第四讲 等数列及其前n项和
数列前n项和知识点归纳总结

数列前n项和知识点归纳总结数列前n项和【知识点归纳总结】数列是数学中一个重要的概念,通过对数列前n项和的研究,我们可以更好地理解数列的性质和规律。
本文将对数列前n项和的知识点进行归纳总结,以帮助读者更好地掌握这一概念。
一、数列前n项和的定义数列前n项和,也称为数列的部分和,指的是将数列的前n项相加所得到的值。
对于数列{a1, a2, a3, ...},数列的前n项和可以表示为Sn = a1 + a2 + a3 + ... + an。
二、等差数列前n项和等差数列是指一个数列中,从第二项开始,每一项与它的前一项之差都相等的数列。
设等差数列的首项为a1,公差为d,则等差数列的前n项和Sn可以用以下公式表示:Sn = (2a1 + (n-1)d)n/2三、等比数列前n项和等比数列是指一个数列中,从第二项开始,每一项与它的前一项的比值都相等的数列。
设等比数列的首项为a1,公比为r(r≠0),则等比数列的前n项和Sn可以用以下公式表示:Sn = a1(1 – rn)/(1 – r)四、斐波那契数列前n项和斐波那契数列是一个特殊的数列,前两项都是1,后面每一项都等于其前两项之和。
设斐波那契数列的第一项为a1,第二项为a2,则斐波那契数列的前n项和Sn可以用以下公式表示:Sn = a1 + a2 + a3 + ... + an = a(n+2) - 1五、常见数列前n项和除了等差数列、等比数列和斐波那契数列外,还有其他一些常见数列的前n项和公式可以利用。
例如:1. 平方数列的前n项和:Sn = (2n^3 + 3n^2 + n)/62. 立方数列的前n项和:Sn = (n(n + 1)/2)^2六、应用举例1. 例如,对于等差数列{2, 5, 8, 11, 14, ...},求前n项和Sn。
首先确定该等差数列的首项a1和公差d分别为2和3,代入公式Sn = (2a1 + (n-1)d)n/2,可以得到Sn = (2*2 + 3(n-1))n/2 = (4 + 3n - 3)n/2 = (3n +1)n/2。
数列前n项和的求法总结

数列前n项和的求法总结核心提示:求数列的前n项和要借助于通项公式,即先有通项公式,再在分析数列通项公式的基础上,或分解为基本数列求和,或转化为基本数列求和。
当遇到具体问题时,要注意观察数列的特点和规律,找到适合的方法解题。
一.公式法(1)等差数列前n项和:S S=S(S S+S S)S=S S S+S(S+S)SS(2)等比数列前n项和:S=S时,S S=S S S;S≠S时,S S=S S(S−S S )S−S(3)其他公式:S S=S+S+S+⋯+S=SSS(S+S)S S=S S+S S+S S+⋯+S S=SSS(S+S)(SS+S)S S=S S+S S+S S+⋯+S S=[SSS(S+S)]S例题1:求数列S SS ,S SS,S SS,……,(S+SS S),…… 的前n项和S n解:点拨:这道题只要经过简单整理,就可以很明显的看出:这个数列可以分解成两个数列,一个等差数列,一个等比数列,再分别运用公式求和,最后把两个数列的和再求和。
练习:二.倒序相加法如果一个数列{an},与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。
我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:等差数列前n项和公式的推导,用的就是“倒序相加法”。
例题1:设等差数列{an },公差为d,求证:{an}的前n项和Sn=n(a1+an)/2解:Sn =a1+a2+a3+...+an①倒序得:Sn =an+an-1+an-2+…+a1②①+②得:2Sn =(a1+an)+(a2+an-1)+(a3+an-2)+…+(an+a1)又∵a1+an=a2+an-1=a3+an-2=…=an+a1∴2Sn =n(a2+an) Sn=n(a1+an)/2点拨:由推导过程可看出,倒序相加法得以应用的原因是借助a1+an=a2+an-1=a3+an-2=…=an+a1即与首末项等距的两项之和等于首末两项之和的这一等差数列的重要性质来实现的。
初三数学数列前n项和计算公式推导详解

初三数学数列前n项和计算公式推导详解数列是数学中的一个重要概念,它描述了一组按照一定规律排列的数值集合。
而数列的前n项和是指将数列的前n个数相加所得到的结果。
在初三数学中,我们经常需要计算数列的前n项和,因此推导出计算公式是非常有必要的。
假设数列的通项公式为an,其中n表示数列的第n项。
我们需要计算数列的前n项和Sn。
在推导计算公式之前,我们先来看一下几个经典的数列及其前n项和的例子。
1. 等差数列等差数列是指每一项与它的前一项之差都相等的数列。
设等差数列的首项为a1,公差为d,则数列的通项公式可以表示为:an = a1 + (n-1)d。
我们来计算等差数列的前n项和Sn。
首先,我们将数列从第一项到第n项相加,得到以下结果:S1 = a1S2 = a1 + (a1 + d)S3 = a1 + (a1 + d) + (a1 + 2d)...Sn = a1 + (a1 + d) + (a1 + 2d) + ... + [a1 + (n-1)d]观察Sn,我们可以将其分为两部分,第一部分是n个a1的和,第二部分是n个公差的和。
由此可得:Sn = na1 + (1 + 2 + ... + n-1)d= na1 + (1 + n-1)(n-1)/2 * d= (2a1 + (n-1)d)n/2所以,等差数列的前n项和计算公式为Sn = (2a1 + (n-1)d)n/2。
2. 等比数列等比数列是指每一项与它的前一项之比都相等的数列。
设等比数列的首项为a1,公比为q,则数列的通项公式可以表示为:an = a1 *q^(n-1)。
我们来计算等比数列的前n项和Sn。
首先,我们将数列从第一项到第n项相加,得到以下结果:S1 = a1S2 = a1 + a1qS3 = a1 + a1q + a1q^2...Sn = a1 + a1q + a1q^2 + ... + a1q^(n-1)观察Sn,我们可以将其进行变形,得到:Sn = a1 * (1 - q^n) / (1 - q)所以,等比数列的前n项和计算公式为Sn = a1 * (1 - q^n) / (1 - q)。
数列等比数列及其前n项和课件文ppt

通常用符号“{ a_n }”或“a_n”表示。
表示方法
有穷数列和无穷数列
递增数列、递减数列和常数列
等差数列和等比数列
数列的分类
数列的应用
描述数量变化规律
解决实际问题
数学分析、统计学等领域
02
等比数列的定义及性质
等比数列的定义
数学符号表示
等比数列的首项和公比
等比数列的定义
当公比q>1时,数列为递增数列;当0<q<1时,数列为递减数列
前n项和公式的证明
实际应用:等比数列的前n项和公式在实际生活中有广泛的应用。例如,在投资理财中,如果将本金按照一定的年利率进行复利计算,就可以使用等比数列的前n项和公式来计算未来的本金和利息之和。
前n项和公式的应用
04
等比数列的前n项和的实际应用
简单利息
等比数列可以用来计算简单利息,即只考虑本金和利率的情况下,利息随时间线性增长。
等比数列与指数函数的联系
等比数列的通项公式和求和公式与指数函数有密切的联系,可以帮助我们更好地理解指数函数的性质和应用。
等比数列与三角函数的联系
等比数列的项数公式和求和公式与三角函数有一定的联系,可以帮助我们更好地理解三角函数的性质和应用。
