人教版八年级数学下册 第17章 勾股定理中最短路径问题专题

人教版八年级数学下册 第17章 勾股定理中最短路径问题专题
人教版八年级数学下册 第17章 勾股定理中最短路径问题专题

勾股定理中最短路径问题专题

一、同步知识梳理

1、勾股数:满足a2+b2=c2的3个正整数a、b、c称为勾股数.

(1)由定义可知,一组数是勾股数必须满足两个条件:

①满足a2+b2=c2 ②都是正整数.两者缺一不可.

(2)将一组勾股数同时扩大或缩小相同的倍数所得的数仍满足a2+b2=c2 (但不一定是勾股数),例如:3、4、5是一组勾股数,但是以0.3 cm、0.4 cm、0.5 cm为边长的三个数就不是勾股数。

二、同步题型分析

1、等腰三角形的周长是20 cm,底边上的高是6 cm,求它的面积.

2、(1)在△ABC中,∠C=90°,AB=6,BC=8,DE垂直平分AB,求BE的长.

(2)在△ABC中,∠C=90°,AB=6,BC=8,AE平分∠CAE,ED⊥AB,求BE的长.

(3)如图,折叠长方形纸片ABCD,是点D落在边BC上的点F处,折痕为AE,AB=CD=6,AD=BC=10,试求EC的长度.

一、专题精讲

知识总结:长方体:

(1)长方体的长、宽、高分别为a、b、c;(2)求如图所示的两个对顶点的最短距离d。

E

D

A

C

B

D

E

A

C

B

A B A 1B 1D C D 1C 1214

(2)长方体盒子表面小虫爬行的最短路线d 是22c b a ++)(、22b c a ++)(、2

2a c b ++)(

中最小者的值。

圆柱体:

(1)圆柱体的高是h 、半径是r ;(2)要求圆柱体的对顶点的最短距离。

圆柱体盒子外小虫爬行的最短路线d ;

两条路线比较:其一、AC+BC 即高+直径 ;

其二、圆柱表面展开后线段AB=2

2r h +的长.

题型二、长方体

例题1、如图,一只蚂蚁从实心长方体的顶点A 出发,沿长方体的表面爬到对角顶点C 1处(三条棱长如图所示),问怎样走路线最短?最短路线长为 .

例题2、如图,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是 。 B A A B

例题1、如图,一只蚂蚁沿着图示的路线从圆柱高AA 1的端点A 到达A 1,若圆柱底面半径为 6,

高为5,则蚂蚁爬行的最短距离为 .

题型四、台阶问题

例题:如图是一个三级台阶,它的每一级的长、宽、高分别为20cm 、3cm 、2cm .A 和B 是这个台阶上两个相对的端点,点A 处有一只蚂蚁,想到点B 处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B 的最短路程为 cm

题型五、非对顶点问题 例题1:如图,长方体的底面边长分别为2cm 和4cm ,高为5cm .若一只蚂蚁从P 点开始经过4个侧面爬行一圈到达Q 点,则蚂奴爬行的最短路径长为 cm .

1、如图1,长方体的底面边长分别为1cm 和3cm ,高为6cm.如果用一根细线从点A 开始经过4个

侧面缠绕一圈到达点B,那么所用细线最短需要___cm;如果从点A开始经过4个侧面缠绕n圈到达点B,那么所用细线最短需要___cm.

一、能力培养

例1:(1)一轮船以16 n mi1e/h的速度从港口A出发向东北方向航行,另一轮船以12 n mi1e/h 的速度同时从港口出发向东南方向航行,那么离开港口A2h后,两船相距

(2)一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5 m,消防车的云梯最大升长为13 m,则云梯可以达到该建筑物的最大高度是

(3)一棵树在离地面9m处断裂,树的顶部落在离底部12 m处,树折断之前有_______m.

例2:如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为7m,

梯子的顶端B到地面的距离为24 m,现将梯子的底端A向外移动到

A',使梯子的底端A'到墙根O的距离等于15 m.同时梯子的顶端

B下降至B',那BB'等于( )

A.3m B.4 m C.5 m D.6 m

例3:(1)在平静的湖面上,有一支红莲,高出水面1米,一阵风吹来,红莲吹到一边,花朵齐及水面,已知红莲移动的水平距离为2m,求这里的水深是多少米?

(2)学校旗杆顶端垂下一绳子,小明把它拉直到旗杆底端,发现绳子还多2米,他把绳子全部拉直且使绳的下端接触地面,绳下端离开旗杆底部6米,

则旗杆的高度是多少米?

B

A

6cm

3cm

1cm

图1

例4:《中华人民共和国道路交通管理条例》规定:小汽车在城市街道上的行驶速度不得超过70千米/时.一辆“小汽车”在一条城市街道上直道行驶,如图某一时刻刚好行驶到路对面“车速检测仪A”正前方50米C处,过了6秒后,测得“小汽车”位置B与“车速检测仪A”之间的距离为130米,这辆“小汽车”超速了吗?请说明理由.

例6、如图,∠AOB=90°,OA=45cm,OB=15cm,一机器人在点B处看见一个小球从点A出发沿着

AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住

了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?

例7、如图,在一棵树的10 m高的D处有两只猴子,其中一只猴子爬下树走到离树20 m处的池塘A处,另一只爬到树顶后直接跃向池塘A处,如果两只猴子所经过的距离相等,试问这棵树有多高?

例8、如图,点P是等边△ABC内的一点,分别连接PA、PB、PC,以BP为边作∠PBQ=60°,且BQ=BP,连接OQ.

