运筹学基础及应用第五版 胡运权PPT

合集下载

运筹学胡运权第五版课件(第二章)分析

运筹学胡运权第五版课件(第二章)分析

2 x3 4 x4 4 x2 x3 x4 6
x1 0, x2,x3 0, x4无约束
对偶问题:max w 5 y1 4 y2 6 y3
y1 2 y2
2
s.t.
y1 3 y1
2 y2
y3 y3
3 5
y1 4 y2 y3 1
y1 0, y2 0, y3无约束
zmax=wmin .
证: 设X*是原问题的最优解,则所有检验数都非正。
即 = C- CB B-1 A 0 ∴ CB B-1 A C 令 CBB-1 = Y* T,有 Y*T A C, 转置得A TY* CT -----------------------① 又因为 S′ = -CBB-1 = -Y * T 0,所以Y* = -( S′)T 0------②
4x1 2x2 6x3 24
s.t.
3x1 6x2 4x3 15
5x2 3x3 30
x1 0, x2无约束,x3 0
解:第一步 改写为 min 的基本形式
令x1 x1,x2 x2 x2
min z 7x1 (4 x2 x2) 3x3
4
x1
(2 x2
x2)
6 x3
24
证明: 由弱对偶性: 当X 和Y 分别是P和D的可行解时,CX bTY 若CX ,则不存在Y 使得CX bTY; 若bTY ,则不存在X 使得CX bTY。
注:逆定理不成立。 即“如果原问题无可行解,那么对偶问题有无界解”不成立。 此时,对偶问题可能有无界解,也可能无可行解。
4、强对偶性(对偶定理) 若原问题有最优解,则对偶问题一定有最优解,且
由①②知Y*是对偶问题的可行解,
而 CX* = CB b ′,其满足: CX* =CB (B-1 b) = CB B-1b = Y*T b= b TY* 由最优性(性质2),∴ Y*是对偶问题的最优解。

运筹学胡运权第五版课件

运筹学胡运权第五版课件
运筹学胡运权第五 版课件大纲
单击此处添加副标题
汇报人:
目录
添加目录项标题 运筹学基础知识 整数规划 图论与网络优化
课件概览 线性规划 动态规划
01
添加章节标题
02
课件概览
课件简介
课程名称:运筹学胡运权第五版课件 课程内容:包括线性规划、非线性规划、整数规划、动态规划、图与网络优化等 课程目标:帮助学生掌握运筹学的基本理论和方法提高分析和解决问题的能力 课程特点:理论与实践相结合注重案例分析和实际问题的解决
最小生成树问题:在无向图中寻找最小生 成树
最大流问题:在流网络中寻找最大流
最小费用流问题:在流网络中寻找最小费 用流
网络可靠性问题:评估网络可靠性提高网 络稳定性
网络优化算法:如Dijkstr算法、Floyd算 法、Kruskl算法等
网络优化算法
最短路径算 法:Dijkstr
算法、 Floyd算法

图论与网络优化应用案例
物流网络优化:通过图论方 法优化物流网络降低物流成 本
社交网络优化:通过图论方 法优化社交网络提高社交网
络的稳定性和可靠性
交通网络优化:通过图论方 法优化交通网络提高交通效 率
电力网络优化:通过图论方 法优化电力网络提高电力系
统的稳定性和可靠性
感谢观看
汇报人:
课件结构
• 运筹学概述 • 线性规划 • 非线性规划 • 动态规划 • 随机规划 • 决策分析 • 网络规划 • 排队论 • 库存论 • 博弈论 • 运筹学应用案例 • 运筹学发展前景 • 运筹学与其他学科的关系 • 运筹学学习方法与技巧
课件特点
内容全面:涵盖了运筹学的基本概念、理论和方法 结构清晰:按照章节进行划分便于理解和掌握 实例丰富:提供了大量的实例和案例便于理解和应用 习题丰富:提供了大量的习题和练习便于巩固和提高

