北师大版九年级数学上相似三角形
北师大版数学九年级上册利用相似三角形测高课件

训练:A本--第34页--第3题
3.如图4-6-2,阳光从
教室的窗户射入室内,
窗户框AB在地面上的
影长DE=1.8 m,窗户下
檐到地面的距离BC=1
m,EC=1.2 m,那么窗户
的高AB为
m.
训练:A本--第35页--第10题
4.[202X·天水] 如图4-6-3所示,某校数学兴 趣小组利用标杆BE测量建筑物的高度,已知 标杆BE高1.5 m,测得AB=1.2 m,BC=12.8 m, 则建筑物CD的高是 ( )A.17.5 m
利用类似三角形测高
①利用太阳光
②利用标杆 ③利用镜子
类似
小结
家庭作业 A本---第34-35页
,树高是 ( )
A.3.25 m B.4.25 m C.4.45 m D.4.75 m
训练:A本--第35页--第11题
11.当李明走到点A处时,张龙测得李明直立时的身 高AM与影子长AE正好相等;接着李明沿AC方向继续 向前走,走到点B处时,李明直立时的影子恰好是线 段AB,并测得AB=1.25 m.已知李明直立时的身高为 1.75 m,求路灯的高度CD.(结果精确到0.1 m)
训练:A本--第34页--第6题
方法3:利用镜子
原理:光线的入射角等于反射角.
C A
BE
D
人镜
子
训练:A本--第34页--第1题
1.如图4-6-1,在同一时刻,身高1.6米的 小丽在阳光下的影长为2.5米,一棵大树
的影长为5米,则这棵树的高度为 (
) A.1.5 B.2.3米 C.3.2米 D.7.8米
训练:A本--第35页--第12题
12.测量者站在点F处,将镜子放在点M处时,刚好看到大树 的顶端,沿大树方向向前走2.8米,到达点D处,将镜子放在 点N处时,刚好看到大树的顶端(点F,M,D,N,B在同一条直线 上).若测得FM=1.5米,DN=1.1米,测量者眼睛到地面的距离 为1.6米,求大树AB的高度
北师大版初中数学九年级上-册第四章相似三角形(复习)(共29张PPT)精选全文

归类探究
回归教材
中考预测
相似三角形及其应用
解 析 ∵AD∶DB=3∶5,
∴BD∶AB=5∶8.
∵DE∥BC,
∴CE∶AC=BD∶AB=5∶8,
∵EF∥AB,
∴CF∶CB=CE∶AC=5∶8.
故选A.
考点聚焦
归类探究
回归教材
Байду номын сангаас中考预测
相似三角形及其应用
探究二 相似三角形的性质及其应用
命题角度: 1. 利用相似三角形性质求角的度数或线段的长度; 2. 利用相似三角形性质探求比值关系.
例3 如图22-4,在平行四边形ABCD中,过点A作 AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且 ∠AFE=∠B. (1)求证:△ADF∽△DEC; (2)若AB=8,AD=6 ,AF=4 ,求AE的长.
图22-4
考点聚焦
归类探究
回归教材
中考预测
相似三角形及其应用
考点聚焦
归类探究
回归教材
探究四 位似 命题角度: 1. 位似图形及位似中心定义; 2. 位似图形的性质应用; 3. 利用位似变换在网格纸里作图.
例 4 在平面直角坐标系中,已知点 E(-4,2),F(-2,-2),
以原点 O 为位似中心,相似比D为12,把△EFO 缩小,则点 E 的对应
点 E′的坐标是( )
A.(-2,1)
考点聚焦
归类探究
回归教材
中考预测
相似三角形及其应用
探究五 相似三角形与圆
命题角度: 1. 圆中的相似计算; 2. 圆中的相似证明. 例5 如图22-5,AB为⊙O的直径,C为⊙O上一点,AD 和过C点的直线互相垂直,垂足为D,且AC平分∠DAB. (1)求证:DC为⊙O的切线; (2)若⊙O的半径为3,AD=4,求AC的长.
北师大版九年级数学上册 探索三角形相似的条件

BC B1C1
∴ △ ABC ∽ △A1B1C1
B
C
A1
B1
C1
总结归纳
判定三角形相似的方法: 如果题中给出了两个三角形的三边的长,分别
算出三条对应边的比值,看是否相等,计算时最 长边与最长边对应,最短边与最短边对应 (注意:大对大,小对小,中对中)
练一练
1.如图,小方格的边长为1 ,△ ABC与△ A′B′C′相似吗?