(1)观察并猜想AP与CQ之间的大小关系,并说明你的结论;

(2)已知PA:PB:PC=3:4:5,连接PQ,试判断△PQC的形状,请说明理由.

例9、恩施州自然风光无限,特别是以“雄、奇、秀、幽、险”著称于世.著名的恩施大峡谷(A)和世

界级自然保护区星斗山(B)位于笔直的沪渝高速公路X同侧,AB=50km,A、B到直线X的距离分别为10km和40km,要在沪渝高速公路旁修建一服务区P,向A、B两景区运送游客.小民设计了两种方案,图1是方案一的示意图(AP与直线X垂直,垂足为P),P到A、B的距离之和S1=P A+PB,图2是方案二的示意图(点A关于直线X的对称点是A′,连接BA′交直线X于点P),P到A、B的距离之和S2=P A+PB.

(1)求S1、S2,并比较它们的大小;

(2)请你说明S2=P A+PB的值为最小;

(3)拟建的恩施到张家界高速公路Y与沪渝高速公路垂直,建立如图3所示的直角坐标系,B 到直线Y的距离为30km,请你在X旁和Y旁各修建一服务区P、Q,使P、A、B、Q组成的四边形的周长最小.并求出这个最小值.

拓展提高:

1、在Rt△ABC中,AC=6,BC-8,分别以它的三边为直径向上作三个半圆,

则阴影部分面积为( )

A.24 B.24πC.

25

2

D.

25

2

π

2、勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》

中就有“若勾三,股四,则弦五”的记载.如图(a)是由边长相等

的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.

图(b)是由图(a)放人长方形内得到的,∠BAC=90°,AB=3,AC=4,

点D,E,F,G,H,I都在长方形KLMJ的边上,

则长方形KLMJ的面积为( )

A.90 B.100 C.110 D.121

3、如图,P是正△ABC内一点,且PA=6,PB=8,PC=10,若将△PAC绕点A逆时针旋转后,得到△P'AB,则点P与P'之间的距离为PP'=_______,∠APB=_______度.

4、如图,正方形ABDE、CDFI、EFGH的面积分别为2

5、9、16,△AEH、△BDC、△GFI的面积分别为S1、S2、S3,则S1+S2+S3=_______.

B

A

P X

图1

C

4、材料探究题:

方法1:如图(a),对任意的符合条件的直角三角形绕其锐角顶点旋转90°所得,所以∠BAE =90°,且四边形ACFD 是一个正方形,它的面积和四边形ABFE 面积相等,而四边形ABFE 面积等于Rt △BAE 和Rt △BFE 的面积之和,根据图示写出证明勾股定理的过程;

方法2:如图(b),是任意的符合条件的两个全等的Rt △BEA 和Rt △ACD 拼成的,你能根据图示再写一种证明勾股定理的方法吗?

5、(1)如图(2),在四边形ABCD 中,BC ⊥CD ,∠ACD =∠ADC .

求证:AB +AC>22BC CD ;

(2)如图(2),在△ABC 中,AB 上的高为CD ,

试判断(AC +BC)2与AB 2+4CD 2之间的大小关系,并证明你的结论.

勾股定理解决最短路径问题及折叠问题

勾股定理解决最短路径问题及折叠问题 1、如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是多少? 2、如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要_________cm;如果从点A 开始经过4个侧面缠绕n圈到达点B,那么所用细线最短需要_________cm. 3、如图,长方体的长为15cm,宽为10cm,高为20cm,点B到点C的距离为5cm,一只蚂蚁如果要沿着长方体的表面从A点爬到B点,需要爬行的最短距离是多少?

4、如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE 的和最小,求这个最小值 5、恩施州自然风光无限,特别是以“雄、奇、秀、幽、险”著称于世.著名的恩施大峡谷 (A )和世界级自然保护区星斗山(B )位于笔直的沪渝高速公路X 同侧,AB =50km ,A 、B 到直线X 的距离分别为10km 和40km ,要在沪渝高速公路旁修建一服务区P ,向A 、B 两景区运送游客.小民设计了两种方案,图1是方案一的示意图(AP 与直线X 垂直,垂足为P ),P 到A 、B 的距离之和S 1=PA +PB ,图2是方案二的示意图(点A 关于直线X 的对称点是A ′,连接BA ′交直线X 于点P ),P 到A 、B 的距离之和S 2=PA +PB . (1)求S 1、S 2,并比较它们的大小; (2)请你说明S 2=PA +PB 的值为最小; (3)拟建的恩施到张家界高速公路Y 与沪渝高速公路垂直,建立如图3所示的直角坐标系,B 到直线Y 的距离为30km ,请你在X 旁和Y 旁各修建一服务区P 、Q ,使P 、A 、 B 、Q 组成的四边形的周长最小.并求出这个最小值. 图2 A D E P B C

2018年新人教版八年级下册数学复习提纲

八年级数学下册知识点总结 第十六章 二次根式 1.二次根式:式子a (a ≥0)叫做二次根式。 2.二次根式有意义的条件: 大于或等于0。 3.二次根式的双重非负性:a :①0≥a ,②0≥a 附:具有非负性的式子:①0≥a ;②0≥a ;③02≥a 4.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。 5.同类二次根式: 二次根式化成最简二次根式后,若被 相同,则这几个二次根式就是同类二次根式。 6.二次根式的性质: (1)(a )2=a (a ≥0); (2)==a a 2 7.二次根式的运算: (1)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. (2)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式. (a ≥0,b ≥0) ;(b ≥0, a>0). (3)有理数的加法交换律、结合律,乘法交换律及结合律,?乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算. 【典型例题】 1、概念与性质 例 1下列各式1 其中是二次根式的是_________(填序号). 例2、求下列二次根式中字母的取值范围 (1) x x -- +31 5; (2) 2 2)-(x = a (a >0) a -(a <0) 0 (a =0);