与其他数学知识的交叉应用
THANKS
感谢观看
等比数列在金融领域的应用
01
等比数列可以用于计算复利、折旧等金融问题,帮助我们更好地理解金融市场的运行规律。
拓展应用介绍
等比数列在物理领域的应用
02
等比数列可以用于描述指数衰变、放射性衰变等物理现象,帮助我们更好地理解自然界中的规律。
等比数列在计算机领域的应用
03
等比数列可以用于计算机算法设计、数据结构等方面,提高计算机程序的效率和性能。
等比数列及其前n项和考点与题型归纳

等比数列及其前n 项和考点与题型归纳一、基础知识1.等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q .(2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab .只有当两个数同号且不为0时,才有等比中项,且等比中项有两个. 2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1.3.等比数列与指数型函数的关系当q >0且q ≠1时,a n =a 1q ·q n 可以看成函数y =cq x ,其是一个不为0的常数与指数函数的乘积,因此数列{a n }各项所对应的点都在函数y =cq x 的图象上;对于非常数列的等比数列{a n }的前n 项和S n =a 1(1-q n )1-q =-a 11-q q n +a 11-q ,若设a =a 11-q ,则S n =-aq n +a (a ≠0,q ≠0,q ≠1).由此可知,数列{S n }的图象是函数y =-aq x +a 图象上一系列孤立的点.对于常数列的等比数列,即q =1时,因为a 1≠0,所以S n =na 1.由此可知,数列{S n }的图象是函数y =a 1x 图象上一系列孤立的点.二、常用结论汇总——规律多一点设数列{a n }是等比数列,S n 是其前n 项和. (1)通项公式的推广:a n =a m ·q n-m(n ,m ∈N *).(2)若m +n =p +q ,则a m a n =a p a q ;若2s =p +r ,则a p a r =a 2s ,其中m ,n ,p ,q ,s ,r ∈N *.(3)a k ,a k +m ,a k +2m ,…仍是等比数列,公比为q m (k ,m ∈N *).(4)若数列{a n },{b n }是两个项数相同的等比数列,则数列{ba n },{pa n ·qb n }和⎩⎨⎧⎭⎬⎫pa n qb n 也是等比数列.(5)若数列{a n }的项数为2n ,则S 偶S 奇=q ;若项数为2n +1,则S 奇-a 1S 偶=q .考点一 等比数列的基本运算[典例] (2018·全国卷Ⅲ)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m . [解] (1)设{a n }的公比为q ,由题设得a n =q n -1. 由已知得q 4=4q 2,解得q =0(舍去)或q =-2或q =2. 故a n =(-2)n -1或a n =2n -1. (2)若a n=(-2)n -1,则S n =1-(-2)n3.由S m =63,得(-2)m =-188,此方程没有正整数解. 若a n =2n -1,则S n =1-2n1-2=2n -1.由S m =63,得2m =64,解得m =6. 综上,m =6. [题组训练]1.已知等比数列{a n }单调递减,若a 3=1,a 2+a 4=52,则a 1=( )A .2B .4 C.2D .22解析:选B 由题意,设等比数列{a n }的公比为q ,q >0,则a 23=a 2a 4=1,又a 2+a 4=52,且{a n }单调递减,所以a 2=2,a 4=12,则q 2=14,q =12,所以a 1=a 2q=4. 2.(2019·长春质检)已知等比数列{a n }的各项均为正数,其前n 项和为S n ,若a 2=2,S 6-S 4=6a 4,则a 5=( )A .4B .10C .16D .32解析:选C 设公比为q (q >0),S 6-S 4=a 5+a 6=6a 4,因为a 2=2,所以2q 3+2q 4=12q 2,即q 2+q -6=0,所以q =2,则a 5=2×23=16.3.(2017·江苏高考)等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=________. 解析:设等比数列{a n }的公比为q ,则由S 6≠2S 3,得q ≠1,则⎩⎪⎨⎪⎧S 3=a 1(1-q 3)1-q=74,S 6=a 1(1-q 6)1-q =634,解得⎩⎪⎨⎪⎧q =2,a 1=14,则a 8=a 1q 7=14×27=32.答案:32考点二 等比数列的判定与证明[典例] 已知数列{a n }的前n 项和为S n ,a 1=1,S n +1=4a n +2(n ∈N *),若b n =a n +1-2a n ,求证:{b n }是等比数列.[证明] 因为a n +2=S n +2-S n +1=4a n +1+2-4a n -2=4a n +1-4a n , 所以b n +1b n =a n +2-2a n +1a n +1-2a n =4a n +1-4a n -2a n +1a n +1-2a n =2a n +1-4a n a n +1-2a n =2.因为S 2=a 1+a 2=4a 1+2,所以a 2=5. 所以b 1=a 2-2a 1=3.所以数列{b n }是首项为3,公比为2的等比数列.[解题技法]1.掌握等比数列的4种常用判定方法 定义法 中项公式法 通项公式法前n 项和公式法2.等比数列判定与证明的2点注意(1)等比数列的证明经常利用定义法和等比中项法,通项公式法、前n 项和公式法经常在选择题、填空题中用来判断数列是否为等比数列.(2)证明一个数列{a n }不是等比数列,只需要说明前三项满足a 22≠a 1·a 3,或者是存在一个正整数m ,使得a 2m +1≠a m ·a m +2即可.[题组训练]1.数列{a n }的前n 项和为S n =2a n -2n ,证明:{a n +1-2a n }是等比数列. 证明:因为a 1=S 1,2a 1=S 1+2, 所以a 1=2,由a 1+a 2=2a 2-4得a 2=6.由于S n =2a n -2n ,故S n +1=2a n +1-2n +1,后式减去前式得a n +1=2a n +1-2a n -2n ,即a n+1=2a n +2n,所以a n +2-2a n +1=2a n +1+2n +1-2(2a n +2n )=2(a n +1-2a n ), 又a 2-2a 1=6-2×2=2,所以数列{a n +1-2a n }是首项为2、公比为2的等比数列.2.(2019·西宁月考)已知在正项数列{a n }中,a 1=2,点A n (a n ,a n +1)在双曲线y 2-x 2=1上.在数列{b n }中,点(b n ,T n )在直线y =-12x +1上,其中T n 是数列{b n }的前n 项和.(1)求数列{a n }的通项公式; (2)求证:数列{b n }是等比数列.解:(1)由已知点A n 在y 2-x 2=1上知,a n +1-a n =1. ∴数列{a n }是一个以2为首项,1为公差的等差数列. ∴a n =a 1+(n -1)d =2+n -1=n +1.(2)证明:∵点(b n ,T n )在直线y =-12x +1上,∴T n =-12b n +1.