A.∠BAD=∠C
B.∠B DA =∠B A C
C. BA BC BD BA
D. BA AC BD AD
【答案】D
【详解】解:A.∵∠BAD=∠C,∠B=∠B,
∴△ BAD∽△BCA,故本选项正确,不符合题意;
B.∵∠BDA=∠BAC,∠B=∠B,
∴△ BAD∽△BCA,故本选项正确,不符合题意;
AB AD
BC DE
AC AE
.
∠BAD=20°,求∠CAE的度数.
A
解:∵
AB AD
BC DE
AC AE
,
B
∴△ABC∽△ADE ∴∠BAC=∠DAE.
D
∴∠BAC - ∠DAC =∠DAE-∠DAC.
即 ∠BAD=∠CAE.
∵∠BAD=20°,
∴∠CAE=20°.
C E
知识点四 黄金分割
A
C
B
AB AC
设AB = 1,AC = x,则BC = 1 – x.
∴ x2 = 1 ×(1 - x).
即 x2 + x – 1 = 0.
解方程得:x1=
-1 2
5,
黄金比
AC BC =
AB AC
x2=
北师大版九年级数学上册第4章 相似三角形判定定理的证明

∴易得 AD=AF,∠DAE=∠FAE=α.
∴∠DAF=2α=∠BAC.
∵ = , = , ∴
∴ ∼ .
=
,
例 4: 在△ABC中,AB=AC,点 D,E在BC 边上,∠BAC=2∠DAE=2α.
(2)如图②,在(1)的条件下,若α=45°,连接CF,求证: ² = ² + ².
∴ = ⋅ =
∵ =
− ⋅ = − ,
⋅ = × × = ,
∴当 = 时, − = × ,整理得 ² − + = ,解得 ₁
EF 是直角三角形,. ∴ ² = ² + ².
∵D,F关于直线AE 对称,∴易得 DE=EF. ∴ ² = ² + ².
【题型三】和相似有关的动点问题
例 5: 如图,在直角梯形 ABCD 中,AD=3,AB=11,BC=6,AB⊥BC,
点 P是线段AB 上一动点,如果满足△ADP 和△BCP 相似,求线
点 B以1cm/s的速度移动,点 Q从点 B 出发沿 BC 边向点 C以2cm/s的速度移动
(其中一点到达终点,另一点也停止运动),设移动时间为 ts.
(1)如果 P、Q 分别从 A、B 两点同时出发,那么几秒时,△PBQ的面
积等于△ABC面积的 ?
解: (1)由题意得 = , = ,则 = − ,
求AB 的长.
解: ∵∠A = ∠A,∠ABD = ∠C,
∴△ABD∽ , ∴
北师大版九年级上册相似三角形判定定理证明课件

定 定理2:两边成比例且夹角相等的
理 证
两个三角形类似.
明
类似三角形
定理3:三边成比例的两个三
判定定理的
角形类似.
证明
定理的运用
再见
∴BACB=BBDE , 即:BBCE=BADB .
在△DBE和△ABC中,∠CBE=∠ABD, ∴∠CBE+∠DBC=∠ABD+∠DBC, ∴∠DBE=∠ABC且 BBCE=BADB. ∴△DBE∽△ABC.
练习 1.如图,在等边三角形ABC中,D,E,F分别是 三边上的点,AE=BF=CD,那么△ABC与△DEF类似 吗?请证明你的结论.
∴ ΔADE≌ΔA'B'C', ∴ ∠ADE=∠B',
A A'
又∵ ∠B'=∠B,
∴ ∠ADE=∠B, ∴ DE//BC, ∴ ΔADE∽ΔABC。
D
E
B
C B'
C'
∴ Δ A'B'C' ∽ΔABC
定理2:两边成比例且夹角相等的两个三角形类似.
如图,在△ABC与△A′B′C′中,已知∠A= ∠A′,
分析:由已知条件∠ABD=∠CBE, ∠DBC公用,所以∠DBE=∠ABC,要证 的△DBE和△ABC,有一对角相等,要证 两个三角形类似,可再找一对角相等,或
者找夹这个角的两边对应成比例.从已知条件中可看 到△CBE∽△ABD,这样既有相等的角,又有成比例 的线段,问题就可以得到解决.
