))/x;>> limit(y,x,0) ans = 121 求极限2221lim 2x x x x x →+∞++-+>> syms x y >> y=(x^2+2*x+1)/(x^2-x+2);>> limit(y,x,+inf) ans = 122 求函数y=的导数5(21)arctan x x -+>> syms x y >> y=(2*x-1)^5+atan(x);>> diff(y) ans = 10*(2*x - 1)^4 + 1/(x^2 + 1)23 求函数y=的导数2tan 1x x y x=+>> syms y x>> y=(x*tan(x))/(1+x^2);>> diff(y)ans =tan(x)/(x^2 + 1) + (x*(tan(x)^2 + 1))/(x^2 + 1) - (2*x^2*tan(x))/(x^2 + 1)^224 求函数的导数3tan x y e x -=>> syms y x >> y=exp^(-3*x)*tan(x)>> y=exp(-3*x)*tan(x) y = exp(-3*x)*tan(x) >> diff(y) ans = exp(-3*x)*(tan(x)^2 + 1) - 3*exp(-3*x)*tan(x)25 求函数y=在x=1的导数22ln sin 2x x π+>> syms x y >> y=(1-x)/(1+x);>> diff(y,x,2) ans = 2/(x + 1)^2 - (2*(x - 1))/(x + 1)^3 >> syms x y >> y=2*log(x)+sin(pi*x/2)^2;>> dxdy=diff(y) dxdy = 2/x + pi*cos((pi*x)/2)*sin((pi*x)/2)zhi=subs(dxdy,1)zhi = 226 求函数y=的二阶导数01cos 2lim sin x x x x →-11x x-+>> syms x y>> y=(1-x)/(1+x);>> diff(y,x,2) ans = 2/(x + 1)^2 - (2*(x - 1))/(x + 1)^327 求函数的导数;>> syms x y >> y=((x-1)^3*(3+2*x)^2/(1+x)^4)^0.2;>> diff(y) ans = (((8*x + 12)*(x - 1)^3)/(x + 1)^4 + (3*(2*x + 3)^2*(x - 1)^2)/(x + 1)^4 - (4*(2*x + 3)^2*(x - 1)^3)/(x + 1)^5)/(5*(((2*x + 3)^2*(x - 1)^3)/(x + 1)^4)^(4/5))28在区间()内求函数的最值.,-∞+∞43()341f x x x =-+>> f='-3*x^4+4*x^3-1';>> [x,y]=fminbnd(f,-inf,inf)x =NaN y = NaN >> f='3*x^4-4*x^3+1';>> [x,y]=fminbnd(f,-inf,inf)x = NaN y = NaN29在区间(-1,5)内求函数发的最值.()(f x x =->> f='(x-1)*x^0.6';>> [x,y]=fminbnd(f,-1,5)x =0.3750y = -0.3470>> >> f='-(x-1)*x^0.6';>> [x,y]=fminbnd(f,-1,5)x = 4.9999y = -10.505930 求不定积分(ln 32sin )x x dx -⎰(ln 32sin )x x dx -⎰>> syms x y >> y=log(3*x)-2*sin(x);>> int(y) ans = 2*cos(x) - x + x*log(3) + x*log(x)31求不定积分2sin x e xdx ⎰>> syms x y>> y=exp(x)*sin(x)^2;>> int(y)ans =-(exp(x)*(cos(2*x) + 2*sin(2*x) - 5))/1032. 求不定积分 >> syms x y >> y=x*atan(x)/(1+x)^0.5;>> int(y)Warning: Explicit integral could not be found. ans = int((x*atan(x))/(x + 1)^(1/2), x)33.计算不定积分2(2cos )x x x e dx --⎰>> syms x y >> y=1/exp(x^2)*(2*x-cos(x));>> int(y)Warning: Explicit integral could not be found. ans = int(exp(-x^2)*(2*x - cos(x)), x)34.计算定积分10(32)xe x dx -+⎰>> syms x y >> y=exp(-x)*(3*x+2);>> int(y,0,1) ans = 5 - 8*exp(-1)10(32)x e x dx -+⎰35.计算定积分0x →120(1)cos x arc xdx+⎰>> syms y x>> y=(x^2+1)*acos(x);>> int(y,0,1)ans =11/936.计算定积分10cos ln(1)x x dx +⎰>> syms x y >> y=(cos(x)*log(x+1));>> int(y,0,1)Warning: Explicit integral could not be found. ans = int(log(x + 1)*cos(x), x == 0..1)37计算广义积分;2122x x dx +∞++-∞⎰>> syms y x >> y=(1/(x^2+2*x+2));>> int(y,-inf,inf) ans = pi 38.计算广义积分;20x dx x e +∞-⎰>> syms x y>> y=x^2*exp(-x);>> int(y,0,+inf)ans =2。