例3、 在根式 ) A .1) 2) B .3) 4) C .1) 3) D .1) 4) 例4、已知: 的值。求代数式22,2 1 1881-+- +++ -+-=x y y x x y y x x x y 例5、 (2009龙岩)已知数a ,b =b -a ,则 ( ) A. a>b B. a>时,①如果a b >>a b < 例1、比较 (2)、平方法 当0,0a b >>时,①如果22a b >,则a b >;②如果22a b <,则a b <。 例2、比较 (3)、分母有理化法 通过分母有理化,利用分子的大小来比较。 11() b a b b a a b ++++

人教版八年级下册数学课本基础知识要点整理

人教版八年级下册数学课本知识点归纳 第十六章 分式 一、分式; 1. 分式:如果A 、B 表示两个整式,并且B 中含有字母,那么式子B A 叫做分式。 (分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零 ) 2. 分式的基本性质:分式的分子与分母同乘(或除)以一个不等于0的整式,分式的值不变。用式子表示如下: (C ≠0) 其中A,B,C 是整式 3.最简公分母:取各分母的所有因式的最高次幂的积做公分母,它叫做最简公分母 4.通分:分子和分母同乘最简公分母,不改变分式值,把几个整式化成相同分母的分式。这个过程叫通分。(分母为多项式时要分解因式) 5.约分:约去分子和分母的公因式,不改变分式值,这个过程叫约分。 二、分式的运算; 1.分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。 2.分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。 上述法则可以用式子表示: 3分式乘方法则:一般地,当n 为正整数时 这就是说, 分式乘方要把分子、分母分别乘方 4.分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。 异分母的分式相加减,先通分,变为同分母分式,然后再加减。 上述法则可用以下式子表示:,a b a b a c ad bc ad bc c c c b d bd bd bd ±±±= ±=±= 5.整数指数幂; C B C A B A ??=C B C A B A ÷÷=bc ad c d b a d c b a bd ac d c b a =?=÷=?;n n n b a b a =)(

1.任何一个不等于0的数的0次幂等于1, 即)0(10≠=a a ; 当n 为正整数时,n n a a 1 =- ( )0≠a ,也就是说a n (a≠0)是a -n 的倒数。 正整数指数幂运算性质也可以推广到整数指数幂.(m,n 是整数) (1)同底数的幂的乘法:n m n m a a a +=?; (2)幂的乘方:mn n m a a =)(; (3)积的乘方: n n n b a ab =)(; (4)同底数的幂的除法:n m n m a a a -=÷( a ≠0); (5)商的乘方:n n n b a b a =)(( n 是正整数);( b ≠0) 三、分式方程; 1. 分式方程:分母中含未知数的方程叫分式方程。 (解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。) 2.解分式方程的步骤 :(1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根。 3.分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。 四、列方程应用题: 1.列方程应用题的步骤是什么?(1)审;(2)设;(3)列;(4)解;(5)答。 2.应用题有几种类型;基本公式是什么?基本上有五种: (1)行程问题:基本公式:路程=速度×时间 而行程问题中又分相遇问题、追及问题. (2)数字问题 在数字问题中要掌握十进制数的表示法. (3)工程问题 基本公式:工作量=工时×工效.

(完整word版)新人教版八年级数学下册知识点归纳总结

八年级数学(下册)知识点总结 第十六章 二次根式 1.二次根式概念:式子a (a ≥0)叫做二次根式。 2.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。 3.同类二次根式: 二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。 4.二次根式的性质: (1)(a )2=a (a ≥0); (2)==a a 2 5.二次根式的运算: (1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,?变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面. (2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. (3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式. ab =a ·b (a≥0,b≥0); b b a a = (b≥0,a>0). (4)有理数的加法交换律、结合律,乘法交换律及结合律,?乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算. △ 比较数值的方法 (1)、根式变形法 当0,0a b >>时,①如果a b >,则a b >;②如果a b <,则a b <。 (2)、平方法 当0,0a b >>时,①如果2 2 a b >,则a b >;②如果2 2 a b <,则a b <。 (3)、分母有理化法 通过分母有理化,利用分子的大小来比较。 例3、比较 231-与1 21 -的大小。 (4)、分子有理化法 通过分子有理化,利用分母的大小来比较。 例4、比较1514-与1413-的大小。 a (a >0) a -(a <0) 0 (a =0);

