高考数学概率与统计知识点总结

合集下载

2024高考数学压轴题——概率与统计高考常见题型解题思路及知识点总结

2024高考数学压轴题——概率与统计高考常见题型解题思路及知识点总结

2024高考数学压轴题——概率与统计高考常见题型解题思路及知识点总结2024高考数学压轴题——概率与统计的挑战与应对随着高考的临近,数学科目的复习也进入了关键阶段。

2024年的高考数学压轴题将会涉及到概率与统计的内容,这不仅考察学生的基本数学知识,更侧重于考察学生的逻辑思维能力、实际应用能力和问题解决能力。

本文将针对这一部分的常见题型、解题思路和知识点进行总结,希望能为广大考生提供一些帮助和指导。

一、常见题型的解题思路1、概率计算:在解决概率计算问题时,学生需要明确事件的独立性、互斥性和概率公式的应用。

尤其是古典概率和条件概率的计算,需要学生熟练掌握。

对于涉及多个事件的概率计算,学生需要理清事件的关联关系,采用加法、乘法或全概率公式进行计算。

2、随机变量及其分布:这部分要求学生掌握离散型和连续型随机变量的分布律及分布函数,理解并掌握几种常见的分布,如二项分布、泊松分布和正态分布等。

对于随机变量的数字特征,如期望、方差和协方差等,学生需要理解其含义并掌握计算方法。

3、统计推断:在统计推断问题中,学生需要掌握参数估计和假设检验的基本方法。

对于点估计,学生需要理解矩估计法和最大似然估计法的原理,并能够进行计算。

对于假设检验,学生需要理解显著性检验的原理,掌握单侧和双侧检验的方法。

4、相关与回归分析:相关与回归分析要求学生能够读懂散点图,理解线性相关性和线性回归的概念,掌握回归方程的拟合方法和拟合优度的评估方法。

二、概率与统计的相关知识点总结1、概率的基本概念:事件、样本空间、事件的概率、互斥事件、独立事件等。

2、随机变量及其分布:离散型随机变量和连续型随机变量,二项分布、泊松分布和正态分布等。

3、统计推断:参数估计、假设检验、点估计、置信区间、单侧和双侧检验等。

4、相关与回归分析:线性相关性和线性回归的概念,回归方程的拟合方法和拟合优度的评估方法。

三、示例分析下面我们通过一个具体的示例来演示如何分析和解决一道概率与统计的压轴题。

高考数学概率统计知识点总结(文理通用)

高考数学概率统计知识点总结(文理通用)

概率与统计知识点及专练(一)统计基础知识:1. 随机抽样:(1).简单随机抽样:设一个总体的个数为N ,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.常用抽签法和随机数表法.(2).系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样).(3).分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样.2. 普通的众数、平均数、中位数及方差: (1).众数:一组数据中,出现次数最多的数(2).平均数:常规平均数:12nx x x x n ++⋅⋅⋅+=(3).中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数(4).方差:2222121[()()()]n s x x x x x x n =-+-+⋅⋅⋅+-(5).标准差:s3 .频率直方分布图中的频率:(1).频率 =小长方形面积:f S y d ==⨯距;频率=频数/总数; 频数=总数*频率(2).频率之和等于1:121n f f f ++⋅⋅⋅+=;即面积之和为1: 121n S S S ++⋅⋅⋅+=4. 频率直方分布图下的众数、平均数、中位数及方差: (1).众数:最高小矩形底边的中点(2).平均数:112233n n x x f x f x f x f =+++⋅⋅⋅+ 112233n n x x S x S x S x S =+++⋅⋅⋅+(3).中位数:从左到右或者从右到左累加,面积等于0.5时x 的值(4).方差:22221122()()()nn s x x f x x f x x f =-+-+⋅⋅⋅+-5.线性回归直线方程:(1).公式:ˆˆˆy bx a=+其中:1122211()()ˆ()n ni i i ii in ni ii ix x y y x y nxybx x x nx====---∑∑==--∑∑(展开)ˆˆa y bx=-(2).线性回归直线方程必过样本中心(,) x y(3).ˆ0:b>正相关;ˆ0:b<负相关(4).线性回归直线方程:ˆˆˆy bx a=+的斜率ˆb中,两个公式中分子、分母对应也相等;中间可以推导得到6. 回归分析:(1).残差:ˆˆi i ie y y=-(残差=真实值—预报值)分析:ˆie越小越好(2).残差平方和:2 1ˆ() ni iiy y =-∑分析:①意义:越小越好;②计算:222211221ˆˆˆˆ()()()() ni i n niy y y y y y y y =-=-+-+⋅⋅⋅+-∑(3).拟合度(相关指数):2 2121ˆ()1()ni iiniiy y Ry y==-∑=--∑分析:①.(]20,1R∈的常数;②.越大拟合度越高(4).相关系数:()()n ni i i ix x y y x y nx y r---⋅∑∑==分析:①.[1,1]r∈-的常数;②.0:r>正相关;0:r<负相关③.[0,0.25]r∈;相关性很弱;(0.25,0.75)r∈;相关性一般;[0.75,1]r∈;相关性很强7. 独立性检验:(1).2×2列联表(卡方图): (2).独立性检验公式①.22()()()()()n ad bc k a b c d a c b d -=++++②.上界P 对照表:(3).独立性检验步骤:①.计算观察值k :2()()()()()n ad bc k a b c d a c b d -=++++ ②.查找临界值0k :由犯错误概率P ,根据上表查找临界值0k③.下结论:0k k ≥即认为有P 的没把握、有1-P 以上的有把握认为两个量相关;0k k <:即认为没有1-P 以上的把握认为两个量是相关关系。

