34.函数模型及其应用(2) (2)
函数模型及应用研究报告

函数模型及应用研究报告函数模型是指通过对一个或多个自变量的输入,通过一系列数学运算得出一个或多个因变量的输出的数学模型。
函数模型是数学应用中的重要工具,广泛应用于各个领域,包括工程、物理、计算机科学等等。
本文旨在探讨函数模型的应用,并以实际问题为例,研究其在解决实际问题中的应用和效果。
二、函数模型的概述1. 函数模型的定义:函数模型是通过对自变量进行加工运算,得到因变量的数学模型。
函数模型可以是线性的、非线性的、离散的或连续的等等。
2. 函数模型的应用:函数模型广泛应用于各个领域。
在经济领域,函数模型可以用于描述供需关系,预测经济走势。
在物理领域,函数模型可以用于描述运动物体的位移、速度、加速度等等。
在工程领域,函数模型可以用于优化设计、提高生产效率。
在计算机科学领域,函数模型可以用于解决各种算法和计算问题。
三、函数模型在实际问题中的应用1. 函数模型在经济学中的应用:函数模型可以用于描述供需关系。
例如,在市场经济中,供给和需求的关系决定了商品的价格和数量。
通过建立供给和需求的函数模型,可以分析价格对数量的影响,预测未来市场的变化趋势,辅助经济决策。
2. 函数模型在物理学中的应用:函数模型可以用于描述运动物体的位移、速度、加速度等等。
例如,在物体运动的过程中,可以通过建立位移与时间的函数模型,预测物体的运动轨迹;通过建立速度与时间的函数模型,计算物体在不同时间点的速度。
这对于研究物体的运动规律、优化设计等方面都具有重要意义。
3. 函数模型在工程学中的应用:函数模型可以用于优化设计、提高生产效率。
例如,在工程设计中,通过建立输入与输出之间的函数模型,可以确定最优设计参数,提高产品质量和性能;在生产过程中,通过建立生产过程的函数模型,可以分析生产效率和成本之间的关系,优化生产流程。
这对于提高工程效益具有重要作用。
4. 函数模型在计算机科学中的应用:函数模型是计算机科学的基石。
在算法设计与分析中,函数模型可以用于描述算法的时间复杂度、空间复杂度等;在机器学习中,函数模型可以用于构建分类器和回归器,实现数据分析和预测;在图像处理中,函数模型可以用于描述图像的变换和处理。
数学建模—函数模型及其应用

(k为常数,k≠0);
(4)指数型函数模型:f(x)=abx+c(a,b,c为常数,a≠0,b>0,b≠1);
(5)对数型函数模型:f(x)=mlogax+n(m,n,a为常数,m≠0,a>0,a≠1);
(6)幂型函数模型:f(x)=axn+b(a,b,n为常数,a≠0);
1 (),∈1 ,
了该车相邻两次加油时的情况.
加油时间
2020年5月1日
2020年5月15日
加油量(升)
12
48
加油时的累计里程(千米)
35 000
35 600
注:“累计里程”指汽车从出厂开始累计行驶的路程.
在这段时间内,该车每100千米平均耗油量为(
A.6升 B.8升
C.10升 D.12升
)
答案 B
解析 因为第一次油箱加满,所以第二次的加油量即为该段时间内的耗油量,
3
log 4 8 + = 1,
+ = 1,
解析依题意得
即 2
解得 a=2,b=-2.则
log 4 64 + = 4,
3 + = 4.
y=2log4x-2,当 y=8 时,即 2log4x-2=8,解得 x=1 024.
关键能力 学案突破
考点1
利用函数图像刻画实际问题
【例1】 (2020北京东城一模,10)
故耗油量V=48升.而这段时间内行驶的里程数S=35 600-35 000=600千米.
所以这段时间内,该车每100千米平均耗油量为
48
×100=8升,故选B.