新人教版八年级数学下册全套教案

第十六章分式 16.1分式 16.1.1从分数到分式 一、教学目标 1.了解分式、有理式的概念. 2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件. 二、重点、难点 1.重点:理解分式有意义的条件,分式的值为零的条件. 2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件. 3.认知难点与突破方法 难点是能熟练地求出分式有意义的条件,分式的值为零的条件.突破难点的方法是利用分式与分数有许多类似之处,从分数入手,研究出分式的有关概念,同时还要讲清分式与分数的联系与区别. 三、例、习题的意图分析 本章从实际问题引出分式方程 10020v 请同学们跟着教师一起设未知数,列方程. 设江水的流速为x千米/时. 轮船顺流航行100千米所用的时间为3. 以上的式子五、例题讲解 P5例1. 当x为何值时,分式有意义. [分析]已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x的取值范围. [提问]如果题目为:当x为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念. (补充)例2. 当m为何值时,分式的值为0?(1m(2)1m1m 3 m 10020v 小时,逆流航行60千米所用时间 6020v 小时,所以 10020v = 6020v . 10020v , 6020v ,s,v,有什么共同点?它们与分数有什么相同点和不同点? a s m2m 1 2 = 6020v ,给出分式的描述性的定义:像这样分母中含有字母的式子属于分式. 1分母不能为零;○2分子为零,这样求出的m的解集中的公[分析] 分式的值为

勾股定理--最短距离问题.docx

蚂蚁爬行的最短路径 正方体 4.如图,一只蚂蚁从正方体的底面 A 点处沿着表面爬行到点上面的 B 点处,它爬行的最短 路线是() A. A?P?B B. A?Q?B C. A?R?B D. A?S?B 解:根据两点之间线段最短可知选A. 故选 A. 2. 如图,边长为 1 的正方体中,一只蚂蚁从顶点 A 出发沿着正方体的外表面爬到顶点 B 的最短距离是. 第6 题 解:如图将正方体展开,根据“两点之间,线段最短”知,线段AB 即为最短路线. AB=2212 5 . 8. 正方体盒子的棱长为 2 , BC 的中点为M,一只蚂蚁从 A 点爬行到M点的最短距离为. 第7 题 解:将正方体展开,连接M、 D1, 根据两点之间线段最短, MD=MC+CD=1+2=3,

MD = MD 2222 DD13213 . 1 5.如图,点 A 的正方体左侧面的中心,点 B 是正方体的一个顶点,正方体的棱长为2,一 蚂蚁从点 A 沿其表面爬到点 B 的最短路程是() 12B 1 A 解:如图, AB= 1 2 21210 .故选C. 9.如图所示一棱长为3cm 的正方体,把所有的面均分成3×3个小正方形.其边长都为1cm,假设一只蚂蚁每秒爬行2cm,则它从下底面点 A 沿表面爬行至侧面的 B 点,最少要用 2.5 秒钟. 解:因为爬行路径不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短 的路线. (1)展开前面右面由勾股定理得AB==cm; (2)展开底面右面由勾股定理得AB==5cm; 所以最短路径长为 5cm ,用时最少: 5÷2=2.5秒. 长方体 10.( 2009?恩施州)如图,长方体的长为15,宽为 10,高为20,点 B 离点 C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点 A 爬到点 B,需要爬行的最短距离是。 解:将长方体展开,连接A、 B,根据两点之间线段最短,AB==25.

新人教版八年级下册数学教案

第十六章二次根式 教材内容 1.本单元教学的主要内容: 二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式. 2.本单元在教材中的地位和作用: 二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础.教学目标 1.知识与技能 (1)理解二次根式的概念. (2a≥0)是一个非负数,2=a(a≥0)(a≥0). (3(a≥0,b≥0); a≥0,b>0)a≥0,b>0). (4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减. 2.过程与方法 (1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.?再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,?并运用规定进行计算. (3)利用逆向思维,?得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.(4)通过分析前面的计算和化简结果,抓住它们的共同特点,?给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的. 3.情感、态度与价值观 通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.教学重点 1.a≥0)a≥0)是一个非负数;2=a(a≥0) (a≥0)?及其运用. 2.二次根式乘除法的规定及其运用. 3.最简二次根式的概念. 4.二次根式的加减运算. 教学难点 1a≥0)2=a(a≥0(a≥0)

八年级最数学最短路径稳妥(供参考)

第五讲最短路径 一、知识点 二、课前练习 1、如图,有一个圆柱体,它的高为20,底面半径为5.如果一只蚂蚁要从圆柱体下底面的A点,沿圆柱表面爬到与A相对的上底面B点,则蚂蚁爬的最短路线长约为______( 取3) [ 2、如图所示,P为∠AOB内一点,P1,P2分别是P关于OA,OB的对称点,P1P2交OA于M,交OB于N,若P1P2=8 cm,则△PMN的周长是( ) A.7 cm B.5 cm C.8 cm D.10 cm 3、在某一地方,有条小河和草地,一天某牧民的计划是从A处的牧场牵着一只马到草地牧马,再到小河饮马,你能为他设计一条最短的路线吗?(在N上任意一点即可牧马,M上任意一点即可饮马.)(保留作图痕迹,需要证明) 4、某大型农场拟在公路L旁修建一个农产品储藏、加工厂,将该农场两个规模相同的水果生产基地A、B的水果集中进行储藏和技术加工,以提高经济效益.请你在图中标明加工厂所在的位置C,使A、B两地到加工厂C的运输路程之和最短.(要求:用尺规作图,保留作图痕迹,不写作法和证明) 5、如图,△ABC的边AB、AC上分别有定点M、N,请在BC边上找一点P,使得△PMN的周长最短.(写出作法,保留作图痕迹) 6、加油站A和商店B在马路MN的同一侧(如图),A到MN的距离大于B到MN的距离,AB=7米,一个行人P在马路MN上行走,问:当P到A的距离与P到B的距离之差最大时,这个差等于________米. 7、如图,村庄A,B位于一条小河的两侧,若河岸a,b彼此平行,现在要建设一座与河岸垂直的桥CD,问桥址应如何选择,才能使A村到B村的路程最近? 8、如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△AMN 周长最小时,求∠AMN+∠ANM的度数. 三、例题讲解 1、如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3 cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3 cm的点A处,求蚂蚁吃到饭粒需爬行的最短路径是多少 2、如图,在等腰Rt△ABC中,AC=BC=4,D是BC边的中点,E是AB边上一动点,求EC+ED 的最小值 3、如图,在△ABC中,AB=AC=13,BC=10,AD平分∠CAB,N点是AB上的一定点,M是AD上一动点,要使MB+MN最小,请找点M的位置,并求出MB+MN最小值. 4、如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是坐标轴上一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,求点C的坐标 5、在平面直角坐标系中,点A、B的坐标分别为(2,0 ),(4,0),点C的坐标为(m,3 m)(m为非负数),求CA+CB的最小值 三、练习