运筹学基础及应用第五版 胡运权第三章

运筹学基础及应用第五版 胡运权第三章

例3
设有三个化肥厂供应四个地区的农用化肥,假
定等量的化肥在这些地区使用效果相同,已知各化肥厂 年产量,各地区年需要量及从各化肥厂到各地区单位化 肥的运价表如下,试决定使总的运费最节省的化肥调拨 方案。
解:这是一个产销不平衡的运输问题,总产量为
160万t,四个地区最低需求为110万t ,最高需求为无限。 当其它地区都是满足最低需求时,第Ⅳ地区每年最多能 分配到60万t ,这样最高需求就是210万t,大于产量。 为建立产销平衡表,在表中增加一假想化肥厂D , 其年产量为50万t 。并把各地区的最低需求和额外需求 区分开来,建立产销平衡表。
例1
现在把问题概括一下,在线性规划中我们研究这样 一类运输问题:有某种物资需要调运,这种物资的计量
单位可以是重量、包装单位或其他。已知有m个地点可以
供应该种物资(以后通称产地,用 i 1,, m 表示),有 n个地点需要该种物资(以后通称销地,用 j 1,, n 表示),又知这m个产地的可供量(以后通称产量)为 (可通写为 a i ),n个销地的需要量(以后 a1 , a2 ,, am
第三章 运输问题
§1.运输问题的典例和数学模型
§ 2.表上作业法
§ 3.产销不平衡的运输问题及其应用
§1.运输问题的典例和数学模型
某食品公司经销主要产品之一是糖果,它下面 设有三个加工厂,每天的糖果生产量分别为: A1 7t , A3 9t。该公司把这些糖果分别运往四个地区 A2 4t , 的门市部销售,各地区每天的销售量: B1 3t , B2 6t, B4 6t 。已知从每个加工厂到各销售门市部每 B3 5t, 吨糖果的运价如下表: 单位:元/t
产 销 平 衡 表
当一个产地的产量不能运往某一个销地的时候,认为 运价为M(表示任意大正数)。额外需求部分的销量,由于 是否满足都可以,所以假想厂运往这些销地的运价定为 0。

《运筹学基础及应用》胡运权主编,哈工大出版社,完整版ppt课件

《运筹学基础及应用》胡运权主编,哈工大出版社,完整版ppt课件

真实系统
数据准备
系统分析 问题描述
模型建立 与修改
模型求解 与检验
结果分析与 实施
本课程授课方式与考核
讲授为主,结合习题作业
学科总成绩
平时成绩 (40%)
期末成绩 (60%)
课堂考勤 (50%)
平时作业 (50%)
Page 8
运筹学在工商管理中的应用
Page 9
运筹学在工商管理中的应用涉及几个方面: 1. 生产计划 2. 运输问题 3. 人事管理 4. 库存管理 5. 市场营销 6. 财务和会计
基可行解
线性规划问题的数学模型
Page 30
例1.4 求线性规划问题的所有基矩阵。
maxZ 4x1 2x2 x3
5x110x1x2
x3 6x2
x4 2x3
3 x5
2
x
j
0,
j
1,
,5
解: 约束方程的系数矩阵为2×5矩阵
5 1 A1 0 6
1 2
1 0
0 1
r(A)=2,2阶子矩阵有10个,其中基矩阵只有9个,即
5 1
1 1 5 0 1 1
B 1 106 B 2 6 2 B 3 101 B 4 6 0
5 1 1 0
1 1 1 0
1 0
B 5 100 B 6 2 1 B 7 2 0 B 8 6 1 B 9 0 1
图解法
Page 31
线性规划问题的求解方法
一般有 两种方法
图解法 单纯形法
两个变量、直角坐标 三个变量、立体坐标
优化炼油程序及产品供应、配送和营销
每年节约成本600万美元 每年节约成本7000万
优化商业用户的电话销售中心选址

(完整版)运筹学胡运权第五版课件(第1章)

(完整版)运筹学胡运权第五版课件(第1章)
四运筹学研究的基本特点?系统的整体优化?多学科的配合?模型方法的应用五五运筹学研究的基本步骤运筹学研究的基本步骤?分析与表述问题?建立数学模型?对问题求解?对模型和模型导出的解进行检验?建立对解的有效控制?方案的实施第一章线性规划及单纯形法linearprogrammingandsimplexmethodggp11一般线性规划问题的数学模型11问题的提出例1用一块边长为a的正方形铁皮做一个无盖长方体容器应如何裁剪可使做成的容器的容积最大
(3)L.P. 的顶点与基可行解一一对应。
§1.3 单纯形法(Simplex Method)原理
3-1 预备知识:凸集与顶点
(1)凸集:对于集合C中任意两点连线段上的点,若全在C内, 则称集合C为凸集。
直观特征:图形从内部向外部凸出。
凸集
非凸集
(2)顶点:凸集中不在任意两点的连线段内部的点。
X1
转化为
(2)若约束条件为不等式,
则依次引入松弛变量或剩余变量(统称为松弛变量),
转化为等式约束条件。
约束为≥不等式,减去松弛变量,化为等式约束条件;
多 退
约束为≤不等式,加上松弛变量,化为等式约束条件。
少 补
注意:松弛变量在目标函数中系数全为0。
例:max z=2 x1+3 x2
2 x1+2 x2 12
s.t.
4x1
16
5 x2 15
x10, x2 0
标准化
max z 2x1 3x2 0x3 0x4 0x5
2x1 2x2 x3
12
s.t.
4
x1
5 x2
x4 16 x5 15
x1, x2 , x3, x4 , x5 0
(3)若决策变量xj≤0,则令