600
3.(2020北京平谷二模,9)溶液酸碱度是通过pH计算的,pH的计算公式为
函数模型及其应用

函数模型及其应用一、构建函数模型的基本步骤:1、审题:弄清题意,分析条件和结论,理顺数量关系;2、建模:引进数学符号,一般地,设自变量为x ,函数为y ,必要时引入其他相关辅助变量,并用x 、y 和辅助变量表示各相关量,然后根据已知条件建立关系式,即所谓的数学模型;3、求模:利用数学方法将得到的常规函数问题予以解答,求得结果;4、还原:将所得的结果还原为实际问题的意义,再转译成具体问题的回答。
二、常见函数模型:1、一次函数模型;2、二次函数模型;3、分段函数模型;4、指数函数模型;5、对数函数模型;6、对勾函数模型;7、分式函数模型。
题型1:一次函数模型因一次函数y kx b =+(0k ≠)的图象是一条直线,因而该模型又称为直线模型,当0k >时,函数值的增长特点是直线上升;当0k <时,函数值则是直线下降。
例1:某工厂在甲、乙两地的两个分工厂各生产同一种机器12台和6台。
现销售给A 地10台,B 地8台。
已知从甲地到A 地、B 地的运费分别是400元和800元,从乙地到A 地、B 地的运费分别是300元和500元,(1)设从乙地运x 台至A 地,求总运费y 关于x 的函数解析式; (2)若总运费不超过9000元,共有几种调运方案; (3)求出总运费最低的方案和最低运费。
题型2:二次函数模型二次函数2y ax bx c =++(0a ≠)为生活中最常见的一种数学模型,因二次函数可求其最大值(或最小值),故常常最优、最省等最值问题是二次函数的模型。
例2:渔场中鱼群的最大养殖量为m 吨,为保证鱼群的生长空间,实际养殖量不能达到最大养殖量,必须留下适当的空闲量,已知鱼群的年增长量y 吨和实际养殖量x 吨与空闲率的乘积成正比,比例系数为(0)k k >。
(1)写出y 关于x 的函数关系式,并指出这个函数的定义域; (2)求鱼群年增长量的最大值;(3)当鱼群的年增长量达到最大值时,求k 的取值范围。
高考数学初等函数知识点:函数模型及其应用

高考数学初等函数知识点:函数模型及其应用第1篇:高考数学初等函数知识点:函数模型及其应用导语:常见的函数模型有一次函数模型、二次函数模型、指数函数模型、对数函数模型、分段函数模型等,下面就由小编为大家带来高考数学初等函数知识点:函数模型及其应用,大家一起去看看怎么做吧!1.我们目前已学习了以下几种函数:一次函数y=kx+b(k≠0),二次函数y=ax2+bx+c(a≠0),指数函数y=ax(a>0且a≠1),对数函数y=logax(a>0且a≠1),幂函数y=xa(a为常数)2.用已知函数模型解决实际问题的基本步骤:第一步,审清题意,设立变量;第二步,根据所给模型,列出函数关系式;第三步,利用函数关系求解;第四步,再将所得结论转译成具体问题的解答.3.在处理曲线拟合与预测的问题时,通常需要以下几个步骤:(1)能够根据原始数据、表格、绘出散点图;(2)通过考查散点图,画出“最贴近”的曲线,即拟合曲线;(3)根据所学函数知识,求出拟合曲线的函数解析式;(4)利用函数关系,根据条件对所给问题进行预测和控制,以便为决策和管理提供依据.4.解疑释惑(1)怎样理解“数学建模”和实际问题的关系?一般来说,对问题进行修改和简化,形成一种比较精确和简洁的表述,这时可称之为“实际模型”,它和“实际原形”不同,因为它被简化了,不是实际问题所有方面都得到了体现.而是在得到一个“实际模型”之后,再用数学符号和表达式来代替实际问题中的变量和关系,得到的结果是一个“数学模型”. (2)怎样才能搞好“数学建模”?在“数学建模”中要把握好下列几个问题:1理解问题:阅读理解,读懂文字叙述,认真审题,理解实际背景.弄清楚问题的实际背景和意义,设法用数学语言来描述问题.2数学建模:把握新信息,勇于探索,善于联想,灵活化归,根据题意建立变量或参数间的数学关系,实现实际问题数学化,引进数学符号,构建数学模型,常用的数学模型有方程、不等式、函数.3求解模型:以所学的数学*质为工具对建立的数学模型进行求解.○4检验模型:将所求的结果代回模型中检验,对模拟的结果与实际情形比较,以确定模型的有效*,如果不满意,要考虑重新建模.5评价与应用:如果模型与实际情形比较吻合,要对计算的结果作出解释并给出其实际意义,最后对所建立的模型给出运用范围.如果模型与实际问题有较大出入,则要对模型改进,并重复上述步骤.