①∴T n -1=-12b n -1+1(n ≥2).②①②两式相减,得b n =-12b n +12b n -1(n ≥2).∴32b n =12b n -1,∴b n =13b n -1. 由①,令n =1,得b 1=-12b 1+1,∴b 1=23.∴数列{b n }是以23为首项,13为公比的等比数列.考点三 等比数列的性质考法(一) 等比数列项的性质[典例] (1)(2019·洛阳联考)在等比数列{a n }中,a 3,a 15是方程x 2+6x +2=0的根,则a 2a 16a 9的值为( ) A .-2+22B .-2 C.2D .- 2 或2(2)(2018·河南四校联考)在等比数列{a n }中,a n >0,a 1+a 2+…+a 8=4,a 1a 2…a 8=16,则1a 1+1a 2+…+1a 8的值为( ) A .2 B .4 C .8D .16[解析] (1)设等比数列{a n }的公比为q ,因为a 3,a 15是方程x 2+6x +2=0的根,所以a 3·a 15=a 29=2,a 3+a 15=-6,所以a 3<0,a 15<0,则a 9=-2,所以a 2a 16a 9=a 29a 9=a 9=-2,故选B.(2)由分数的性质得到1a 1+1a 2+…+1a 8=a 8+a 1a 8a 1+a 7+a 2a 7a 2+…+a 4+a 5a 4a 5.因为a 8a 1=a 7a 2=a 3a 6=a 4a 5,所以原式=a 1+a 2+…+a 8a 4a 5=4a 4a 5,又a 1a 2…a 8=16=(a 4a 5)4,a n >0,∴a 4a 5=2,∴1a 1+1a 2+…+1a 8=2.故选A. [答案] (1)B (2)A考法(二) 等比数列前n 项和的性质[典例] 各项均为正数的等比数列{a n }的前n 项和为S n ,若S n =2,S 3n =14,则S 4n 等于( )A .80B .30C .26D .16[解析] 由题意知公比大于0,由等比数列性质知S n ,S 2n -S n ,S 3n -S 2n ,S 4n -S 3n ,…仍为等比数列.设S 2n =x ,则2,x -2,14-x 成等比数列. 由(x -2)2=2×(14-x ), 解得x =6或x =-4(舍去).∴S n ,S 2n -S n ,S 3n -S 2n ,S 4n -S 3n ,…是首项为2,公比为2的等比数列. 又∵S 3n =14,∴S 4n =14+2×23=30. [答案] B [解题技法]应用等比数列性质解题时的2个关注点(1)在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m +n =p +q ,则a m ·a n =a p ·a q ”,可以减少运算量,提高解题速度.(2)在应用相应性质解题时,要注意性质成立的前提条件,有时需要进行适当变形.此外,解题时注意设而不求思想的运用.[题组训练]1.(2019·郑州第二次质量预测)已知等比数列{a n }中,a 2a 5a 8=-8,S 3=a 2+3a 1,则a 1=( )A.12 B .-12C .-29D .-19解析:选B 设等比数列{a n }的公比为q (q ≠1),因为S 3=a 1+a 2+a 3=a 2+3a 1,所以a 3a 1=q 2=2.因为a 2a 5a 8=a 35=-8,所以a 5=-2,即a 1q 4=-2,所以4a 1=-2,所以a 1=-12,故选B.2.已知等比数列{a n }共有2n 项,其和为-240,且奇数项的和比偶数项的和大80,则公比q =________.解析:由题意,得⎩⎪⎨⎪⎧ S 奇+S 偶=-240,S 奇-S 偶=80,解得⎩⎪⎨⎪⎧S 奇=-80,S 偶=-160,所以q =S 偶S 奇=-160-80=2.答案:2[课时跟踪检测]A 级1.(2019·合肥模拟)已知各项均为正数的等比数列{a n }满足a 1a 5=16,a 2=2,则公比q =( )A .4 B.52C .2D.12解析:选C 由题意,得⎩⎪⎨⎪⎧ a 1·a 1q 4=16,a 1q =2,解得⎩⎪⎨⎪⎧ a 1=1,q =2或⎩⎪⎨⎪⎧a 1=-1,q =-2(舍去),故选C.2.(2019·辽宁五校协作体联考)已知各项均为正数的等比数列{a n }中,a 4与a 14的等比中项为22,则log 2a 7+log 2a 11的值为( )A .1B .2C .3D .4解析:选C 由题意得a 4a 14=(22)2=8,由等比数列的性质,得a 4a 14=a 7a 11=8,∴log 2a 7+log 2a 11=log 2(a 7a 11)=log 28=3,故选C.3.在等比数列{a n }中,a 2a 3a 4=8,a 7=8,则a 1=( ) A .1 B .±1 C .2D .±2解析:选A 因为数列{a n }是等比数列,所以a 2a 3a 4=a 33=8,所以a 3=2,所以a 7=a 3q 4=2q 4=8,所以q 2=2,则a 1=a 3q2=1,故选A.4.(2018·贵阳适应性考试)已知等比数列{a n }的前n 项和为S n ,且a 1=12,a 2a 6=8(a 4-2),则S 2 019=( )A .22 018-12B .1-⎝⎛⎭⎫12 2 018C .22 019-12D .1-⎝⎛⎭⎫12 2 019解析:选A 由等比数列的性质及a 2a 6=8(a 4-2),得a 24=8a 4-16,解得a 4=4.又a 4=12q 3,故q =2,所以S 2 019=12(1-22 019)1-2=22 018-12,故选A.5.在等比数列{a n }中,a 1+a 3+a 5=21,a 2+a 4+a 6=42,则S 9=( ) A .255 B .256 C .511D .512解析:选C 设等比数列的公比为q ,由等比数列的定义可得a 2+a 4+a 6=a 1q +a 3q +a 5q =q (a 1+a 3+a 5)=q ×21=42,解得q =2.又a 1+a 3+a 5=a 1(1+q 2+q 4)=a 1×21=21,解得a 1=1.所以S 9=a 1(1-q 9)1-q =1×(1-29)1-2=511.故选C.6.已知递增的等比数列{a n }的公比为q ,其前n 项和S n <0,则( ) A .a 1<0,0<q <1 B .a 1<0,q >1 C .a 1>0,0<q <1D .a 1>0,q >1解析:选A ∵S n <0,∴a 1<0,又数列{a n }为递增等比数列,∴a n +1>a n ,且|a n |>|a n +1|, 则-a n >-a n +1>0,则q =-a n +1-a n ∈(0,1),∴a 1<0,0<q <1.故选A.7.设{a n }是公比为正数的等比数列,若a 1=1,a 5=16,则数列{a n }的前7项和为________. 解析:设等比数列{a n }的公比为q (q >0), 由a 5=a 1q 4=16,a 1=1,得16=q 4,解得q =2, 所以S 7=a 1(1-q 7)1-q =1×(1-27)1-2=127.答案:1278.在3与192中间插入两个数,使它们同这两个数成等比数列,则这两个数为________. 解析:设该数列的公比为q ,由题意知, 192=3×q 3,q 3=64,所以q =4.所以插入的两个数分别为3×4=12,12×4=48. 答案:12,489.