人教版八年级数学下册 第17章 勾股定理中最短路径问题专题

勾股定理中最短路径问题专题 一、同步知识梳理 1、勾股数:满足a2+b2=c2的3个正整数a、b、c称为勾股数. (1)由定义可知,一组数是勾股数必须满足两个条件: ①满足a2+b2=c2 ②都是正整数.两者缺一不可. (2)将一组勾股数同时扩大或缩小相同的倍数所得的数仍满足a2+b2=c2 (但不一定是勾股数),例如:3、4、5是一组勾股数,但是以0.3 cm、0.4 cm、0.5 cm为边长的三个数就不是勾股数。 二、同步题型分析 1、等腰三角形的周长是20 cm,底边上的高是6 cm,求它的面积. 2、(1)在△ABC中,∠C=90°,AB=6,BC=8,DE垂直平分AB,求BE的长. (2)在△ABC中,∠C=90°,AB=6,BC=8,AE平分∠CAE,ED⊥AB,求BE的长. (3)如图,折叠长方形纸片ABCD,是点D落在边BC上的点F处,折痕为AE,AB=CD=6,AD=BC=10,试求EC的长度. 一、专题精讲 知识总结:长方体: (1)长方体的长、宽、高分别为a、b、c;(2)求如图所示的两个对顶点的最短距离d。 E D A C B D E A C B

A B A 1B 1D C D 1C 1214 (2)长方体盒子表面小虫爬行的最短路线d 是22c b a ++)(、22b c a ++)(、2 2a c b ++)( 中最小者的值。 圆柱体: (1)圆柱体的高是h 、半径是r ;(2)要求圆柱体的对顶点的最短距离。 圆柱体盒子外小虫爬行的最短路线d ; 两条路线比较:其一、AC+BC 即高+直径 ; 其二、圆柱表面展开后线段AB=2 2r h +的长. 题型二、长方体 例题1、如图,一只蚂蚁从实心长方体的顶点A 出发,沿长方体的表面爬到对角顶点C 1处(三条棱长如图所示),问怎样走路线最短?最短路线长为 . 例题2、如图,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是 。 B A A B

最新人教版八年级下册数学全册教学教案

义务教育课程标准人教版 数学教案 九年级下册 科任老师

二次根式 16.1 二次根式(1) 一、学习目标 1、了解二次根式的概念,能判断一个式子是不是二次根式。 2、掌握二次根式有意义的条件。 3、掌握二次根式的基本性质:)0(0≥≥a a 和)0()(2≥=a a a 二、学习重点、难点 重点:二次根式有意义的条件;二次根式的性质. 难点:综合运用性质)0(0≥≥a a 和)0()(2≥=a a a 。 三、学习过程 (一)复习引入: (1)已知x 2 = a ,那么a 是x 的_____________; x 是a 的________, 记为______, a 一定是______________数。 (2)4的算术平方根为2,用式子表示为 =__________; 正数a 的算术平方根为_______,0的算术平方根为_______; 式子)0(0≥≥a a 的意义是 _______- 。 (二)提出问题 1、式子a 表示什么意义? 2、什么叫做二次根式? 3、式子)0(0≥≥a a 的意义是什么? 4、)0()(2≥=a a a 的意义是什么? 5、如何确定一个二次根式有无意义? (三)自主学习 自学课本第2页例前的内容,完成下面的问题: 1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么? 3,16-,34,5-,)0(3≥a a ,12+x 2、计算 : (1) 2)4( (2) (3)2)5.0( (4)2)3 1( 根据计算结果,你能得出结论: ,其中0≥a , )0()(2≥=a a a 的意义是 。 3、当a 为正数时指a 的 ,而0的算术平方根是 ,负数 ,只有非负数 a 才有算术平方根。所以,在二次根式中,字母a 必须满足 , 才有意义。 2 )3(________ )(2=a 4

2020新人教版八年级数学下册知识点总结归纳

第十六章 二次根式 1.二次根式:一般地,式子)0a (,a ≥叫做二次根式. 注意:(1)若0a ≥这个条件不成立,则 a 不是二次根式; (2)a 是一个重要的非负数,即;a ≥0. 2.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。 3.重要公式:(1))0a (a )a (2≥=,(2)???<-≥==) 0a (a )0a (a a a 2 ;注意使用)0a ()a (a 2≥=. (3)积的算术平方根:)0b ,0a (b a ab ≥≥?=,积的算术平方根等于积中各因式的算术平方根的积;注意:本章中的公式,对字母的取值范围一般都有要求. 4.二次根式的乘法法则: )0b ,0a (ab b a ≥≥=?. 5.二次根式比较大小的方法: (1)利用近似值比大小; (2)把二次根式的系数移入二次根号内,然后比大小; (3)分别平方,然后比大小. 6.商的算术平方根: )0b ,0a (b a b a >≥=,商的算术平方根等于被除式的算术平方根除以除式的算术平方根. 7.二次根式的除法法则: (1))0b ,0a (b a b a >≥=; (2))0b ,0a (b a b a >≥÷=÷; (3)分母有理化:化去分母中的根号叫做分母有理化;具体方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式. 8.常用分母有理化因式: a a 与,b a b a +-与, b n a m b n a m -+与,它们也叫