(3)“数学建模”中要注意什么问题?1有的应用题文字叙述冗长,或者选择的知识背景较为陌生,处理时,要注意认真、耐心地阅读和理解题意.2解决函数应用题时要注意用变化的观点分析和探求具体问题中的数量关系,寻找已知量与未知量之间的内在联系,然后将这些内在联系与数学知识联想,建立函数关系式或列出方程,利用函数*质或方程观点来求解,则可使应用题化生为熟,尽快得到解决.5.规律总结(1)如果实际问题中的规律很难用一个统一的关系式表示,可考虑用分段函数来表示它.另外,在实际问题的计算中应注意统一单位.(2)分类讨论建立函数模型在实际问题中较为常见,应引起充分注意.(3)建立“数学模型”常用的分析方法:(1)关系分析法:即通过寻找关键词和关键量之间的数量关系的方法来建立问题的数学模型的方法.(2)列表分析法:即通过列表的方式探索问题的数学模型的方法.(3)图象分析法:即通过对图象中的数量关系分析来建立问题的数学模型的方法.第2篇:高一数学函数模型及其应用知识点函数部分的知识最主要的是怎样运用,在考试中考察的也是应用及模型,因此掌握数学函数模型及其应用知识点是掌握本课内容的基础,希望大家可以认真学习。
函数模型及其应用

函数模型及其应用【知识要点】建立函数模型就是将实际问题转化为数学问题,是数学地解决问题的关键.运用数学模型方法的过程,一般可分为三步:(1)建立模型:将实际问题数学抽象化,运用掌握的基本函数建立数学模型;(2)数学求解:运用各种相应的数学方法及计算工具求解,得出数学结论;(3)问题求解:将数学结论代入实际问题进行验证. 【典型例题】例1 一种产品年产量原来是a 件,在今后的m 年内,计划使年产量平均比上一年增加P%,写出产量随经过年数变化的函数关系式.例2 某工厂拟建一座平面图为矩形且面积为200m 2的污水处理池,由于地形限制长宽不能超过16m ,如果池外围壁造单价每半400元,中间池壁造价每半280元,池底造价年平方米80元.(1)写出总造价y (元)与污水池长x (米)的函数关系式;(2)当污水池长、宽为多少米时,总造价最低,并求出最低价.实际问题 数学化 数学问题 数学解答数学问题讨论 符合实际 实际问题结论 问题解决例3 某地现有耕地104公顷,规划10年后,粮食年产比现有增加22%,人均粮食产量比现在提高10%,如果人口增长率为1%,那么耕地每年至多只能减少多少公顷(精确到1公顷).例4 某工厂生产某种零件,每个零件的成本40元,出厂单价定为60元,该厂为鼓励销售商订购决定当一次订购量超过100个时,每多订购一个,订购的全部零件单价0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少时,实际出厂价恰为51元;(2)设一次订购量为x个时,零件实际出厂单价为P元,写出函数)P=的表达式;f(x (3)当销售一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个利润又是多少元?例5某蓄水池原有400吨水,当日零时同时打开进水闸和出水闸,出水闸流出的水量w吨与时间t小时的函数关系是:)=tw≤t120≤6240(,(1)若使次日零时蓄水池的水量仍有400吨,问每小时进水闸进水多少吨?(2)在(1)的情况下,问当日几点时,蓄水池的水量最少,最少为多少吨?例6 某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图a 所示的一条折线所示,西红柿的种植成本与上市时间的关系用图b 的抛物线表示.(1)由图a 写出市场售价与时间的函数关系)(t f P =,用图b 写出种植成本与时间的函数关系)(t g C =.(2)认定市场定价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?【课后练习】1.因电力紧缺,某地通过电价差来控制用电量,规定如下:用户每个月电量不超过100kwh ,则年kwh 的电价为0.5元,若超过100kwh ,则超过部100kwh ,则超过部分的电价为a 元/kwh (5.0>a )。
3.2函数模型及其应用2

x
x
令f(x)=log7x+1-0.25x,x∈[10,1000]. 利用计算器或计算机作出函数f(x)的图象(图3.2-3)
y
O -50 -100 -150 -200 -250 -300
200 400 600 800 1000 1200 x
由图象可知它是递减的,因此 f(x)<f(10)≈-0.3167<0
画出这两个函数的图象(图2)
y
y=2x
1.13E+15
1.10E+12 y=x2
O 50 100 x
从表2和图2可以看出,当自变量x越来越大时, y=2x的图象就像与x轴垂直一样,2x的值快速增 长,x2比起2x来,几乎有些微不足道.