(2018·江西师范大学附属中学期中)若等比数列{a n }满足a 2a 4=a 5,a 4=8,则数列{a n }的前n 项和S n =________.解析:设等比数列{a n }的公比为q ,∵a 2a 4=a 5,a 4=8,∴⎩⎪⎨⎪⎧ a 1q ·a 1q 3=a 1q 4,a 1q 3=8,解得⎩⎪⎨⎪⎧a 1=1,q =2,∴S n =1×(1-2n )1-2=2n -1.答案:2n -110.已知等比数列{a n }为递减数列,且a 25=a 10,2(a n +a n +2)=5a n +1,则数列{a n }的通项公式a n =________.解析:设公比为q ,由a 25=a 10, 得(a 1q 4)2=a 1·q 9,即a 1=q . 又由2(a n +a n +2)=5a n +1, 得2q 2-5q +2=0, 解得q =12()q =2舍去,所以a n =a 1·q n -1=12n .答案:12n11.(2018·全国卷Ⅰ)已知数列{a n }满足a 1=1,na n +1=2(n +1)a n .设b n =a nn .(1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式.解:(1)由条件可得a n +1=2(n +1)n a n .将n =1代入得,a 2=4a 1, 而a 1=1,所以a 2=4.将n =2代入得,a 3=3a 2,所以a 3=12. 从而b 1=1,b 2=2,b 3=4.(2)数列{b n }是首项为1,公比为2的等比数列. 由条件可得a n +1n +1=2a nn,即b n +1=2b n ,又b 1=1,所以数列{b n }是首项为1,公比为2的等比数列. (3)由(2)可得a nn=2n -1,所以a n =n ·2n -1.12.(2019·甘肃诊断)设数列{a n +1}是一个各项均为正数的等比数列,已知a 3=7,a 7=127.(1)求a 5的值;(2)求数列{a n }的前n 项和.解:(1)由题可知a 3+1=8,a 7+1=128, 则有(a 5+1)2=(a 3+1)(a 7+1)=8×128=1 024, 可得a 5+1=32,即a 5=31. (2)设数列{a n +1}的公比为q ,由(1)知⎩⎪⎨⎪⎧ a 3+1=(a 1+1)q 2,a 5+1=(a 1+1)q 4,得⎩⎪⎨⎪⎧a 1+1=2,q =2,所以数列{a n +1}是一个以2为首项,2为公比的等比数列,所以a n +1=2×2n -1=2n ,所以a n =2n -1,利用分组求和可得,数列{a n }的前n 项和S n =2(1-2n )1-2-n =2n +1-2-n .B 级1.在各项都为正数的数列{a n }中,首项a 1=2,且点(a 2n ,a 2n -1)在直线x -9y =0上,则数列{a n }的前n 项和S n 等于( )A .3n-1 B.1-(-3)n 2C.1+3n 2D.3n 2+n 2解析:选A 由点(a 2n ,a 2n -1)在直线x -9y =0上,得a 2n -9a 2n -1=0,即(a n +3a n -1)(a n -3a n -1)=0,又数列{a n }各项均为正数,且a 1=2,∴a n +3a n -1>0,∴a n -3a n -1=0,即a na n -1=3,∴数列{a n }是首项a 1=2,公比q =3的等比数列,其前n 项和S n =2(1-3n )1-3=3n -1.2.(2019·郑州一测)已知数列{a n }满足log 2a n +1=1+log 2a n (n ∈N *),且a 1+a 2+a 3+…+a 10=1,则log 2(a 101+a 102+…+a 110)=________.解析:因为log 2a n +1=1+log 2a n ,可得log 2a n +1=log 22a n ,所以a n +1=2a n ,所以数列{a n }是以a 1为首项,2为公比的等比数列,又a 1+a 2+…+a 10=1,所以a 101+a 102+…+a 110=(a 1+a 2+…+a 10)×2100=2100,所以log 2(a 101+a 102+…+a 110)=log 22100=100.答案:1003.已知数列{a n }中,a 1=1,a n ·a n +1=⎝⎛⎭⎫12n ,记T 2n 为{a n }的前2n 项的和,b n =a 2n +a 2n -1,n ∈N *.(1)判断数列{b n }是否为等比数列,并求出b n ;(2)求T 2n .解:(1)∵a n ·a n +1=⎝⎛⎭⎫12n ,∴a n +1·a n +2=⎝⎛⎭⎫12n +1,∴a n +2a n =12,即a n +2=12a n . ∵b n =a 2n +a 2n -1,∴b n +1b n =a 2n +2+a 2n +1a 2n +a 2n -1=12a 2n +12a 2n -1a 2n +a 2n -1=12, ∵a 1=1,a 1·a 2=12, ∴a 2=12,∴b 1=a 1+a 2=32. ∴{b n }是首项为32,公比为12的等比数列. ∴b n =32×⎝⎛⎭⎫12n -1=32n . (2)由(1)可知,a n +2=12a n , ∴a 1,a 3,a 5,…是以a 1=1为首项,以12为公比的等比数列;a 2,a 4,a 6,…是以a 2=12为首项,以12为公比的等比数列, ∴T 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=1-⎝⎛⎭⎫12n 1-12+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=3-32n .。
数列前n项和的求法

a3
Cnn an1
分析:注意到
Ck n
C nk n
且当m+n=p+q时,
有:am an a p aq(等差数列的性质)
解: Sn Cn0a1 Cn1a2 Cn2a3 Cnnan1,又
Sn Cnnan1 Cnn1an Cnn2an1 Cn0a1
两式相加得:2Sn (a1 an1)(Cn0 Cn1 Cnn ) (a1 an1) 2n
1 n(n 1)(n 2)(n 3) 4
例4、求
Sn
1 5
1 21
1 45
4n 2
1 4n
3
解:其“通项”an
4n 2
1 4n
3
(2n
1 1)(2n
3)
1( 1 1 )
4 2n 1 2n 3
∴
Sn
1 4
[(1
1) 5
(1 3
1) 7
(1 5
1) 9
(1 2n
3
1) 2n 1
( 1 1 )]
公比q的要求,可得如下解法:
解:当t=1时, S n
n
n[2
(n 2
3)]
n(n 2
3)
t(1 t n ) n(n 5)
当 t 1时, S n 1 t
2
总结:拆项转化常用于通项aann 是多项式
的情况。这时,可把通项 拆成两个
(或多个)基本数列的通项,再求和。
有时也应用自然数的方幂和公式求 Sn ,
例1已知数列{an } 中,an t n n 3 且
( t 0 ,n N ,且t为常数),求 Sn
分析:观察数列的通项公式,数列 {an } 可以
“分解”为一个公比为t的等比数列{t n } 和一
等比数列及其前n项和_课件
【训练2】 (2012·浙江)设公比为q(q>0)的等比数列{an}的前 n项和为Sn.若S2=3a2+2,S4=3a4+2,则q=________. 解析 ∵S4-S2=a3+a4=3(a4-a2),
∴a2(q+q2)=3a2(q2-1),∴q=-1(舍去)或 q=32.