数学建模第三版习题答案

数学建模第三版习题答案

数学建模第三版习题答案数学建模是一门应用数学的学科,通过建立数学模型来解决实际问题。

《数学建模第三版》是一本经典的教材,其中的习题对于学生来说是非常重要的练习材料。

在这篇文章中,我将为大家提供《数学建模第三版》习题的答案,希望能够帮助大家更好地理解和应用数学建模的知识。

第一章:数学建模的基础知识1. 数学建模的定义:数学建模是指将实际问题转化为数学问题,并通过建立数学模型来解决问题的过程。

2. 数学建模的基本步骤:问题的分析与理解、建立数学模型、求解数学模型、模型的验证与应用。

3. 数学建模的分类:确定性建模和随机建模。

4. 数学建模的特点:抽象性、理想化、简化性和应用性。

第二章:线性规划模型1. 线性规划模型的基本形式:目标函数和约束条件都是线性的。

2. 线性规划模型的求解方法:图形法、单纯形法和对偶理论。

3. 线性规划模型的应用:生产计划、资源分配、运输问题等。

第三章:整数规划模型1. 整数规划模型的基本形式:目标函数是线性的,约束条件中包含整数变量。

2. 整数规划模型的求解方法:分枝定界法、割平面法、动态规划法等。

3. 整数规划模型的应用:项目选择、装配线平衡问题、旅行商问题等。

第四章:动态规划模型1. 动态规划模型的基本思想:将一个大问题分解为若干个子问题,通过求解子问题的最优解来求解整个问题的最优解。

2. 动态规划模型的求解方法:递推法、备忘录法和自底向上法。

3. 动态规划模型的应用:背包问题、最短路径问题、最长公共子序列问题等。

第五章:非线性规划模型1. 非线性规划模型的基本形式:目标函数和约束条件中包含非线性函数。

2. 非线性规划模型的求解方法:牛顿法、拟牛顿法、全局优化法等。

3. 非线性规划模型的应用:经济增长模型、生态系统模型、医学诊断模型等。

第六章:图论模型1. 图论模型的基本概念:顶点、边、路径、回路等。

2. 图论模型的求解方法:深度优先搜索、广度优先搜索、最短路径算法等。

数学建模习题3答案

数学建模习题3答案

2.某种山猫在较好的,中等及较差的自然环境下,年平均增长率分别是1.68%,0.55%,-4.5%。

假设开始时有100只山猫,按以下情况分别讨论山猫数量逐年变化的过程及趋势:(1)三种自然环境下25年的变化过程,结果要列表并图示;解:首先讨论紫檀环境下山猫的数量的演变。