互为有理化因式. 9.最简二次根式: (1)满足下列两个条件的二次根式,叫做最简二次根式,①被开方数的因数是整数,因式是整式, ②被开方数中不含能开的尽的因数或因式; (2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母; (3)化简二次根式时,往往需要把被开方数先分解因数或分解因式; (4)二次根式计算的最后结果必须化为最简二次根式. 10.二次根式化简题的几种类型:(1)明显条件题;(2)隐含条件题;(3)讨论条件题. 11.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式. 12.二次根式的混合运算: (1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用; (2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等. 第十七章勾股定理 1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。 2.勾股定理逆定理:如果三角形三边长a, b, c满足a2+b2=c2。,那么这个三角形是直角三角形。 3.经过证明被确认正确的命题叫做定理。 我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理) 4.直角三角形的性质 (1)、直角三角形的两个锐角互余。可表示如下:∠C=90°?∠A+∠B=90° (2)、在直角三角形中,30°角所对的直角边等于斜边的一半。 ∠A=30° 1AB 可表示如下:∠C=90°?BC= 2

勾股定理之归纳1最短路径问题与勾股定理

归纳1:最短路径问题与勾股定理 原题1:如图,一条河同一侧的两村庄A、B,其中A、B 到河岸最短距离分别为AC=1km,BD=2km,CD=4km,现欲在河岸上建一个水泵站向A、B两村送水,当建在河岸上何处时,使到A、B两村铺设水管总长度最短,并求出最短距离。 原题2:如图所示,圆柱体的底面直径为6cm,高AC为12cm,一只蚂蚁从A点出发,沿着圆柱的侧面爬行到点B,试求出爬行的最短路程.(π取3) 原题3:如图,有一个长方体的长、宽、高分别是3、2、1,在底面A处有一只蚂蚁,它想吃正方体B处的食物,需要爬行的最短路程是多少? 变式1:正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上的一动点,DN+MN的最小值为多少。 变2:如图(1),A、B两单位分别位于一条封闭街道的两旁(直线l1、l2是街道两边沿),现准备合作修建一座过街人行天桥. (1)天桥应建在何处才能使由A经过天桥走到B的路程最短?在图(2)中作出此时桥PQ的位置,简要叙述作法并保留作图痕迹.(注:桥的宽度忽略不计,桥必须与街道垂直). (2)根据图(1)中提供的数据计算由A经过天桥走到B的最短路线的长.(单位:米) 变3:有一圆形油罐底面圆的周长为24m,高为6m,一只老鼠从距底面1m的A处爬行到对角B处吃食物,它爬行的最短路线长为多少? 变4:有一圆柱形油罐,要以A点环绕油罐建旋梯,正好到A点的正上方B点,问旋梯最短要多少米?(己知油罐周长是12米,高AB是5米) 变5:如图,圆柱底面半径为2cm,高为9π,A、B分别是圆柱底面圆周上的点,且A、B在同一母线上,用一棉线从A顺着圆柱侧面绕3圈到B,求棉线最短距离。 变6:如图, 透明的圆柱形容器( 容器厚度忽略不计) 的高为12cm ,底面周长为10cm ,在容器内壁离容器底部3cm 的点 B 处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm 的点 A 处,则蚂蚁吃到饭粒需爬行的最短路径是多少? 变7:如图,长方体的长为15 cm,宽为10 cm,高为20 cm,点B离点C 5 cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是多少?

新课标人教版八年级下册数学全册教案

人教版初中数学八下 全册教案

第十六章 分式 16.1分式 16.1.1从分数到分式 一、 教学目标 1.了解分式、有理式的概念. 2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件. 二、重点、难点 1.重点:理解分式有意义的条件,分式的值为零的条件. 2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件. 三、课堂引入 1.让学生填写P4[思考],学生自己依次填出:7 10,a s ,33 200, s v . 2.学生看P3的问题:一艘轮船在静水中的最大航速为20 千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少? 请同学们跟着教师一起设未知数,列方程. 设江水的流速为x 千米/时. 轮船顺流航行100千米所用的时间为v +20100小时,逆流航行60 千米所用时间 v -2060小时,所以 v +20100= v -2060. 3. 以上的式子v +20100, v -2060,a s ,s v ,有什么共同点?它们与分 数有什么相同点和不同点? 五、例题讲解 P5例1. 当x 为何值时,分式有意义. [分析]已知分式有意义,就可以知道分式的分母不为零,进一步解

出字母x 的取值范围. [提问]如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念. (补充)例2. 当m 为何值时,分式的值为0? (1) (2) (3) [分析] 分式的值为0时,必须同时..满足两个条件:○1分母不能为零;○2分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解. [答案] (1)m=0 (2)m=2 (3)m=1 六、随堂练习 1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 20 9y +, 54-m , 2 38y y -, 9 1-x 2. 当x 取何值时,下列分式有意义? (1) (2) (3) 3. 当x 为何值时,分式的值为0? (1) (2) (3) 七、课后练习 1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式? (1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时. (2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时. (3)x 与y 的差于4的商是 . 2.当x 取何值时,分式 无意义? 1-m m 3 2 +-m m 1 12 +-m m 4 522 --x x x x 235 -+2 3 +x x x 57+x x 3217-x x x --2 2 1 2 31 2 -+x x