答案
3 2
考向三 等比数列的性质及应用
【例3】►(1)等比数列{an}中,a1+an=66,a2an-1=128, 前n项和Sn=126,则公比q=________.
(2)等比数列{an}中,q=2,S99=77,则a3+a6+…+a99= ________. [审题视点] (1)利用等比数列的性质:“若m+n=p+q,则 am·an=ap·aq”; (2)把前99项分三组,再转化为a3+a6+…+a99.
为非零常
数且 n≥2),则{an}是等比数列;
(2)中项公式法:在数列{an}中,an≠0 且 an2+1=an·an+2(n∈ N*),则数列{an}是等比数列;
(3)通项公式法:若数列通项公式可写成an=c·qn(c,q均是 不为0的常数,n∈N*),则{an}是等比数列; (4)前n项和公式法:若数列{an}的前n项和Sn=k·qn-k(k为 常数且k≠0,q≠0,1),则{an}是等比数列. 注 前两种方法也可用来证明一个数列为等比数列.
在解决有关等比数列的计算问题时,要 注意挖掘隐含条件,充分利用其性质 ,特别是性质 “若m+n=p+q,则am·an=ap·aq”,可以减少运算 量,提高解题速度.
【训练3】 (2012·北京东城区一模)已知x,y,z∈R,若- 1,x,y,z,-3成等比数列,则xyz的值为 ( ).
A.-3 B.±3 C.-3 3 D.±3 3 解析 由等比中项知 y2=3,∴y=± 3, 又∵y 与-1,-3 符号相同,∴y=- 3,y2=xz,
等比数列及前n项和
Sk , S2k Sk , S3k S2k , S4k S3k ,
(6)若数列 an 是等比数列,当项数为偶数 2 n
s qs 时,
偶
,
奇
; 当项数为奇数
时,
1.在等比数列{an}中,a5=3,则a3·7等于( C ) a A.3 B.6 C.9 D.18
等比数列的前n项和及其性质
例3 (2011年南阳调研)在等比数列{an}中,a1最小, 且a1+an=66,a2·n-1=128,前n项和Sn=126, a (1)求公比q; (2)求n. 【思路点拨】 根据等比数列的性质,a2·n-1= a
a1·n,由此可得关于a1、an的方程,结合Sn=126 a 可求得q和n.
二、等比数列的判定方法: an 1 (1)定义法: 常数 an
an
是等比数列 (2)等比中项公式法: n a
是等比数列 an
2
an1 an1
(3)通项公式法: n a 数列
kq an 是等比
n
(4)前n项和法:Sn
是等比数列
k kq an
x2 10x 16 0
的两根,则 a20 a50 a80 的值为( B )
A.32
B.64
C.256 D. 64
9.等比数列 {an } 的各项均为正数,且 a5a6 a4 a7 =18,
则
log3 a1 log3 a2 log3 a10
B.10
=(
B
)
D.2+ log3 5
等比数列及其前n项和
一、等比数列的定义与基本公式:
第四讲 数列前n项和解法技巧 -上交
考点3裂项相消法
把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.
考点4错位相减法
如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.
基础练习1-5
教学内容与程序
教师活动
学生活动
教学构思
2、课堂练习
三、课堂小结
第二部分,例题及练习
考向一
例1[2014·湖南高考]已知数列{an}的前n项和Sn=,n∈N*.
(1)求数列{an}的通项公式;
(2)(2)设bn=2an+(-1)nan,求数列{bn}的前2n项和.
(3)令bn=,求数列{bn}的前n项和Tn.
《第四讲数列前n项和解法技巧》授课教案
授课教师:刘阳
授课班级:高二
专业名称:数学
授课日期:2017年3月19日
课题
第四讲数列前n项和解法技巧
课型
课时
周六(日)
节次
教学目标
知识与能力
1.熟练掌握等差、等比数列的ห้องสมุดไป่ตู้n项和公式.
2.掌握非等差、等比数列求和的几种常见方法.
过程与方法
讲授、讨论、对比总结
情感态度价值观
类比、归纳、演绎推理
教学重点
1.熟练掌握等差、等比数列的前n项和公式.
2.掌握非等差、等比数列求和的几种常见方法.
教学难点
1.熟练掌握等差、等比数列的前n项和公式.
2.掌握非等差、等比数列求和的几种常见方法.