记k年山猫的数量为x k,设自然条件下的年平均增长率为r(相当于假设年增长率r为常数),则列式得:X k+1=x k*(1+r),k=0,1,2,……解为等比数列X k=x0*(1+r)k ,k=0,1,2,……在以下的Matlab的程序里,分别取r=0.0168,0.0055,-0.045,取初始值x0 =100,用循环语句迭代计算出25年不同自然环境下山猫的数量的演变过程,将结果列表并绘图:n=25;r=[.0168,.0055,-.045];x=[100,100,100];for k=1:nx(k+1,:)=x(k,:).*(1+r);enddisp('自然条件下(b=0)山猫的数量的演变')%列表自然条件下(b=0)山猫的数量的演变disp(' 年较好中等较差') %每列项目的名称年较好中等较差disp([(0:n)',round(x)]) %舍入为整数,列表0 100 100 1001 102 101 962 103 101 913 105 102 874 107 102 835 109 103 796 111 103 767 112 104 728 114 104 699 116 105 6610 118 106 6311 120 106 6012 122 107 5813 124 107 5514 126 108 5215 128 109 5016 131 109 4817 133 110 4618 135 110 4419 137 111 4220 140 112 4021 142 112 3822 144 113 3624 149 114 3325 152 115 32plot(0:n,x(:,1),'k^',0:n,x(:,2),'ko',0:n,x(:,3),'kv')legend('r=0.0168','r=0.0055','r=-0.045',2)axis([-1,n+1,0,200])title('自然条件下(b=0)山猫数量的演变')xlabel('第k年'),ylabel('山猫的数量')(2)如果每年捕获三只,山猫的数量将会如何变化?会灭绝吗?如果每年捕获一只呢?解:讨论每年捕获三只条件下山猫数量的演变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、解释下列词语,并举例说明(每小题满分5分,共15分)1.模型模型指为了某种特定目的将原型的某一部分信息简化、压缩、提炼而构造成的原型替代物。

如地图、苯分子图。

2.数学模型由数字、字母或其他数学符号组成的,描述现实对象(原型)数量规律的数学结构。

具体地说,数学模型也可以描述为:对于现实世界的一个特定对象,为了一个特定的目的,根据特有的内在规律,做出一些简化假设后,运用适当的数学工具,得到的一个数学结构陈伟数学模型。

如概率的功利化定义。

3.抽象模型抽象模型是指通过人们对模型的反复观察、理解、认识,从获取到的信息中抽出共同的、本质性的特征,舍弃其非本质的特征来建立一个合理的模型。

二、简答题(每小题满分8分,共24分)1.模型的分类按照模型替代原型的方式,模型可以简单分为形象模型和抽象模型两类。

形象模型:直观模型、物理模型、分子结构模型等;抽象模型:思维模型、符号模型、数学模型等。

2.数学建模的基本步骤(1)建模准备:确立建模课题的过程;(2)建模假设:根据建模的目的对原型进行抽象、简化。

有目的性原则、简明性原则、真实性原则和全面性原则;(3)构造模型:在建模假设的基础上,进一步分析建模假设的各条款,选择恰当的数学工具和构造模型的方法对其进行表征,构造出根据已知条件和数据,分析模型的特征和模型的结构特点,设计或选择求解模型的数学刻划实际问题的数学模型;(4)模型求解:构造数学模型之后,找出解决问题的方法和算法,并借助计算机完成对模型的求解;(5)模型分析:根据建模的目的要求,对模型求解的数字结果,或进行稳定性分析,或进行系统参数的灵敏度分析,或进行误差分析等;(6)模型检验:模型分析符合要求后,还必须回到客观实际中去对模型进行检验,看它是否符合客观实际;(7)模型应用:模型应用是数学建模的宗旨,将其应用于分析、研究和解决实际问题,充分发挥数学模型在生产和科研中的特殊作用。

3.数学模型的作用数学模型的根本作用在于它将客观原型化繁为简、化难为易,便于人们采用定量的方法去分析和解决实际问题。

正因为如此,数学模型在科学发展、科学预见、科学预测、科学管理、科学决策、驾控市场经济乃至个人高效工作和生活等众多方面发挥着特殊的重要作用。

数学不仅是人们认识世界的有力工具,而且对于人的素质培养,无论是在自然科学,还是社会科学中都随时发生着作用,使其终生受益。

特别是,当代计算机科学的发展和广泛应用,使得数学模型的方法如虎添翼,加速了数学向各个学科的渗透,产生了众多的边缘学科。

数学模型还物化于各种高新科技之中,从家用电器到天气预报,从通信到广播电视,从核电站到卫星,从新材料到生物工程,高科技的高精度、高速度、高安全、高质量、高效率等特点无一不是通过数学模型和数学方法并借助计算机的计算、控制来实现的。