运筹学胡运权第五版(第6章)课件

运筹学胡运权第五版(第6章)课件
零图: 边集为空集的图。
运筹学胡运权第五版(第6章)
2、图的阶:即图中的点数。 例如 右图为一个五阶图
3、若图中边e= [vi,vj] ,则vi,vj称 为e的端点,
e称为vi,vj的关联边。 若vi与vj是一条边的两个端
点,则称vi与vj相邻; 若边ei与ej有公共的端点,
则称ei与ej相邻。
e8
1、图(graph):由V,E构成的有序二元组,用以表示对 某些现实对象及其联系的抽象,记作 G={V,E}。 其中V称为点集,记做V={v1,v2,···,vn}
E称为边集,记做E={e1,e2,···,em}
点(vertex):表示所研究的对象,用v表示; 边(edge):表示对象之间的联系,用e表示。 网络图(赋权图): 点或边具有实际意义(权数)的图, 记做N。
路:点不能重复的链。
圈:起点和终点重合的链。
回路:起点和终点重合的路。
连通图:任意两点之间至少存在一条链的图。
完全图:任意两点之间都有边相连的简单图。
n阶完全图用Kn表示,边数=
C 2 n(n 1)
n

2
注意:完全图是连通图,但连通图不一定是完全图。
运筹学胡运权第五版(第6章)
v1 e4
v4 e5 v5
依次下去,vn必然与前面的某个点相邻,图中有圈,矛盾!
注意:树去掉悬挂点和悬挂边后余下的子图还是树。
运筹学胡运权第五版(第6章)
(2)n阶树必有n-1条边。
证明(归纳法): 当n=2时,显然;
设n=k-1时结论成立。 当n=k时,树至少有一个悬挂点。
去掉该悬挂点和悬挂边,得到一个k-1阶的树,它有 k-2条边,则原k阶树有k-1条边。
7、已知图G1={V1,E1}, G2={V2,E2}, 若有V1V2,E1E2,则称G1是G2的一个子图; 若V1=V2,E1E2且 E1≠E2 ,则称G1是G2的一个部分图。

运筹学基础及应用第五版 胡运权资料

运筹学基础及应用第五版 胡运权资料
约束方程 i: =
对偶问题(原问题) 约束右端项 目标函数系数 约束条件系数向量 AT 约束条件个数
min
约束方程 j : =
变量 y i : yi 0 y i 无约束 yi0
2.3 对偶问题的基本性质
Max z = CX
Min w = Y b
s t . AX b
s t . YA C
X0
X1 0 , X2 0
2.资源最低售价模型
设第i种资源收购价格为yi,( i=1, 2, 3, 4,) 则有 min w= 12y1 + 8y2 + 16y3 +12 y4
s.t 2y1 + y2 + 4y3 +0 y4 2
2y1 +2y2 + 0y3 +4 y4 3 yi 0, (i=1, 2, 3, 4 )
s.t AX b X 0
min w’’ = -CX s.t -AX -b X0
min w = Y b
s.t YA C Y0 例2
max w’ = -Y b
s.t -YA -C Y0
对偶模型其它结构关系
(2)若模型为
max z = C X
s.t AX b
变形
X 0
min w=Y ´(-b)
Y0
(1) 弱对偶性:
若 X0——原问题可行解,Y0——对偶问题可行解 则 CX0 Y0b
证明: ∵ Y0 0, AX0 b, ∴ Y0 AX0 Y0 b,
而 Y0 A C , ∴ Y0AX0 CX0 ,
∴ CX0 Y0 AX0 Y0 b
(2)最优性:
若 X0——原问题可行解,Y0——对偶问题可行解,且 CX0 = Y0b