教学方法
讲授、板演、讨论
教学准备
等差数列及其前n项和知识点讲解+例题讲解(含解析)
等差数列及其前n 项和一、知识梳理1.等差数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列.数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数).(2)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b 2.2.等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d .(2)前n 项和公式:S n =na 1+n (n -1)d 2=n (a 1+a n )2. 3.等差数列的性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(4)若S n 为等差数列{a n }的前n 项和,则数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.(5)若S n 为等差数列{a n }的前n 项和,则数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列. 小结:1.已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列,且公差为p .2.在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.3.等差数列{a n }的单调性:当d >0时,{a n }是递增数列;当d <0时,{a n }是递减数列;当d =0时,{a n }是常数列.4.数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”)(1)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( )(2)等差数列{a n }的单调性是由公差d 决定的.( )(3)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( )(4)等差数列的前n 项和公式是常数项为0的二次函数.( ) 解析 (3)若公差d =0,则通项公式不是n 的一次函数.(4)若公差d =0,则前n 项和不是二次函数.答案 (1)√ (2)√ (3)× (4)×2.设数列{a n }是等差数列,其前n 项和为S n ,若a 6=2且S 5=30,则S 8等于( )A.31B.32C.33D.34解析 由已知可得⎩⎨⎧a 1+5d =2,5a 1+10d =30, 解得⎩⎪⎨⎪⎧a 1=263,d =-43,∴S 8=8a 1+8×72d =32. 答案 B3.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8=________. 解析 由等差数列的性质,得a 3+a 4+a 5+a 6+a 7=5a 5=450,∴a 5=90,∴a 2+a 8=2a 5=180.答案 1804.(2018·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( )A.-12B.-10C.10D.12解析 设等差数列{a n }的公差为d ,则3(3a 1+3d )=2a 1+d +4a 1+6d ,即d =-32a 1.又a 1=2,∴d =-3,∴a 5=a 1+4d =2+4×(-3)=-10. 答案 B5.(2019·上海黄浦区模拟)已知等差数列{a n }中,a 2=1,前5项和S 5=-15,则数列{a n }的公差为( )A.-3B.-52C.-2D.-4 解析 设等差数列{a n }的首项为a 1,公差为d ,因为⎩⎨⎧a 2=1,S 5=-15,所以⎩⎪⎨⎪⎧a 1+d =1,5a 1+5×42d =-15, 解得d =-4.答案 D6.(2019·苏北四市联考)在等差数列{a n }中,已知a 3+a 8>0,且S 9<0,则S 1,S 2,…,S 9中最小的是______.解析 在等差数列{a n }中,∵a 3+a 8>0,S 9<0,∴a 5+a 6=a 3+a 8>0,S 9=9(a 1+a 9)2=9a 5<0, ∴a 5<0,a 6>0,∴S 1,S 2,…,S 9中最小的是S 5.答案 S 5考点一 等差数列基本量的运算【例1】 (1)(2017·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A.1B.2C.4D.8 (2)(2019·潍坊检测)设等差数列{a n }的前n 项和为S n ,S 11=22,a 4=-12,若a m =30,则m =( )A.9B.10C.11D.15 解析 (1)法一 设等差数列{a n }的公差为d ,依题意得⎩⎪⎨⎪⎧(a 1+3d )+(a 1+4d )=24,6a 1+6×52d =48,所以d =4.法二 等差数列{a n }中,S 6=(a 1+a 6)×62=48,则a 1+a 6=16=a 2+a 5,又a 4+a 5=24,所以a 4-a 2=2d =24-16=8,则d =4.(2)设等差数列{a n }的公差为d ,依题意得⎩⎪⎨⎪⎧S 11=11a 1+11×(11-1)2d =22,a 4=a 1+3d =-12,解得⎩⎨⎧a1=-33,d =7,∴a m =a 1+(m -1)d =7m -40=30,∴m =10.答案 (1)C (2)B【训练1】 (1)等差数列log 3(2x ),log 3(3x ),log 3(4x +2),…的第四项等于()A.3B.4C.log 318D.log 324(2)设等差数列{a n }的前n 项和为S n ,S 3=6,S 4=12,则S 6=________. 解析 (1)∵log 3(2x ),log 3(3x ),log 3(4x +2)成等差数列, ∴log 3(2x )+log 3(4x +2)=2log 3(3x ),∴log 3[2x (4x +2)]=log 3(3x )2,则2x (4x +2)=9x 2,解之得x =4,x =0(舍去).∴等差数列的前三项为log 38,log 312,log 318,∴公差d =log 312-log 38=log 332,∴数列的第四项为log 318+log 332=log 327=3.(2)法一 设数列{a n }的首项为a 1,公差为d ,由S 3=6,S 4=12,可得⎩⎨⎧S 3=3a 1+3d =6,S 4=4a 1+6d =12,解得⎩⎨⎧a 1=0,d =2,所以S 6=6a 1+15d =30.法二 由{a n }为等差数列,故可设前n 项和S n =An 2+Bn , 由S 3=6,S 4=12可得⎩⎨⎧S 3=9A +3B =6,S 4=16A +4B =12,解得⎩⎨⎧A =1,B =-1,即S n =n 2-n ,则S 6=36-6=30. 答案 (1)A (2)30考点二 等差数列的判定与证明【例2】 (经典母题)若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列; (2)求数列{a n }的通项公式.(1)证明 当n ≥2时,由a n +2S n S n -1=0,得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2, 又1S 1=1a 1=2, 故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)解 由(1)可得1S n=2n ,∴S n =12n . 当n ≥2时,a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1). 当n =1时,a 1=12不适合上式.故a n =⎩⎪⎨⎪⎧12,n =1,-12n (n -1),n ≥2.【训练2】 (2017·全国Ⅰ卷)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.解 (1)设{a n }的公比为q ,由题设可得⎩⎨⎧a 1(1+q )=2,a 1(1+q +q 2)=-6,解得⎩⎨⎧q =-2,a 1=-2.故{a n }的通项公式为a n =(-2)n .(2)由(1)可得S n =a 1(1-q n )1-q=-23+(-1)n 2n +13. 由于S n +2+S n +1=-43+(-1)n 2n +3-2n +23. =2⎣⎢⎡⎦⎥⎤-23+(-1)n ·2n +13=2S n , 故S n +1,S n ,S n +2成等差数列.考点三 等差数列的性质及应用角度1 等差数列项的性质【例3-1】 (2019·临沂一模)在等差数列{a n }中,a 1+3a 8+a 15=120,则a 2+a 14的值为( )A.6B.12C.24D.48 解析 ∵在等差数列{a n }中,a 1+3a 8+a 15=120,由等差数列的性质,a 1+3a 8+a 15=5a 8=120,∴a 8=24,∴a 2+a 14=2a 8=48.