2.探究y=x2,y=log2x两个函数的增长速度.
利用计算器或计算机,先列出自变量与函数值的 对应值表(表3).
y
1
x2
x 2
log 1
2
x
最后探究y ax (0 a 1), y xn (n 0), y loga x(0 a 1) 在区间(0,)上的衰减情况.
在区间(0,+∞)上,总存在一个x0,当x>x0时,总有 xn>ax>logax(n<0,0<a<1).
x
0
y=2x
1
10 1024
20
பைடு நூலகம்
30
40
1.05E+06 1.07E+09 1.10E+12
y=x2
0
100
400
900
1600
x
50
高中数学 函数模型及其应用

高中数学:函数模型及其应用在数学的世界里,函数是一个重要的概念,它描述了一个变量与另一个变量之间的关系。
而在高中数学中,函数模型及其应用成为了学生们必须掌握的重要内容。
一、函数模型的理解函数,对于很多人来说,可能是一个复杂的概念。
但实际上,函数却是极其普遍的存在。
在我们的日常生活中,函数无处不在。
比如,身高随着年龄的增长而增长,这就是一个函数关系。
在这个例子中,年龄是自变量,身高是因变量。
再比如,购买商品时,价格随着数量的增加而增加,这里数量是自变量,价格是因变量。
函数模型,就是用来描述这种变量之间关系的数学工具。
它将生活中的各种关系,转化为数学公式,使我们能更好地理解和分析这些关系。
二、函数模型的应用函数模型的应用广泛存在于我们的生活中。
比如,在商业领域,公司需要根据市场需求和价格来决定生产量。
这就需要使用函数模型来预测市场的趋势,从而做出最佳的决策。
在物理学中,牛顿的第二定律就是一个函数模型,它描述了力、质量和加速度之间的关系。
而在生物学中,细胞分裂的模型也是一个函数,它描述了细胞数量随时间的变化情况。
三、高中数学中的函数模型在高中数学中,我们主要学习了一些基本的函数模型,如线性函数、二次函数、指数函数和对数函数等。
这些函数模型可以帮助我们解决生活中的很多问题。
比如,线性函数可以帮助我们解决速度和时间的问题,二次函数可以帮助我们解决几何图形的问题,而指数函数和对数函数则可以帮助我们解决增长和衰减的问题。
四、总结函数模型是高中数学中的一个重要内容。
它不仅可以帮助我们解决生活中的问题,还可以帮助我们更好地理解这个世界。
因此,学生们应该积极学习函数模型及其应用,努力提高自己的数学素养。
高中数学函数的概念课件课件标题:高中数学函数的概念课件一、引言函数是高中数学的核心概念,是数学学习中不可或缺的一部分。
函数的概念是理解函数的基础,也是进一步学习函数性质和应用的前提。
本课件旨在帮助学生理解函数的基本概念,掌握函数的定义和性质,为后续的学习奠定坚实的基础。
函数模型及其应用

函数模型及其应用一、基础知识1.常见的8种函数模型(1)正比例函数模型:f (x )=kx (k 为常数,k ≠0); (2)反比例函数模型:f (x )=kx (k 为常数,k ≠0);(3)一次函数模型:f (x )=kx +b (k ,b 为常数,k ≠0); (4)二次函数模型:f (x )=ax 2+bx +c (a ,b ,c 为常数,a ≠0); (5)指数函数模型:f (x )=ab x +c (a ,b ,c 为常数,a ≠0,b >0,b ≠1); (6)对数函数模型:f (x )=m log a x +n (m ,n ,a 为常数,m ≠0,a >0,a ≠1); (7)幂函数模型:f (x )=ax n +b (a ,b ,n 为常数,a ≠0,n ≠1); (8)“对勾”函数模型:y =x +ax(a >0).(1)形如f (x )=x +ax (a >0)的函数模型称为“对勾”函数模型,“对勾”函数的性质:①该函数在(-∞,-a ]和[a ,+∞)上单调递增,在[-a ,0)和(0,a ]上单调递减. ②当x >0时,x =a 时取最小值2a ,当x <0时,x =-a 时取最大值-2a .(2)函数f (x )=x a +bx (a >0,b >0,x >0)在区间(0,ab ]内单调递减,在区间[ab ,+∞)内单调递增.2.