证明:在△CBE和△ABD中,∠CBE=∠ABD, ∠BCE=∠BAD,∴△CBE∽△ABD,
2.如图,在正方形ABCD中,E是CD的中 点,点F在BC上,且FC= 1 BC.图中类似
北师大版九年级数学上册相似三角形的性质 课件

性质3
类似三角形面积的比都等于类似比的平 方。
推 理
△ABC∽△A'B'C', AB BC CA K
AB BC CA
分别作出△ABC与△A'B'C'的高AD和 A'D'
则 SABC
1 BCAD 2
1 KBCKAD
2
K²
SABC 1 BCAD 1 BCAD
2
2
三、例题精析
类似三角形对应高的比,对应角平分线 的比,对应中线的比都等于类似比。
∵△ABC∽△A′B′C′
∴
A B F DE
A/
C
B/ F‘ D/ E/
C/
性质2 类似三角形周长的比都等于类似比。
推 理
△ABC∽△A'B'C', AB BC CA K
AB BC CA
由合比性质可得: ABBCCA KABKBCKCAK
解:设 ED=MN=PN=x
∵△APN∽△ABC
∴PBNC
AE AD
∴x 80 x
120 80
∴x=48,∴这个正方形零件的边
长为48毫米.
【变式1-1】已知,△ABC∽A'B'C',AD 与A'D'是它们的对应角平分线,已知则 它们对应高的比为( )
【变式1-2】已知△ABC∽△A′B′C′, 在这两个三角形的一组对应中线中,如果 较短的中线为3cm,则较长的中线为()
【巩固训练5】如图,在平行四边形 ABCD中,点E在边DC上,DE:EC=3:1 ,连接AE交BD于点F,则△DEF的面积与 △DAF的面积之比为( B )
北师大版九年级数学上册 相似三角形的性质 第1课时 课件
(k >0), 点 D,E 在 BC 边上,点 D′,E′ 在 B′C′ 边上 .
(1)
若∠BAD
1
=
3
∠BAC
,
∠B′A′D′
=
1 3
∠B′A′C′
,则
AD AD
等于多少?
图4
由“两角分别相等的两个三角形相似”,可知△ABD∽△A′B′D′,
于是
AD AD
=
AB AB
k
k
0.
探究新知
如图4,已知△ABC∽△A′B′C′ ,△ABC 与△A′B′C′ 的相似比为 k
点 S 在 AB 边上,BC = 60 cm,AD = 40 cm,四边形 PQRS 是正方形.
(1)△ASR 与△ABC 相似吗?为什么?
A
解:∵ 四边形 PQRS 是正方形,
S
ER
∴ RS∥BC. ∴ ∠ASR=∠B,∠ARS=∠C. ∴△ASR∽△ABC.
B
C
PD Q
图5
典例精讲
例 如图5,AD 是△ABC 的高,点 P,Q 在BC边上,点 R 在 AC 边上,
(k >0), 点 D,E 在 BC 边上,点 D′,E′ 在 B′C′ 边上 .
(2)
若BE
=
1 3
BC
,
B′E′
=
1 3 B′C′
,则
AE AE
等于多少?
图4
由“两边成比例且夹角相等的两个三角形相似”,
可知△ABE∽△A′B′E′,于是
AE = AB k k 0.
AE AB
典例精讲
例 如图5,AD 是△ABC 的高,点 P,Q 在BC边上,点 R 在 AC 边上,
北师大版九年级数学上册4.7相似三角形的性质课件1 (共22张PPT)
课堂练习(2)
6、如图,已知DE∥BC ,BD=3AD,S△ABC =48 ,求:△ADE的面积。
解:∵ DE∥BC ∴ ∠ADE=∠ABC, ∠AED=∠ACB ∴ △A DE ∽△ABC ∴ BD=3AD ∴ 相似比k=AD:AB=1:2
∴ S△ADE =1/4 S△ABC =12
如果边长扩大为原来的100倍,那么面积扩大为
原来的__1_0_0__0_0______倍;
如果面积扩大为原来的100倍,那么边长扩大为
原来的______1_0________倍。
4、△ABC∽△A′B′C′,AC: A′ C′=4:3。
〔1〕假设△ABC的周长为24cm,那么△A′B′C′的周
长为 18 cm;
边:对应边成比例
角:对应角相等 问:什么是相似比? 相似比=对应边的比值=
相似三角形对应边上的高
有什么关系呢?
右图△A B C , AD为 BC 边上的高。
A′
则:(1)利用方格把三角形扩大2倍,得
△A′B′C′,并作出B′C′边上的高A′ D′ 。 △A B C 与△A′B′C′的相似比为多少?AD
4.7相似三角形的性质
识别
特征 对应边上的高
课后小结
对应边上的中线
对应角的角平分线
周长 面积
课堂练习(1) (2)
相似三角形的识别
问:相似三角形的识别方法有哪些?