最新人教版八年级下册数学教案全册

八年级数学下学期教学工作计划 一、指导思想 在教学中努力推进九年义务教育,落实新课改,体现新理念,培养创新精神通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。 二、学情分析 八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。我班优生稍少,学生非常活跃,有少数学生不求上进,思维不紧跟老师。有的学生思想单纯爱玩,缺乏自主学习的习惯,有部分同学基础较差,厌学无目标。要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。 三、教材分析 本学期教学内容共计五章,知识的前后联系,教材的教学目标,重、难点分析如下:《义务教育教科书?数学》八年级下册包括二次根式,勾股定理,平行四边形,一次函数,数据的分析等五章内容,学习内容涉及到了《义务教育数学课程标准(2013年版)》(以下简称《课程标准》)中“数与代数”“图形与几何”“统计与概率”“综合与实践”全部四个领域。其中对于“综合与实践”领域的内容,本册书在第十九章、第二十章分别安排了一个课题学习,并在每一章的最后安排了两个数学活动,通过这些课题学习和数学活动落实“综合与实践”的要求。 第16章“二次根式”主要讨论如何对数和字母开平方而得到的特殊式子——二次根式的加、减、乘、除运算。通过本章学习,学生将建立起比较完善的代数式及其运算的知识结构,并为勾股定理、一元二次方程、二次函数等内容的学习做好准备。 第17章“勾股定理”主要研究勾股定理和勾股定理的逆定理,包括它们的发现、证明和应用。 第18章“平行四边形”主要研究一般平行四边形的概念、性质和判定,还研究了矩形、菱形和正方形等几种特殊的平行四边形。 第19章是“一次函数”,其主要内容包括:常量与变量的意义,函数的概念,函数的三种表示法,一次函数的概念、图象、性质和应用举例,一次函数与二元一次方程等内容的关系,以及以建立一次函数模型来选择最优方案为素材的课题学习。 第20章“数据的分析”主要研究平均数(主要是加权平均数)、中位数、众数以及方差

人教版初二下数学教案[全套]

第十六章 分式 16.1分式 16.1.1从分数到分式 一、 教学目标 1. 了解分式、有理式的概念. 2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件. 二、重点、难点 1.重点:理解分式有意义的条件,分式的值为零的条件. 2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件. 三、课堂引入 1.让学生填写P4[思考],学生自己依次填出:7 10,a s ,33 200,s v . 2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少? 请同学们跟着教师一起设未知数,列方程. 设江水的流速为x 千米/时. 轮船顺流航行100千米所用的时间为v +20100小时,逆流航行60千米所用时间v -2060小时, 所以v +20100=v -2060. 3. 以上的式子v +20100,v -2060,a s ,s v ,有什么共同点?它们与分数有什么相同点和不 同点? 五、例题讲解 P5例1. 当x 为何值时,分式有意义. [分析]已知分式有意义,就可以知道分式的分母不为零,进一步解 出字母x 的取值范围. [提问]如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念. (补充)例2. 当m 为何值时,分式的值为0? (1) (2) (3) [分析] 分式的值为0时,必须同时.. 满足两个条件:○1分母不能为零;○2分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解. [答案] (1)m=0 (2)m=2 (3)m=1 六、随堂练习 1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x 2. 当x 取何值时,下列分式有意义? (1) (2) (3) 1-m m 3 2 +-m m 11 2+-m m 45 22--x x x x 235 -+2 3 +x

初二数学最短路径问题家庭作业_题型归纳

初二数学最短路径问题家庭作业_题型归纳 一、精心选一选 1.在平面直角坐标系中有两点,要在轴上找一点,使它到的距离之和最小,现有如下四种方案,其中正确的是() A. B. C. D. 考查目的:本题主要考查利用轴对称解决简单的路径问题,体现了转化的思想. 答案:D. 解析:利用轴对称的性质,把y轴同侧的两点转化为y轴异侧的两点,根据“两点之间,线段最短”,找到点C的位置,故选D. 2.如图,在等边△ABC中,边BC的高AD=4,点P是高AD上的一个动点,E是边AC的中点,在点P运动的过程中,存在PE+PC的最小值,则这个最小值是() A.4 B.5 C.6 D.8 考查目的:本题主要考查等边三角形的性质及利用轴对称解决最短的线段和问题. 答案:A. 解析:根据等边三角形的性质可知点B是点C关于AD的对称点,PE+PC的最小值就是BE 的长,即等边△ABC的高,故选A. 3.如图,正方形ABCD的边长为8,△BCE是等边三角形,点E在正方形内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为() A.4 B.6 C.8 D.10