运筹学基础及应用第五版 胡运权

运筹学基础及应用第五版 胡运权

则 CX0 CX* Y*b Y0b
但 CX0 = Y0 b, ∴ CX0 = CX* = Y* b = Y0 b ∴ X0 = X* , Y0 = Y* 即 X0——原问题最优解, Y0——对偶问题最优解 证毕。
(3)无界性
若原问题(对偶问题)最优解无界,则对偶问题(原问 题)无可行解 证:由性质1,C X0 Y0 b,当 CX0 ∞ 时,则不可 能存在Y0,使得 C X0 Y0 b 。
设 备 产品
A
B
C
D
单位利润
甲产品 乙产品
现有材料 数量
2 2 12
1 2 8
4 0 16
0 4 12
2 3
1.最大生产利润模型
设 企业生产甲产品为X1件, 乙产品为X2件,则
max z= 2 X1 +3 X2
2.资源最低售价模型
设第i种资源收购价格为yi,( i=1, 2, 3, 4,) 则有
min w= 12y1 + 8y2 + 16y3 +12 y4 y1 y2 y3 y4
列单纯表计算:
Cj → CB XB b 0 y4 -2 0 y5 -1 cj - zj -24 y2 0 y5 cj - zj -24 y2 -5 y3 cj - zj 1/4 1/2 1/3 -1/3 -15 -24 -5 0 0
y1
0 -5
y2
-6 -2
y3
-1 -1
y4
1 0
y5
0 1 0 0 1
s.t
2 X1
+2 X2 12 X1 +2 X2 8 4 X1 16 4 X2 12 X1 0 , X2 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3
3
C3
3
f(C3)=6
f(D1)=3
D1
f(E)=0
3
E
D2 4
f(D2)=4
状态 最优决策 状态 最优决策 状态 最优决策 状态 最优决策 状态 A ( A,B3) B3
21
f(B1)=11
f(A)=11
A
B1 7 5 6
2 f(B2)=7 3
5
B2 2
3
4
5
B3 1 5
f(B3)=8
f(C1)=4
2
A5
3
B1
7 5
6
3
B2 2
4 5
B3
1 5
C1
1
4
6
C2
3
3
C3
3
D1
f(E)=0
3
E
D2 4
11
考虑一个阶段的最优选择
2
A5
3
B1
7 5
6
3
B2 2
4 5
B3
1 5
C1
1
4
6
C2
3 3
C3
3
f(D1)=3
D1
f(E)=0
3
E
D2 4
12
考虑一个阶段的最优选择
2
A5
3
B1 7 5
6
3
B2 2
C1
1
f(C2)=7 4
6
C2
3
3
C3
3
f(C3)=6
f(D1)=3
D1
f(E)=0
3
E
D2 4
f(D2)=4
状态 最优决策 状态 最优决策 状态 最优决策 状态 最优决策 状态 A ( A,B3) B3 ( B3, C2 ) C2
22
f(B1)=11
f(A)=11
4 5
B3
1 5
C1
1
4
6
C2
3
3
C3
3
f(D1)=3
D1
f(E)=0
3
E
D2 4
f(D2)=4
13
考虑二个阶段的最优选择
2
A5
3
B1 7 5 6 3
B2 2
4 5
B3 1 5
f(C1)=4
C1
1
4
6
C2
3
3
C3
3
f(D1)=3
D1
f(E)=0
3
E
D2 4
f(D2)=4
14
考虑二个阶段的最优选择
的性质,结合多种数学技巧。因此,实践经验 及创造性思维将起重要作用。
2)“维数障碍”:当变量个数太多时,由于 计算机内存和速度的限制导致问题无法解决。 有些问题由于涉及的函数没有理想的性质使问 题只能用动态规划描述,而不能用动态规划方 法求解。
10
第二节 最优化原理与动态规划的数学模型 一 最短路线问题求解
4
3
5
B3 1 5
f(B3)=8
f(C1)=4
C1
1
f(C2)=7 4
6
C2
3
3
C3
3
f(C3)=6
f(D1)=3
D1
f(2)=4
19
四个阶段联合考虑从A点到E点的最优选择
f(A)=11
A
f(B1)=11
B1 7 5
2 f(B2)=170 6
3
5
B2 2
4
3
5
B3 1 5
2
A5
3
B1 7 5 6 3