三种函数模型的性质幂函数模型y =x n (n >0)可以描述增长幅度不同的变化,当n ,值较小(n ≤1)时,增长较慢;当n 值较大(n >1)时,增长较快.考点一 二次函数、分段函数模型[典例] 国庆期间,某旅行社组团去风景区旅游,若每团人数在30或30以下,飞机票每张收费900元;若每团人数多于30,则给予优惠:每多1人,机票每张减少10元,直到达到规定人数75为止.每团乘飞机,旅行社需付给航空公司包机费15 000元.(1)写出飞机票的价格关于人数的函数; (2)每团人数为多少时,旅行社可获得最大利润?[解] (1)设每团人数为x ,由题意得0<x ≤75(x ∈N *),飞机票价格为y 元,则y =⎩⎪⎨⎪⎧900,0<x ≤30,900-10(x -30),30<x ≤75,即y =⎩⎪⎨⎪⎧900,0<x ≤30,1 200-10x ,30<x ≤75.(2)设旅行社获利S 元,则S =⎩⎪⎨⎪⎧900x -15 000,0<x ≤30,1 200x -10x 2-15 000,30<x ≤75,即S =⎩⎪⎨⎪⎧900x -15 000,0<x ≤30,-10(x -60)2+21 000,30<x ≤75.因为S =900x -15 000在区间(0,30]上为增函数,故当x =30时,S 取最大值12 000. 又S =-10(x -60)2+21 000,x ∈(30,75],所以当x =60时,S 取得最大值21 000. 故当x =60时,旅行社可获得最大利润. [解题技法]二次函数、分段函数模型解决实际问题的策略(1)在建立二次函数模型解决实际问题中的最值问题时,一定要注意自变量的取值范围,需根据函数图象的对称轴与函数定义域在坐标系中对应区间之间的位置关系讨论求解.(2)对于分段函数模型的最值问题,应该先求出每一段上的最值,然后比较大小. (3)在利用基本不等式求解最值时,一定要检验等号成立的条件,也可以利用函数单调性求解最值.[题组训练]1.某市家庭煤气的使用量x (m 3)和煤气费f (x )(元)满足关系f (x )=⎩⎪⎨⎪⎧C ,0<x ≤A ,C +B (x -A ),x >A .已知某家庭优质试题年前三个月的煤气费如表:若四月份该家庭使用了20 m 3的煤气,则其煤气费为( ) A .11.5元 B .11元 C .10.5元D .10元 解析:选A 根据题意可知f (4)=C =4,f (25)=C +B (25-A )=14,f (35)=C +B (35-A )=19,解得A =5,B =12,C =4,所以f (x )=⎩⎪⎨⎪⎧4,0<x ≤5,4+12(x -5),x >5,所以f (20)=4+12×(20-5)=11.5.2.A ,B 两城相距100 km ,在两城之间距A 城x (km)处建一核电站给A ,B 两城供电,为保证城市安全,核电站距城市距离不得小于10 km.已知供电费用等于供电距离(km)的平方与供电量(亿度)之积的0.25倍,若A 城供电量为每月20亿度,B 城供电量为每月10亿度.(1)求x 的取值范围;(2)把月供电总费用y 表示成x 的函数;(3)核电站建在距A 城多远,才能使月供电总费用y 最少? 解:(1)由题意知x 的取值范围为[10,90]. (2)y =5x 2+52(100-x )2(10≤x ≤90).(3)因为y =5x 2+52(100-x )2=152x 2-500x +25 000 =152⎝⎛⎭⎫x -10032+50 0003, 所以当x =1003时,y min =50 0003.故核电站建在距A 城1003km 处,能使月供电总费用y 最少.考点二 指数函数、对数函数模型[典例] 某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量y (微克)与时间t (小时)之间近似满足如图所示的曲线.(1)写出第一次服药后y 与t 之间的函数关系式y =f (t );(2)据进一步测定,每毫升血液中含药量不少于0.25微克时治疗疾病有效,求服药一次后治疗疾病有效的时间.[解] (1)由题图,设y =⎩⎪⎨⎪⎧kt ,0≤t ≤1,⎝⎛⎭⎫12t -a ,t >1,当t =1时,由y =4,得k =4,由⎝⎛⎭⎫121-a =4,得a =3.