三、解答题(满分20分)A 题(9n, 9n+8)小童父亲要到美国访问,授人之托希望多带点东西。

中国民航的《国际旅游须知》中有关“计件免费行李额”中规定“适应于中美、中加国际航线上的行李运输……。

经济和旅游折扣票价,免费交运的行李件数为两件,每件箱体三边之和不得超过62英寸,但两件之和不得超过107英寸,每件的最大重量不得超过32公斤。

”试问这两件箱子的长、宽、高各为多少可达最大体积?请你到市场上看一看,商店出售的行李箱的尺寸与你的计算结果是否接近?为什么?解:x1 , y1, z1分别表示第一个箱子的长、宽、高,x2, y2, z2分别表示表示第一个箱子的长、宽、高. 于是建立数学模型为MaxV = x1 y1z1+ x2y2z2x 1+ y1+ z1≤ 62,x 2+ y2+ z2≤ 62,max{x1 , y1, z1} + max{x2, y2, z2} ≤ 107,x 1≥ 0, y1≥ 0, z1≥ 0, x2≥ 0, y2≥ 0, z2≥ 0.1= y1= z2= x2= y2= z2=64时,体积最大.四、综合题(21分)L. 跑步中的数学问题(7n+2, 7n+6, 7n+4)跑步是基本活动技能,是人体快速移动的一种动作姿势。

跑步和走路的主要区别在于两腿在交替落地过程中有一个腾空阶段。

跑步是最简便而易见实效的体育健身内容。

近二三十年来,跑步已成为国内外千百万人参加的群众健身运动, 是深受广大群众所欢迎的健身项目。

人们普遍认为跑步是最好的健身方法。

每个正常人都经历过跑步,有人会疲惫不堪。

我们的问题是:怎样跑不能使我们消耗的能量尽可能的少?1.论文题目《关于跑步能量消耗的数学模型》(2()2'21v m mg d h W W W s f ++=+= (3) 用 L 表示人的身高,不妨设 m 、m ′ 与 L 3 成正比, a 与 L 成正比,即L C a L C m L C m 33231,',===模型的解法与结果重心离开 B 上升到最高点所需要的时间vb t 2= 因此,最高的高度为222821vgb gt h ==所以()222'218v m v bmg b a W ++= 又因为完成一个周期跑步的时间为(a + b)/v,从而单位时间所消耗的能量为)(2'832b a v m v bmg v ba W P ++=+= 再由第二假设,令b = ja ,于是()j L v C v L j C P ++=123544 再令dP ,有吗?2.地面凹凸坡面是连续变化的,沿任何方向都不会出现间断(如没有象台阶那样的情况),即地面可看作数学上的连续曲面;3.相对椅脚的间距和椅子腿的长度而言,地面是相对平坦的,即使椅子在任何位置至少有三条腿同时着地;4.挪动仅只是绕一个定点的旋转。

假设1显然是合理的。

否则即便放在平面上也不会是椅子放稳。

假设2相当于给出了椅子能够放稳的必要条件,因为如果地面高度不连续(比如在有j 阶或裂缝的地方)是无法使椅子四只脚同时着地。

假设3是要排除地面上与椅脚间距和椅子腿长度的尺寸大小相当的范围内,出现深沟或凸峰(即使连续变化的),将使椅子三只脚也无法同时着地。

三、建模与分析首先,根据假设1,椅脚连线呈正方形,而正方形以中心为对称,即正方形绕中心的旋转可以表示椅子位置的改变,于是可以用旋转角度这一变量表示椅子的位置。

如图1,椅脚连线为正方形ABCD ,在图1所示的坐标系下对角线AC 与ox 轴重合,椅子绕中心o 旋转角度θ后,正方形转至的位置,如图2所示,即对角线AC 与ox 轴的夹角表示了椅子的位置。