B2 2
4 5
B3 1 5
f(C1)=4
C1
1
f(C2)=7 4
6
C2
3
3
C3
3
f(D1)=3
D1
f(E)=0
3
E
D2 4
f(D2)=4
15
考虑二个阶段的最优选择
2
A5
3
B1 7 5 6 3
B2 2
4 5
B3 1 5
f(C1)=4
C1
1
f(C2)=7 4
6
C2
3
3
C3
3
B3
1 5
1
2
C1
1
4
6
C2
3
3
C3
3
D1
3
E
D2 4
3
4
5
7
引例2 生产与存贮问题 要求确定一个逐月的生产计划,在满足需求条件下, 使一年的生产与存贮费用之和最小? 引例3 投资决策问题 某公司现有资金Q万元,在今后5年内考虑给A,B, C,D 4个项目投资? 引例4 设备更新问题 现企业要决定一台设备未来8年的更新计划,问应在 哪些年更新设备可使总费用最小?
重点 :掌握动态规划模型结构、逆序 法算法原理、资源分配、设备更新、生产 与存贮等问题。
2
第一节 多阶段的决策问题
3
动态规划(Dynamic Programming)
R. Bellman50年代执教于普林斯顿和斯坦福大学, 后进入兰德(Rand)研究所。1957年发表“Dynamic Programming”一书,标识动态规划的正式诞生。
f(B3)=8
f(C1)=4
C1
1
f(C2)=7 4
6
C2
3
3
C3
3
f(C3)=6
f(D1)=3
D1
f(E)=0
3
E
D2 4
f(D2)=4
20
f(B1)=11
f(A)=11
A
B1 7 5 6
2 f(B2)=7 3
5
B2 2
3
4
5
B3 1 5
f(B3)=8
f(C1)=4
C1
1
f(C2)=7 4
6
C2
第八章 动态规划
8.1 多阶段决策问题 8.2 最优化原理与动态规划的数学模型 8.3 离散确定性动态规划模型的求解 8.4 离散随机性动态规划模型的求解 8.5 一般数学规划模型的动态规划解法
1
学习要点: 理解动态规划基本概念、最优化原理
和基本方程,逆序法和顺序解法,学习应 用动态规划解决多阶段决策问题。
动态规划是解决复杂系统优化问题的一种方法。 是解决动态系统多阶段决策过程的基本方法之一。
动态规划的基本概念和定义
动态规划的研究对象和引例
4
动态规划:是解决多阶段决策过程最优 化问题的一种方法,无特定的数学模型。
可解决 与时间有关的动态问题 与时间无关的静态问题
5
多阶段决策问题
1)动态决策—将时间作为变量的决策问题称 为动态决策。其基本特点是多次决策。
f(B1)=11
B1 7 5
2 f(B2)=7
6 3
A5
B2 2
4
3
5
B3 1 5
f(C1)=4
C1
1
f(C2)=7 4
6
C2
3
3
C3
3
f(C3)=6
f (D1)=3
D1
f (E)=0
3
E
D2 4
f (D2)=4
18
考虑三个阶段的最优选择
f(B1)=11
B1 7 65
2 f(B2)=7 3
A5
B2 2
f(C3)=6
f(D1)=3
D1
f(E)=0
3
E
D2 4
f(D2)=4
16
考虑三个阶段的最优选择
f(B1)=11
2
A5
B1 7 5 6 3
B2 2
4
3
5
B3 1 5
f(C1)=4
C1
1
f(C2)=7 4
6
C2
3
3
C3
3
f(C3)=6
f(D1)=3
D1
f(E)=0
3
E
D2 4
f(D2)=4
17
考虑三个阶段的最优选择
8
动态规划方法的特点
☻优点: 1)许多问题用动态规划求解比线性规划、非线
性规划更有效,特别是离散性问题,解析数学 无用武之地,而动态规划成为得力工具。
2)某些情况下,用动态规划处理不仅能作定性 描述分析,且可利用计算机给出求其数值解的 方法。
9
动态规划方法的特点
缺点: 1)没有统一的处理方法,求解时要根据问题
2)多阶段决策问题是一类特殊形式的动态决 策问题。是指这样一类活动过程:系统的动态 过程可以按照时间进程分为状态互相联系而又 互相区别的各个阶段,而且在每个阶段都要进 行决策,当每一个阶段的决策确定以后,就完 全确定了一个过程的活动路线。
6
引例1 最短路线问题
2
A5
3
B1
7 5
6
3
B2 2
4 5
相关文档
最新文档