所以y =⎩⎪⎨⎪⎧ 4t ,0≤t ≤1,⎝⎛⎭⎫12t -3,t >1.(2)由y ≥0.25得⎩⎨⎧0≤t ≤1,4t ≥0.25或⎩⎪⎨⎪⎧t >1,⎝⎛⎭⎫12t -3≥0.25,解得116≤t ≤5.故服药一次后治疗疾病有效的时间是5-116=7916(小时).[解题技法]1.掌握2种函数模型的应用技巧(1)与指数函数、对数函数模型有关的实际问题,在求解时,要先学会合理选择模型,在三类模型中,指数函数模型是增长速度越来越快(底数大于1)的一类函数模型,与增长率、银行利率有关的问题都属于指数函数模型.(2)在解决指数函数、对数函数模型问题时,一般先需要通过待定系数法确定函数解析式,再借助函数的图象求解最值问题,必要时可借助导数.2.建立函数模型解应用问题的4步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择模型. (2)建模:将文字语言转化为数学语言,利用数学知识建立相应的数学模型. (3)求模:求解数学模型,得出数学结论.(4)还原:将利用数学知识和方法得出的结论,还原到实际问题中. [题组训练]1.某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n 次涨停(每次上涨10%),又经历了n 次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为( )A .略有盈利B .略有亏损C .没有盈利也没有亏损D .无法判断盈亏情况解析:选B 设该股民购进这支股票的价格为a 元,则经历n 次涨停后的价格为a (1+10%)n =a ×1.1n 元,经历n 次跌停后的价格为a ×1.1n ×(1-10%)n =a ×1.1n ×0.9n =a ×(1.1×0.9)n =0.99n ·a <a ,故该股民这支股票略有亏损.2.声强级Y (单位:分贝)由公式Y =10lg ⎝⎛⎭⎫I10-12给出,其中I 为声强(单位:W/m 2).(1)平常人交谈时的声强约为10-6 W/m 2,求其声强级.(2)一般常人能听到的最低声强级是0分贝,求能听到的最低声强为多少? 解:(1)当声强为10-6 W/m 2时,由公式Y =10lg ⎝ ⎛⎭⎪⎫I 10-12,得Y =10lg ⎝ ⎛⎭⎪⎫10-610-12=10lg 106=60(分贝). (2)当Y =0时,由公式Y =10lg ⎝ ⎛⎭⎪⎫I 10-12,得10lg ⎝ ⎛⎭⎪⎫I 10-12=0.∴I 10-12=1,即I =10-12 W/m 2, 则最低声强为10-12 W/m 2.[课时跟踪检测]1.(优质试题·福州期末)某商场销售A 型商品.已知该商品的进价是每件3元,且销售单价与日均销售量的关系如下表所示:请根据以上数据分析,要使该商品的日均销售利润最大,则此商品的定价(单位:元/件)应为( )A .4B .5.5C .8.5D .10解析:选C 由数据分析可知,当单价为4元时销售量为400件,单价每增加1元,销售量就减少40件.设定价为x 元/件时,日均销售利润为y 元,则y =(x -3)·[400-(x -4)·40]=-40⎝⎛⎭⎫x -1722+1 210,故当x =172=8.5时,该商品的日均销售利润最大,故选C. 2.(优质试题·绵阳诊断)某单位为鼓励职工节约用水,作出如下规定:每位职工每月用水不超过10立方米的,按每立方米3元收费;用水超过10立方米的,超过的部分按每立方米5元收费.某职工某月的水费为55元,则该职工这个月实际用水为( ) A .13立方米 B .14立方米 C .15立方米D .16立方米解析:选C 设该职工某月的实际用水为x 立方米时,水费为y 元,由题意得y =⎩⎪⎨⎪⎧ 3x ,0≤x ≤10,30+5(x -10),x >10,即y =⎩⎪⎨⎪⎧3x ,0≤x ≤10,5x -20,x >10.易知该职工这个月的实际用水量超过10立方米,所以5x -20=55,解得x =15.3.