证三组对应 边成比例
证二组对 应角相等
证二组对应 边成比例, 且夹角相等
BACK
定理:平行于三角形一边的直线和其他两边或延
长线相交,所构成的三角形与原三角形相似
〔2〕与〔1〕的相似比=____2__:1__________,
2023—2024学年北师大版数学九年级上册4
AB BC CA k. A'B' B'C ' C ' A'
且BE,B′E′是角的平方线,则 BE 的值为?
B'E' A
证明:∵ △ABC∽△A′B′C′
E
∴ ∠A′B′C′= ∠ABC, ∠B′A′C′= ∠BAC B
C
又BE,B′E′分别为对应角的平方线
∴ ∠ABE= ∠A′B′E′
∴ △ABE∽△A′B′E′
A
A
AB BC CA
k
B
A' B' B'C' C' A'
C
'
B
'
C
AB k A' B', BC k B'C',CA k C' A'
lABC AB BA CA kA' B'kB'C'kC' A' k lA'B'C' A' B' B'C'C' A' A' B' B'C'C' A'
课后练习
1.已知ΔABC与ΔA’B’C’的相似比为2:3, 则周长比为 2:3 ,对应边上中线 2:3 ,面积 之比为 。4:9 2. 如果两个相似三角形的面积之比为1:9,则 它们对应边的比为____1_:_3, 对应角平分线的比为1_:_3__ ,周长的比为__1_:_3_ 。 3.如果两个相似三角形的面积之比为4:9, 较大三角形一边上的高为6, 则较小三角形对应边上的高为__4____ 。
3.两个相似三角形对应中线的比为 1:4 ,
北师大版九年级数学上册第4章 相似三角形的性质
是它们的立柱。
(1)试写出△ABC与△A’B’C’的对应边之间的关系,对应角之间的关系。
(2)△ACD与△A’C’D’相似吗?为什么?如果相似,指出它们的相似比。
(3)如果CD=1.5cm,那么模型房的房梁立柱有多高?
某施工队在道路拓宽施工时遇到这样一个问题,马路旁原有一
A.5
B.10
C.40
D.80
例2:已知两个相似三角形的周长比为 2:3,它们的面积之差为40,那
104
么它们的面积之和为_________
例 3:如图,在△ABC中,两条中线 BE,CD 相交于点 O,
A
则
:
= _____
∆
∆
A.1:4
B.2:3
C.1:3
D.1:2
例 4: 如图,已知 AD 为△ABC 的角平分线,DE∥AB 交 AC 于点 E,如
果
.
=
,那么 等于
.
(
.
B)
.
本节课我们学习了相似三角形的性质,主要内容有:
1.相似三角形对应高的比、对应角平分线的比、对应中线的
比等于什么?
(相似比)
2.如何求相似三角形的周长比、面积比?
(周长比等于相似比,面积比等于相似比的平方)
1.教材习题:完成课本110-111页习题 1,
全等三角形的对应高,对应中线、对应角平分线相等
大家思考一下相似三角形又有哪些性质?
自主探究
1.请同学们阅读课本 106-107页,109-110页内容.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一对一教案
三、主要练习: 【知识点】:
相似多边形定义:各角分别相等、各边成比例的两个多边形叫做相似多边形。
相似多边形可以用符号“∽”表示,读作“相似于”。
在记两个多边形相似时,要把表示对应顶点的字母写在对应的位置上。
相似多边形对应边的比叫做相似比。
【例题】:
1.以下五个命题:①所有的正方形都相似;②所有的矩形都相似;③所有的三角形都相似;④所有的等腰直角三角形都相似;⑤所有的正五边形都相似.其中正确的命题有_______.
2、若五边形ABCDE∽五边形MNOPQ ,且AB=12,MN=6,AE=7,则MQ= .
3、矩形ABCD 与矩形EFGH 中,AB=4,BC=2,EF=2,FG=1,则矩形ABCD 与矩形EFGH 相似(填“一定”或“不一定”)
4、如图,在□ABCD 中,AB//EF ,若AB = 1,AD = 2,AE=
2
1
AB ,则□ABFE 与□BCDA 相似吗?说明理由.