高中数学高考统计知识点总结

高中数学高考统计知识点总结

第二章:统计 1、抽样方法:①简单随机抽样(总体个数较少) ②系统抽样(总体个数较多) ③分层抽样(总体中差异明显)注意:在N 个个体的总体中抽取出n 个个体组成样本, 每个个体被抽到的机会(概率)均为Nn。

2、总体分布的估计: ⑴一表二图:①频率分布表——数据详实 ②频率分布直方图——分布直观③频率分布折线图——便于观察总体分布趋势 注:总体分布的密度曲线与横轴围成的面积为1。

⑵茎叶图:①茎叶图适用于数据较少的情况, 从中便于看出数据的分布, 以及中位数、众位数等。

②个位数为叶, 十位数为茎, 右侧数据按照从小到大书写, 相同的数据重复写。

3、总体特征数的估计:⑴平均数:nx x x x x n++++=Λ321; 取值为n x x x ,,,21Λ的频率分别为n p p p ,,,21Λ, 则其平均数为n n p x p x p x +++Λ2211; 注意:频率分布表计算平均数要取组中值。

⑵方差与标准差:一组样本数据n x x x ,,,21Λ方差:212)(1∑=-=ni ix xns ;标准差:21)(1∑=-=ni ix xns注:方差与标准差越小, 说明样本数据越稳定。

平均数反映数据总体水平;方差与标准差反映数据的稳定水平。

⑶线性回归方程①变量之间的两类关系:函数关系与相关关系; ②制作散点图, 判断线性相关关系 ③线性回归方程:a bx y +=∧(最小二乘法)1221ni i i ni i x y nx y b x nx a y bx==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑注意:线性回归直线经过定点),(y x 。

第三章:概率1、随机事件及其概率:⑴事件:试验的每一种可能的结果, 用大写英文字母表示;⑵必然事件、不可能事件、随机事件的特点; ⑶随机事件A 的概率:1)(0,)(≤≤=A P nmA P . 2、古典概型:⑴基本事件:一次试验中可能出现的每一个基本结果;⑵古典概型的特点: ①所有的基本事件只有有限个; ②每个基本事件都是等可能发生。