利民工厂某产品的年产量在150吨至250吨之间,年生产的总成本y (万元)与年产量x (吨)之间的关系可近似地表示为y =x 210-30x +4 000,则每吨的成本最低时的年产量为( )A .240吨B .200吨C .180吨D .160吨解析:选B 依题意,得每吨的成本为y x =x 10+4 000x -30,则yx ≥2x 10 ·4 000x-30=10,当且仅当x 10=4 000x ,即x =200时取等号,因此,当每吨成本最低时,年产量为200吨.4.某工厂产生的废气经过过滤后排放,排放时污染物的含量不得超过1%.已知在过滤过程中废气中的污染物数量P (单位:毫克/升)与过滤时间t (单位:时)之间的函数关系为P =P 0e -kt (k ,P 0均为正常数).如果在前5个小时的过滤过程中污染物被排除了90%,那么排放前至少还需要过滤的时间是( )A.12小时 B.59小时C .5小时D .10小时解析:选C 由题意,前5个小时消除了90%的污染物. ∵P =P 0e -kt ,∴(1-90%)P 0=P 0e -5k , ∴0.1=e -5k ,即-5k =ln 0.1, ∴k =-15ln 0.1.由1%P 0=P 0e -kt ,即0.01=e -kt ,得-kt =ln 0.01, ∴⎝⎛⎭⎫15ln 0.1t =ln 0.01,∴t =10. ∴排放前至少还需要过滤的时间为t -5=5(时).5.(优质试题·蚌埠模拟)某种动物的繁殖数量y (单位:只)与时间x (单位:年)的关系式为y =a log 2(x +1),若这种动物第1年有100只,则到第7年它们发展到________只.解析:由题意,得100=a log 2(1+1),解得a =100,所以y =100log 2(x +1),当x =7时,y =100log 2(7+1)=300,故到第7年它们发展到300只.答案:3006.某人根据经验绘制了从12月21日至1月8日自己种植的西红柿的销售量y (千克)随时间x (天)变化的函数图象如图所示,则此人在12月26日大约卖出了西红柿________千克.解析:前10天满足一次函数关系,设为y =kx +b ,将点(1,10)和点(10,30)代入函数解析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
种病毒有一定效果,在最初使用此药物的几天内,每次用药将可杀死其体内该病毒细胞的
98%.
(1)为了使小白鼠在实验过程中不死亡,第一次最迟应在何时注射该种药物?
(2) 第 二 次 最 迟 应 在 何 时 注 射 该 种 药 物 , 才 能 维 持 小 白 鼠 的 生 命 ?( 结 果 精 确 到 小
时, lg 2 0.3010 ).
(kg) 3 0 9 15 02 50 92 86 11 85 25 05
(1)根据上表中各组对应的数据,能否从我们学过的函数 y ax b, y a ln x b, y a bx 中 找到一种函数,使它比较近似地反映该地未成年男性体重 y 关于身高 x 的函数关系?试写出 第 页实用文档ຫໍສະໝຸດ t50110
250
Q
150
108
150
(1)根据上表数据,从下列函数中选取一个最能反映芦荟种植成本 Q 与上市时间 t 的变化关
系: Q at b,Q at2 bt c,Q a bt ,Q a logb t; (2)利用你选择的函数,求芦荟种植成本最低时上市天数及最低种植成本.
6.18 世纪 70 年代,德国科学家提丢斯(Johann Daniel Titius,1729-1796)发现金星,地球,
B.a (1 0.1)x
C.a (1 0.1x )
D.a (1 0.1x )
2.某产品的总成本 y 与产量 x 的关系为 y 3000 20x 0.1x2, x (0.240)) ,若每件产品的销
售 价 为 25 元 , 则 企 业 不 亏 本 的 最 低 产 量 x 应
为…………………………………………………………………(
精品文档 这个函数的解析式,并求出 a, b 的值. (2)若体重超过相同身高的男性平均值的 1.2 倍为偏胖,低于 0.8 倍为偏瘦,那么该地某校 一男生身高 175cm 体重 78kg,他的体重是否正常?
例 2 某地企业发展迅猛,下表是该地某一乡镇企业近几年来的年利润汇总情况,试预测该
企业 2005 年的利润.