答案 D角度2 等差数列和的性质【例3-2】 设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( )A.63B.45C.36D.27 解析 由{a n }是等差数列,得S 3,S 6-S 3,S 9-S 6为等差数列, 即2(S 6-S 3)=S 3+(S 9-S 6),得到S 9-S 6=2S 6-3S 3=45,所以a 7+a 8+a 9=45.答案 B规律方法 1.项的性质:在等差数列{a n }中,若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q .2.和的性质:在等差数列{a n }中,S n 为其前n 项和,则(1)S 2n =n (a 1+a 2n )=…=n (a n +a n +1);(2)S 2n -1=(2n -1)a n .【训练3】 (1)已知S n 是等差数列{a n }的前n 项和,若a 1=-2 015,S 2 0152 015-S 2 0092 009=6,则S 2 019=________.(2)(2019·荆州一模)在等差数列{a n }中,若a 3+a 4+a 5=3,a 8=8,则a 12的值是( )A.15B.30C.31D.64(3)等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n =3n -22n +1,则a 7b 7等于( ) A.3727B.1914C.3929D.43 解析 (1)由等差数列的性质可得⎩⎨⎧⎭⎬⎫S n n 也为等差数列. 设其公差为d ,则S 2 0152 015-S 2 0092 009=6d =6,∴d =1.故S 2 0192 019=S 11+2 018d =-2 015+2 018=3,∴S 2 019=3×2 019=6 057.(2)由a 3+a 4+a 5=3及等差数列的性质,∴3a 4=3,则a 4=1.又a 4+a 12=2a 8,得1+a 12=2×8.∴a 12=16-1=15.(3)a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=a 1+a 132×13b 1+b 132×13=S 13T 13=3×13-22×13+1=3727. 答案 (1)6 057 (2)A (3)A考点四 等差数列的前n 项和及其最值【例4】 (2019·衡水中学质检)已知数列{a n }的前n 项和为S n ,a 1≠0,常数λ>0,且λa 1a n =S 1+S n 对一切正整数n 都成立.(1)求数列{a n }的通项公式;(2)设a 1>0,λ=100,当n 为何值时,数列⎩⎨⎧⎭⎬⎫lg 1a n 的前n 项和最大? 解 (1)令n =1,得λa 21=2S 1=2a 1,a 1(λa 1-2)=0,因为a 1≠0,所以a 1=2λ,当n ≥2时,2a n =2λ+S n ,2a n -1=2λ+S n -1,两式相减得2a n -2a n -1=a n (n ≥2).所以a n =2a n -1(n ≥2),从而数列{a n }为等比数列,a n =a 1·2n -1=2n λ.(2)当a 1>0,λ=100时,由(1)知,a n =2n 100,则b n =lg 1a n =lg 1002n =lg 100-lg 2n =2-n lg 2, 所以数列{b n }是单调递减的等差数列,公差为-lg 2,所以b 1>b 2>…>b 6=lg 10026=lg 10064>lg 1=0,当n ≥7时,b n ≤b 7=lg 10027<lg 1=0,所以数列⎩⎨⎧⎭⎬⎫lg 1a n 的前6项和最大. 规律方法 求等差数列前n 项和S n 的最值的常用方法:(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn (a ≠0),通过配方或借助图象求二次函数的最值.(2)利用等差数列的单调性,求出其正负转折项,进而求S n 的最值.①当a 1>0,d <0时,满足⎩⎨⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m (当a m +1=0时,S m +1也为最大值);②当a 1<0,d >0时,满足⎩⎨⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m (当a m +1=0时,S m +1也为最小值).【训练4】 (1)等差数列{a n }的公差d ≠0,且a 3,a 5,a 15成等比数列,若a 5=5,S n 为数列{a n }的前n项和,则数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和取最小值时的n 为( ) A.3B.3或4C.4或5D.5(2)已知等差数列{a n }的首项a 1=20,公差d =-2,则前n 项和S n 的最大值为________.解析 (1)由题意知⎩⎨⎧(a 1+2d )(a 1+14d )=25,a 1+4d =5,由d ≠0,解得a 1=-3,d =2,∴S n n =na 1+n (n -1)2d n =-3+n -1=n -4,则n -4≥0,得n ≥4,∴数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和取最小值时的n 为3或4. (2)因为等差数列{a n }的首项a 1=20,公差d =-2,S n =na 1+n (n -1)2d =20n -n (n -1)2×2 =-n 2+21n =-⎝ ⎛⎭⎪⎫n -2122+⎝ ⎛⎭⎪⎫2122, 又因为n ∈N *,所以n =10或n =11时,S n 取得最大值,最大值为110. 答案 (1)B (2)110三、课后练习1.(2019·济宁模拟)设数列{a n }满足a 1=1,a 2=2,且2na n =(n -1)a n -1+(n +1)a n +1(n ≥2且n ∈N *),则a 18=( )A.259B.269C.3D.289 解析 令b n =na n ,则2b n =b n -1+b n +1(n ≥2),所以{b n }为等差数列,因为b 1=1,b 2=4,所以公差d =3,则b n =3n -2,所以b 18=52,则18a 18=52,所以a 18=269.答案 B2.(2019·青岛诊断)已知等差数列{a n },{b n }的前n 项和分别为S n ,T n (n ∈N *),若S n T n =2n -1n +1,则a 12b 6=( )A.154B.158C.237D.3 解析 由题意不妨设S n =n (2n -1),T n =n (n +1), 所以a 12=S 12-S 11=12×23-11×21=45,b 6=T 6-T 5=6×(6+1)-5×(5+1)=42-30=12,所以a 12b 6=4512=154. 答案 A3.设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________. 解析 由a n =2n -10(n ∈N *)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0得n ≥5,∴n ≤5时,a n ≤0,当n >5时,a n >0, ∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+110=130. 答案 1304.(2019·长沙雅礼中学模拟)设S n 为等差数列{a n }的前n 项和,已知a 1+a 13=26,S 9=81.(1)求{a n }的通项公式;(2)令b n =1a n +1a n +2,T n =b 1+b 2+…+b n ,若30T n -m ≤0对一切n ∈N *成立,求实数m 的最小值.解 (1)∵等差数列{a n }中,a 1+a 13=26,S 9=81, ∴⎩⎨⎧2a 7=26,9a 5=81,解得⎩⎨⎧a 7=13,a 5=9,∴d =a 7-a 57-5=13-92=2, ∴a n =a 5+(n -5)d =9+2(n -5)=2n -1.(2)∵b n =1a n +1a n +2=1(2n +1)(2n +3) =12⎝ ⎛⎭⎪⎫12n +1-12n +3, ∴T n =12⎝ ⎛⎭⎪⎫13-15+15-17+…+12n +1-12n +3 =12⎝ ⎛⎭⎪⎫13-12n +3, ∵12⎝ ⎛⎭⎪⎫13-12n +3随着n 的增大而增大,知{T n }单调递增. 又12n +3>0,∴T n <16,∴m ≥5, ∴实数m 的最小值为5.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四讲 等差数列及其前n 项和
【知识要点】
1.等差数列的概念
如果一个数列从第二项起,每一项与它前一项的差等于同一个常数d ,这个数列叫做等差数列,常数
d 称为等差数列的公差. 2.通项公式与前n 项和公式
⑴通项公式d n a a n
)1(1-+=,1a 为首项,d 为公差.