正方形ABCD 绕O 点旋转其次,要把椅子着地用数学符号表示出来。

如果用某个变量表示椅脚与地面的竖值距离,那么当这个距离为零时就是椅脚着地了。

椅子在不同的位置时,椅脚与地面的距离不尽相同,所以这个距离是变量θ的函数。

虽然椅子有四只脚,因而有四个距离,即每一个椅脚和地面都有一个距离。

但由假设3以及正方形关于中心的对成性,只要设两个距离就可以了。

设A 、C 两脚与地面的距离之和为f(θ) ,B 、D 两脚与地面的距离之和为 g(θ), 显然f(θ) 、 g(θ) ≥0。

由假设2知f(θ) 、 g(θ)都是连续函数。

在由假设3知,椅子在任何位置上至少有三只脚着地,所以对于任意的θ, f(θ) 、 g(θ)中至少有一个为零。

当θ= 0 时,不妨设f(θ) > 0、 g(θ)= 0。

另一方 面,由对称性知道,旋转p/2的角度后,相当于AC 和BD 互换一个位置.故有f(p/2)=0,g(p/2)>0,这样,改变椅子位置使四只脚同时着地,就归结为证明如下数学命题。

命题1已知f(θ)和g(θ)是θ的连续函数,对任意的θ,有f(θ). g(θ)=0 ,且f(0 )>0 、g(0)=0,g(π/2)>0 ,f(π/2 )=0,则存在θ∈[0 , (π/2 ],使得f( )= g( ) =0 .可以看到,引入变量θ和函数f(θ) 、g(θ),就把模型的假设条件和椅脚同时着地的结论用简单而精确的数学语言表示出来,从而构成了这个实际问题的数学模型。

四、模型求解令h(θ)= f(θ)–g(θ),则h(0)>0和h(π/2)<0.由 f (θ) ,g (θ) 的连续性知 h (θ) 为[0 ,π/2] 上连续函数,根据区间上连续函数的介质性定理, 必存在一个∈[0 , π/2],使h( )=0,即f ( ) = g( ). 因为f(θ) . g(θ)=0,所以f( ) = g( ) = 0.五、模型的分析及推广1. 模型分析 θ0θ0θ0θθ0θ0θ模型的优点在于用一元变量表示了椅子的位置,用的两个函数表示了椅子四只脚与地面的距离,充分运用了正方形关于中心的对称性,使得问题得到了极大的简化,并得到了逻辑上的求解。

缺点在于运用了正方形关于中心的对称性,使模型的适应范围受到了一定的局限,如对一般四边形是否也适应,未能作出回答;而且也未能考虑到平行移动的情形。

2. 如果椅脚连线呈矩形,其结论也成立。

事实上,如图3建立坐标系,A 、B 、C 、D 表示椅子的四只脚.假设条件只需将正方形假设条件中的正方形改为矩形。

设f(θ)表示相邻两脚A 、B 与地面的距离之和,g(θ)表示相邻两脚C 、D 两脚与地面的距离之和。

由矩形对称性知道,旋 转180°度的角后,相当于AB 和CD 互换一个位置。

这样,改变椅子位置使四只脚同时着地就归结为证明如下数学命题:命题2已知f(θ)和g(θ)是θ的连续函数, 对任意的θ,有f(θ). g(θ)=0,且f(0 )>0 、g(0) =0 ,f(π)=0 、g(π)>0,则存在θ∈[0,π],使得f( )= g( ) =0。

3. 模型的进一步分析与推广由于正方形和矩形的任意一个顶点通过适当的旋转,可到达每一个顶点,即就是说正方形和矩形的四个顶点绕其中心旋转一周所得轨迹是同一个圆周。

这也就是正方形和矩形的四个顶点共圆,可通过适当的旋转将椅子放平稳。

那么,椅子四脚连线所构成的四边形是圆内接四边形,是否一定可通过适当的旋转可将椅子放平稳?反之,通过适当的旋转可将椅子放平稳,椅子四脚连线是否一定是圆内接四边形?我们先看一个实例,设地面为一个足够大的球面部分,其方程为:x2 + y2 + (z . 10000)2 = 100002 (z < 10000) θ0θ0θ0θ0椅子四只脚构成一菱形ABCD ,对角线的长度分别为 AC=8,BD=6。

根据球面的特点,要使得菱形ABCD 的顶 点至少有三个在球面上,则其三个顶点必在同一个圆上。

不妨取菱形 ABCD 所在的平面与球面的截痕及菱形,在 xoy 面上投影图如示图,其圆周的半径为R=25/8,2R=25/4<B=AC.这说明A,C 两点必有一点在球面之外。

相关文档
最新文档