年份 1996 19667 1998 1999 2000 2001 2002 2003
序号
1
2
3
4
5
6
7
8
利润(万 7
元)
20
31
38
45
47
51
53
三、归纳点拨
在收中集学数阶段,用画函散数点拟合解选决择实函际问数题的基求本函过数程表是:
据
图
模型
不符合实 达式
际
四、测试反馈
用
检
符合实 函
验际
数
模
1.今有一组实验数据如下:
型
t
1.99
3.0
4.0
5.1
6.12 解
v
1.5
4.04
7.5
12
18.01 决
现 准 备 下 列 函 数 中 的 一 个 表 示 这 些 数 据 满 足 的 规 律 , 其 中 最 接实近 的 一 个
是……………………….(
)
际
问
A.v log2 t
B.v log1 t
2
C.v t2 1 2
离开
离开
离开
离开
家的
O
时间
O 家 的 时间
O 家 的 时间
O家的时
①距离
②距离
③距离
④距离 间
上述所给 4 个图象中,与所给 3 件事发展吻合最好的图象顺序为
.
4.小表是弹簧伸长的长度 d 与拉力 f 的相关数据:
d (cm)
1
2
3
4
5
f (N) 14.2
28.8
41.3
57.5
60.2
能够基本反映这一变化现象的一个函数解析式是
D.y 1.5x2 2.5x 2
(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学;
(2)我骑着车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;
(3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.
☆ 蔡 老 师 高 考 与 中 考 数 学 研 究 中 心 (82974588)△ 34.函数模型及其应用(2)
实用文档
精品文档
☆ 蔡 老 师 高 考 与 中 考 数 学 研 究 中 心 (82974588)△
一、双基演练
34.函数模型及其应用(2)
第□讲
1. 光 线透过一块玻璃 时 , 其 强 度 减 少 10%, 则 强 度 为 a 的 光 线 通 过 x 块玻璃后其强 度
为…………(
)
A. a (1 0.1)x
)
A.100
B.120
C.150
D.180
3.进价为 80 元的商品按 90 元出售时,能售出 400 件.若每件涨价 1 元,其售量就减少 20 件.
为获最大利润,售价应定为
元.
4.50 辆汽车从 A 市运物资到 B 市,A,B 两市相距 200km,两车间距不小于 ( v )x km.则运完物 20
.
实用文档
第□讲 第页
精品文档
5.芦荟是一种经济价值很高的观赏,食用植物,不仅可以美化居室,净化空气,又可美容保
健,因此深受人们欢迎,在过内占有很大的市场.某人准备进军芦荟市场,栽培芦荟,为了了
解行情,进行市场调研,从 4 月 1 日起,芦荟的种植成本 Q (单位为:元/10kg)与上市时间
t (单位:天)的数据情况如下表:
火星,木星,土星离太阳的平均距离(天文单位)如下表:
1(金 2(地 3(火 4( 5(木 6(土 7(
行星
星) 球) 星)
)
星) 星)
)
距离 0.7 1.0 1.6
5.2 10.0
他研究行星排列规律后预测,在火星与木星之间应该有一颗行星,后来果然发现了一个谷 神星,但不算大行星,它可能是一颗大行星爆炸后的产物,请你推测谷神星的位置,在木星 外面编号 7 的星与太阳的距离是多少?
D.v 2t 2
题
实用文档
精品文档
2.在自然界中,某种植物生长发育的数量 y 与时间 x 的关系如下表所示:
x
1
2
3
y
1
3
5
下面函数关系式中,能表达这种关系的
是…………………………………………………………….(
)
A.y 2x 1
B.y x2 1
C.y 2x 1
3.有下列三件按时间顺序发展的事:
7.医学上为了研究传染病传播过程中病毒细胞的生长规律及其预防措施,将一种病毒细胞
的 m 个细胞注入一只小白鼠的体内,在实验过程中,得到病毒细胞的数量与时间(h)的关系 实用文档
精品文档
如下表:
时间(h) 1 2 3 4 5 6 7
病毒细胞总
16 32 64
m 2m 4m 8m
数
mmm
已知该病毒细胞在小白鼠体内超过 m 106 个时,小白鼠将会死亡,但有一种药物对杀死此
资所需的时间 t 与汽车速度 v 的函数关系是 t
.
二、范例解读
例 1 以下是某地不同身高的未成年男性的体重平均值表:
身高 (cm)
60 70 80 90 100 110 120 130 140 150 160 170
体重 6.1 7.9 9.9 12. 15. 17. 20. 26. 31. 38. 47. 55.