考查目的:本题主要考查利用轴对称解决简单的路径问题,体现了转化的思想. 答案:C. 解析:由题意知,点B是点D关于AC的对称点,因此,PD+PE的和可以转化为PB+PE的和.因为PB+PE的和的最小值BE,即为8,故选C. 二、细心填一填 4.两点的所有连线中,最短. 考查目的:本题主要考查“两点之间,线段最短”的基本事实. 答案:线段. 解析:根据基本事实“两点之间,线段最短”即可得出答案. 5.连接直线外一点与直线上各点所有连线中,最短. 考查目的:本题主要考查连接直线外一点与直线上各点所有连线中,垂线段最短的基础知识.答案:垂线段. 解析:连接直线外一点与直线上各点所有连线中,垂线段最短. 6.如图,四边形ABCD中,△BAD=120°,△B=△D=90°,在BC,CD上分别找一点F,使△AEF周长最小,此时△AEF+△AFE的度数为. 考查目的:本题主要考查利用轴对称解决较复杂的路径问题.分别作点A关于CD、BC的对称点,画出基本图形是解题的关键. 答案:120°. 解析:如下图,分别作点A关于CD、BC的对称点A1,A2,连接A1A2,分别交CD、BC于点F,E,即此时△AEF周长最小.由对称可知△A1=△DAF,△A2=△BAE,因为△A1+△A2=180°-△BAD=60°,所以△DAF+△DAF=△A1+△A2=60°,所以△EAF =60°,所以△AEF+△AFE=180°-△EAF=120°.

新人教版八年级数学下册测试题

八年级数学下册测试题 一、准确填一填(每题2分共计20分) 1.写出一个含有字母x 的分式(要求:无论x 取任何实数,该分式都有意义,且分式的值为正数)_________________; 2当x=____________时,分式1x x -无意义;当x=________时,分式293x x -+的值为零. 3、当n = 时,函数12n y x -=是反比例函数。 4、请写出一个满足条件“在每个象限内y 随x 的增大而减小”的反比例函数的解析式: 5、自从扫描隧道显微镜发明后,世界上便诞生了一门新科学,这就是“纳米技术”。已知2006个纳米的长度为0.000000002006米,用科学记数法表示,此数为 米。 6、在Rt △ABC 中,0 90C ∠=,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,若5a =,13c =,则d= 。 7、已知y 与(2x+1)成反比例且当x=0时,y=2,那么当x=-1时,y=________。 8.化简2()a b ab b ab --÷的结果为__________________; 9. 如图2,点p 是反比例函数2y x =-上的一点,PD ⊥x 轴于点D,则⊿POD 的面积为______; 10. 如图是用4个相同的小矩形与1个小正方形镶嵌而成的正方形图案.已知该图案的面积为49,小正方形的面积为4,若用x 、y 表示小矩形的两边长(x >y ),请观察图案,指出以下关系式中不正确的是 ( ) A .7=+y x B .2=-y x C .4944=+xy D .2522=+y x 9题 10题 二、认真选一选 (每题3分,共24分) 11.当路程s 一定时,速度V 与时间T 之间的函数关系是( ) A.正比例函数. B.反比例函数; C.一次函数. D. 以上都不是. 12. 若点(-2,y 1)、(-1,y 2)、(1,y 3)在反比例函数1y x = 的图象上,则下列结论中正确的是( ) A.123y y y >>; B.213y y y >> C.312y y y >> D.321y y y >>

新人教版八年级数学下册知识点总结

八年级数学下册知识点总结 第十六章 分式 1. 分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子B A 叫做分式。 分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零 2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。 (0≠C ) 3.分式的通分和约分:关键先是分解因式 4.分式的运算: 分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。 分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。 分式乘方法则: 分式乘方要把分子、分母分别乘方。,a b a b a c ad bc ad bc c c c b d bd bd bd ±±±=±=±= 分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。异分母的分式相加减,先通分,变为同分母分式,然后再加减 混合运算:运算顺序和以前一样。能用运算率简算的可用运算率简算。 5. 任何一个不等于零的数的零次幂等于1, 即)0(10≠=a a ;当n 为正整数时,n n a a 1=- ()0≠a 6.正整数指数幂运算性质也可以推广到整数指数幂.(m,n 是整数) (1)同底数的幂的乘法:n m n m a a a +=?; (2)幂的乘方:mn n m a a =)(; (3)积的乘方:n n n b a ab =)(; (4)同底数的幂的除法:n m n m a a a -=÷( a ≠0); (5)商的乘方:n n n b a b a =)(();(b ≠0) 7. 分式方程:含分式,并且分母中含未知数的方程——分式方程。 解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。 解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。 解分式方程的步骤 : (1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根. 增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。 分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。 列方程应用题的步骤是什么? (1)审;(2)设;(3)列;(4)解;(5)答. 应用题有几种类型;基本公式是什么?基本上有五种: (1)行程问题:基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题. (2)数字问题 在数字问题中要掌握十进制数的表示法. (3)工程问题 基本公式:工作量=工时×工效. (4)顺水逆水问题 v 顺水=v 静水+v 水. v 逆水=v 静水-v 水. 8.科学记数法:把一个数表示成n a 10?的形式(其中101<≤a ,n 是整数)的记数方法叫做科学记数法. 用科学记数法表示绝对值大于10的n 位整数时,其中10的指数是1-n 用科学记数法表示绝对值小于1的正小数时,其中10的指数是第一个非0数字前面0的个数(包括小数点前面的一个0) 第十七章 反比例函数 1.定义:形如y =x k (k 为常数,k≠0)的函数称为反比例函数。其他形式xy=k 1-=kx y x k y 1= 2.图像:反比例函数的图像属于双曲线。反比例函数的图象既是轴对称图形又是中心对称图形。有两条对称轴:直线 bc ad c d b a d c b a bd ac d c b a =?=÷=?;n n n b a b a =)(C B C A B A ??=C B C A B A ÷÷=

相关文档
最新文档