【课堂练习】:
1.下面图形是相似形的为 ( )
A .所有矩形
B .所有正方形
C .所有菱形
D .所有平行四边形
2.下列说法正确的是 ( )
A . 对应边成比例的多边形都相似
B . 四个角对应相等的梯形都相似
C . 有一个角相等的两个菱形相似
D . 有一个锐角相等的两个等腰三角形相似
3.□ABCD 与□ EFGH 中,AB = 4,BC = 2,EF = 2,FG=1,则□ABCD 与□ EFGH 相似(填“一定”或“不一定”)
4.如图,等腰梯形ABCD 与等腰梯形A′B′C′D′相似,∠A′=65°,A′B′=6 cm, AB=8 cm , AD=5 cm ,试求梯形ABCD 的各角的度数与A′D′, B′C′的长.
F E
D
C
B
A
【知识点】:
1)定义:如果两个三角形中,三角对应相等,三边对应成比例,那么这两个三角形叫做相似三角形。
几种特殊三角形的相似关系:两个全等三角形一定相似。
两个等腰直角三角形一定相似。
两个等边三角形一定相似。
两个直角三角形和两个等腰三角形不一定相似。
补充:对于多边形而言,所有圆相似;所有正多边形相似(如正四边形、正五边形等等);2)相似比:两个相似三角形的对应边的比,叫做这两个三角形的相似比。
如△ABC与△DEF相似,记作△ABC ∽△DEF。
相似比为k。
三角形相似的预备定理:平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似。
【例题】:
1、两个直角三角形一定是相似图形……………………()
2、两个等边三角形一定是相似图形……………………()
3、如图,下列每个图形中,存不存在相似的三角形,如果存在,把它们用字母表示出来,并简要说明识别的根据.
【课堂练习】:
1、有一个角是30度的等腰三角形一定是相似图形……()
2、对于任意两个边数大于3的相似图形,它们的各对应边相等、对应角也相等…………………………………………………()
3、从下面这些三角形中,选出相似的三角形.
【知识点】:
判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.(此定理用的最多)
【例题】已知:如图,ABCD 中,2:1:=EB AE ,求AEF ∆与CDF ∆的周长的比,如果2
cm 6=∆AEF S ,
求CDF S ∆.
(2)有两个三角形△ABC 和△A ’B ’C ’,︒='∠︒='∠︒=∠︒=∠35,44,104,35A C B A ,请问这两个三角形相似吗?
【课堂练习】:
1、如图,正方形ABCD 的边长为4,E 是BC 边的中点,点P 在射线AD 上,过P 作PF ⊥AE 于F .
求证:△PFA ∽△ABE ;
2、如图,□ABCD 中,E 是CD 的延长线上一点,BE 与AD 交于点F ,CD DE 2
1
=。
求证:△ABF ∽△CEB;
【知识点】:
判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.
【例题】:1、如图,∠ACB=∠ADC=90°,AC=6 ,AD=2.问当AB 的长为多少时,这两个直角三角形相似.
2、如图,在△ABC 和△DEF 中,∠A=∠D=90°,AB=DE=3,AC=2DF=4.这两个三角形 相似吗?
【课堂练习】、如图4,已知AB ⊥BD ,ED ⊥BD ,C 是线段BD 的中点,且AC ⊥CE ,ED=1,BD=4,那
第21题图 F
A
D
E B C
么AB=
【知识点】:判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似.
【例题】:1、如图5,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD于F,点E是AB的中点,连结EF.
求证:EF∥BC.
2,AC=2,BC边上的高AD=3.
【课堂练习】如图,已知△ABC的边AB=3
求BC的长;
四、课后练习:
1.下列说法正确的是( )
A.所有的三角形都相似 B.所有的正方形都相似
C.所有的菱形都相似 D.所有的矩形都相似
2.下列四组图形中必相似的是( )
A.有一组邻边相等的两个平行四边形 B.有一个角相等的两个等腰梯形
C.对角线互相垂直的两个矩形 D.对角线互相垂直且相等的两个四边形.
3、下列命题中哪些是正确的,哪些是错误的?
(1)所有的直角三角形都相似.(2)所有的等腰三角形都相似.
(3)所有的等腰直角三角形都相似.(4)所有的等边三角形都相似.
4、图为❒ABC与❒DEC重迭的情形,其中E在BC上,AC交DE于F点,且AB // DE。
若❒ABC与
第4题 B
C D E A
DEC 的面积相等,且EF=9,AB=12,则DF=?( ) (A) 3 (B) 7 (C) 12 (D) 15 。
5、如图,在ABC ∆中,D 、E 分别是AB 、AC 边的中点,若6BC =,则DE 等于 A .5 B .4 C .3 D .2
6、在Rt △ABC 中,∠C 为直角,CD ⊥AB 于点D,
BC=3,AB=5,写出其中的一对相似三角形是 和 。
D
C
B
A。