高考数学中的概率与统计

高考数学中的概率与统计

高考数学中的概率与统计在高考数学中,概率与统计是两个非常重要的概念。

概率是指某件事情发生的可能性,而统计则是通过数据分析找出事情的规律。

本文将介绍高考中的概率和统计内容,以及对于考生应该如何应对这些考点。

一、概率概率是高考数学中的重点之一,它涉及到很多基本概念和计算方法。

我们先来看看常见的概率问题:1. 定义概率:概率是指某事件发生的可能性,通常用一个介于0 到 1 之间的数字表示。

比如说,掷一枚骰子,出现 1 的概率是1/6,出现偶数的概率是 3/6=1/2。

2. 事件的互斥:如果两个事件不能同时发生,就称它们互斥。

比如说,掷一枚骰子,出现 1 和出现 2 是互斥的事件。

此时它们的概率可以简单地相加。

3. 事件的独立:如果两个事件的发生不会互相影响,就称它们独立。

比如说,掷两枚骰子,第一枚出现 1 的概率是 1/6,第二枚出现 2 的概率也是 1/6。

此时出现 1 和 2 的概率就是它们的乘积。

4. 条件概率:条件概率是指在已知一个事件发生的情况下,另一个事件发生的可能性。

比如说,从一副扑克牌中取出一张牌,它是红桃的概率是 1/4,如果告诉你它是一张面值为 A 的牌,那么这张牌是红桃的概率就变成了 1/2。

考生在备考概率时,需要将这些基本概念掌握清楚,并能够结合具体问题来进行计算。

此外,还需要注意一些细节问题,比如说事件是否独立、概率的范围等等。

二、统计统计是高考数学中的另一个重要考点,它用来描述数据的分布规律和相关性。

常见的统计问题有:1. 统计指标:统计学有很多指标,比如说平均数、中位数、众数、标准差等等。

这些指标用来描述数据的各种特征,可以通过计算得出。

2. 直方图:直方图是一种常用的数据可视化工具。

它将一段数据区间划分为若干个子区间,并计算每个子区间的数据量,然后将它们用矩形图形表示出来。

通过直方图可以看出数据的分布规律,比如说是否呈正态分布等等。

3. 散点图:散点图可以用来表示两个变量之间的关系。

数学高考知识点概率总结

数学高考知识点概率总结

数学高考知识点概率总结一、概率的基本概念概率是用来描述随机现象发生的可能性大小的一个数值。

在数学中,概率通常用P(A)来表示,其中A是一个随机事件,P(A)表示事件A发生的概率。

概率的取值范围在0到1之间,即0≤P(A)≤1。

当事件A发生的概率接近1时,表示事件A发生的可能性很大;当事件A发生的概率接近0时,表示事件A发生的可能性很小。

在高考中,考生需要掌握概率的基本概念,包括样本空间、随机事件、事件的概率等内容。

样本空间是指一个随机实验的所有可能出现的结果的集合,通常用S来表示;而随机事件是指样本空间的子集,表示某个特定的结果或一类结果的集合。

事件的概率是指事件发生的可能性大小,通常用P(A)来表示,其中A是一个随机事件。

二、概率事件的性质在概率的研究中,有一些事件之间的性质是需要了解的,这些性质在概率计算中有一定的应用。

其中包括互斥事件、对立事件、必然事件、不可能事件等性质。

互斥事件是指两个事件不可能同时发生的情况,即事件A和事件B不能同时发生。

对立事件是指两个事件至少有一个发生的情况,即事件A和事件B至少有一个发生。

必然事件是指在每次试验中一定会发生的事件,即事件A在任何情况下都发生;而不可能事件是指在每次试验中都不会发生的事件,即事件A在任何情况下都不发生。

在数学高考中,考生需要掌握这些事件性质的概念及其应用,以便在具体题目中进行判断和计算。

三、条件概率在实际问题中,有时需要考虑一些条件限制下的概率,这就涉及到了条件概率的概念。

条件概率是指在给定某一条件下另一个事件发生的概率,通常用P(A|B)表示,其中A和B是两个事件。

条件概率的计算是基于另一个事件已经发生的前提下,计算另一个事件发生的概率。

在高考数学中,条件概率是一个重要的考察内容,考生需要掌握条件概率的计算公式以及应用。

同时,还需要了解条件概率与独立事件、互斥事件的关系,以及条件概率的互换性原理等内容。

四、随机变量和概率分布随机变量是指对随机现象结果的数量特征进行数量描述的变量,常用X、Y等字母表示。

概率与统计高考知识点

概率与统计高考知识点

概率与统计高考知识点在高考数学中,概率与统计是一个重要的考点。

概率与统计不仅涉及到数学方面的知识,也与现实生活密切相关。

本文将通过几个具体的例子,深入探讨概率与统计相关的知识点,帮助考生更好地理解这一部分内容。

一、概率与事件概率与事件是概率与统计中的基础概念。

概率是描述事件发生可能性大小的数值,通常用P(A)表示。

事件是指随机试验中的一种结果,可以是一个单一结果或若干个结果的组合。

例如,投掷一枚骰子,出现点数小于等于3的事件记为A,则P(A)为1/2。

二、基本事件与对立事件基本事件是指随机试验中的最简单、最基础的事件,它不可再分解成其他事件。

对立事件是指两个事件发生的可能性互相排斥,即当一个事件发生时,另一个事件不发生。

例如,投掷一枚硬币,出现正面和出现反面就是对立事件。

三、概率的性质概率具有以下几个性质:1.非负性:对于任何事件A,有P(A)≥0;2.必然性:对于必然事件S(整个样本空间),有P(S)=1;3.可加性:对于任意两个互不相容的事件A和B,有P(A∪B)=P(A)+P(B)。