⑵前n 项和公式2)(1n n a a n S +=
或d n n na S n )1(2
1
1-+=.
3.等差中项
如果b A a ,,成等差数列,那么A 叫做a 与b 的等差中项.
即:A 是a 与b 的等差中项⇔b a A +=2⇔a ,A ,b 成等差数列.
4.等差数列的判定方法
⑴定义法:d a a n n =-+1
(+∈N n ,d 是常数)⇔{}n a 是等差数列; ⑵中项法:21
2+++=n n n a a a (+∈N n )⇔{}n a 是等差数列.
5.等差数列的常用性质
⑴数列
{}n a 是等差数列,则数列{}p a n +、{}n pa (p 是常数)都是等差数列;
⑵在等差数列
{}n a 中,等距离取出若干项也构成一个等差数列,即Λ,,,,32k n k n k n n a a a a +++为等
差数列,公差为kd .
⑶d m n a a m n
)(-+=;b an a n +=(a ,b 是常数);bn an S n +=2(a ,b 是常数,0≠a )
⑷三个数成等差,可巧设为 a-d, a, a+d 四个数成等差,可巧设为 a-3d,a-d,a+d,a+3d
【典例精讲】
题型一 等差数列基本运算
例1 (1)数列{}n a 是等差数列,,11=a 512-=n a ,1022-=n S ,求公差d ;
(2)已知等差数列
{}n a 中,1952=+a a ,405=S ,求10a .
例2 在等差数列中
{}n a ,,11=a 33-=a .
(1)求数列{}n a 的通项公式 (2)若数列
{}n a 的前k 项和35-=k
S ,求k 的值.
题型二 证明数列是等差数列 例3已知数列{}n a ,0,N ,)2(8
1
*2>∈+=
n n n a n a S , (1)求证:数列{}n a 是等差数列;
(2)若302
1
-=n n a b ,求数列{}n b 的前n 项和的最小值.
例4已知数列{}n a 的前n 项和为n S 且满足021=+-n n n s s a (n ≥2),,2
11=
a (1)求证:⎭
⎬⎫
⎩⎨
⎧n s 1是等差数列;
(2)求{}n a 的表达式.
题型三 等差数列性质的应用
例5(1)已知等差数列{}n a 的前n 项和为n S ,05795=+a a ,且 59a a >,则使n S 最小的n 为
( )
A . 5
B . 6
C . 7
D . 8 (2)等差数列
{}n a ,{}n b 的前n 项和为n S ,n T ,且n
n
T S =
1
213+-n n ,求
88b a .
题型四 等差数列前n 项和的最值
例6设等差数列
{}n a 满足53=a ,910-=a
(1)求{}n a 的通项公式;
(2)求
{}n a 的前n 项和n S 及使得n S 最大的序号n 的值.
【课堂练习】
1.已知
{}n a 为等差数列,128
2=+a a 则5a 等于(
)
A .4
B .5
C .6
D .7 2.设数列
{}n a 是等差数列,其前n 项和为n s ,若26=a 且305=s ,则8s 等于( ) A .31 B .32 C .33 D .34 3.已知数列
{}n a 的前n 项和n s 满足:n m n m s s s +=+且11=a 那么10a =( )
A .1
B .9
C .10
D .55 4.设n s 是等差数列
{}n a 的前n 项和,已知32=a ,116=a 则7s 等于( )
A .13
B .35
C .49
D .63
5. 若一个等差数列的前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( ) A . 13项 B . 12项 C . 11项 D . 10项 6 设n S 是等差数列
{}n a 的前n 项和,若0,,01381==>k S S S a ,则k 的值为( )
A . 18
B . 19
C . 20
D . 21 7 已知函数
x
x f 2)(=,等差数列
{}n a 的公差为
2,若
4
)(108642=++++a a a a a f ,则
=⋅⋅⋅)]()()()([log 103212a f a f a f a f .
【思维拓展】
例 1 若{}n a 是等差数列,首项01>a ,020102009>+a a ,020102009<⋅a a ,则使前n 项的和
0>n S 成立的最大自然数n 是( )
A . 4017
B . 4018
C . 4020
D . 4019 例2 等差数列
{}n a 的前n 项和为n S ,
已知01>a ,若存在自然数p ≥10,使得p p S a =,则p n >时,n n a S ,的大小关系是 .
【课外作业】
1.等差数列
{}n a 中,2,383==a a ,则=+⋅⋅⋅+++12321a a a a ( ) A . 4 B . 5 C . 6 D . 7 2.若等差数列
{}n a 满足3,244113==+a a a ,则数列{}n a 的公差为( )
A . 1
B . 3
C . 5
D . 6 3.在等差数列{}n a 中,若1201210864=++++a a a a a ,则1193
1a a -的值为( )
A.14
B.15
C.16
D.17
4.等差数列的
{}n a 前n 项和满足4020s s =下列结论中正确的是( )
A.30s 是30s 中的最大值
B.30s 是n s 中的最小值
C.0
30
=s
D.060
=s
5.等差数列
{}n a 的公差d ,前n 项和为n S ,当首项1a 与d 变化时,1182a a a ++是一个定值,则下列
各数中也为定值的是( )
A . 7S
B . 8S
C . 13S
D . 15S
6.设n s 是等差数列{}n a 的前n 项和,812-=a ,99-=s ,则16s = .
7.在等差数列{}n a 中,24)(2)(31310753=++++a a a a a ,
则此数列前13项的和 是 . 8.已知数列{}n a 、{}n b 都是公差为1的等差数列,其首项分别为1a 、1b 且511=+b a , 1a 、1b ∈
N+.设n b n
a c =(n ∈N+),则数列{}n c 的前10项和等于 . .
9.已知定义域为R 的函数
)(x f 对任意的x ∈R 都有2)2
1
()1(+-=+x f x f 恒成立,
又1)21(=f , 则)62(f = .
10.已知函数x x x f tan sin )(+=,项数为27的等差数列{}n a 满足n a ∈(-
2π,2
π
),且公差d ≠0,若
0)()()()(27321=+⋅⋅⋅+++a f a f a f a f ,则当k = 时,0)(=k a f .。