四、条件概率条件概率是指在已经发生一个事件的条件下,另一个事件发生的概率。

条件概率表示为P(A|B),其中A是已知发生的事件,B是条件事件。

例如,某班级男生占总人数的1/4,女生占总人数的3/4,已知某学生是女生,求其也是该班级的概率。

我们可以使用条件概率计算得出P(女生|学生) = P(女生∩学生) / P(学生) = 3/4。

五、独立事件独立事件是指两个事件的发生与否互相不影响。

如果事件A和事件B是独立事件,则有P(A∩B) = P(A) × P(B)。

例如,抛掷一枚硬币和掷一枚骰子,两个事件是独立的。

六、随机变量与概率分布随机变量是表示随机试验结果的变量。

离散型随机变量只能取有限个或可列个数值,连续型随机变量可以取任意实数值。

概率分布是随机变量取各个值的概率。

例如,抛掷一枚骰子,骰子的点数就是一个随机变量,其概率分布为离散型。

高考数学概率统计知识点梳理

高考数学概率统计知识点梳理

高考数学概率统计知识点梳理概率统计作为高中数学的重要组成部分,是高考中常见的考点之一。

掌握好概率统计的知识,对于考生来说至关重要。

下面将对高考数学概率统计知识点进行梳理,帮助考生更好地复习和备考。

一、随机事件及其概率在概率统计中,随机事件是指在相同条件下可以重复出现的试验结果。

概率是描述随机事件发生的可能性大小的数值。

常见的概率计算方法包括:基本概率公式、加法原理、乘法原理等。

在高考中,常见的随机事件概率计算题型有:求事件发生的可能性,计算联合概率、条件概率等。

二、样本空间与事件样本空间是指试验所有可能结果的集合,事件是样本空间的一个子集。

在概率统计中,常用样本空间和事件的关系来求解概率。

考生需要掌握样本空间的求法,以及事件与样本空间的关系。

三、频率与概率频率是指某个事件在重复试验中发生的次数与试验总次数的比值。

概率是指某个事件在理论上发生的可能性大小。

频率与概率之间存在着紧密的联系,频率可以用来近似估算概率。

在高考中,考生需要理解频率与概率的关系,并能够进行频率与概率之间的转换。

四、排列组合与概率排列组合是概率统计中常用的计算方法。

排列是指从n个不同元素中取出m个元素进行顺序安排的方法数,组合是指从n个不同元素中取出m个元素进行不顺序的安排方法数。

在排列组合的基础上,结合概率的计算,考生需要能够解决排列组合与概率相结合的题型。

五、随机变量及其分布随机变量是指随机试验结果的数值化描述,可以是离散的也可以是连续的。

随机变量的分布描述了随机变量每个可能值出现的概率。

常见的离散随机变量分布有:二项分布、泊松分布等;常见的连续随机变量分布有:正态分布、指数分布等。

在高考中,随机变量的概率计算题型经常出现,考生需要熟练掌握各种分布的特点和计算方法。

六、统计与抽样统计是指对大量数据进行收集、整理和分析的过程。

抽样是统计的基本方法之一,是指从总体中选取一部分样本进行研究。

在高考中,常见的统计与抽样的题型有:调查设计、样本估计等。

高考数学概率与统计知识点总结

高考数学概率与统计知识点总结

高考数学概率与统计知识点总结概率和统计的相关题目需要记忆相关的公式和大量的计算,所以也是最能考察学生们计算能力的题了。

果实饱满鲜嫩水灵鸽子、燕子象征和平乳燕初飞婉转悦耳莺歌燕舞翩然归来麻雀、喜鹊枝头嬉戏灰不溜秋叽叽喳喳鹦鹉鹦鹉学舌婉转悦耳笨嘴学舌啄木鸟利嘴如铁钢爪如钉鸡鸭鹅神气活现昂首挺胸肥大丰满自由自在引吭高歌马腾空而起狂奔飞驰膘肥体壮昂首嘶鸣牛瘦骨嶙峋行动迟缓俯首帖耳膘肥体壮车川流不息呼啸而过穿梭往来缓缓驶离船一叶扁舟扬帆远航乘风破浪雾海夜航追波逐浪飞机划破云层直冲云霄穿云而过银鹰展翅学习用品美观实用小巧玲珑造型优美设计独特玩具栩栩如生活泼可爱惹人喜爱爱不释手彩虹雨后彩虹彩桥横空若隐若现光芒万丈雪大雪纷飞大雪封山鹅毛大雪漫天飞雪瑞雪纷飞林海雪原风雪交加霜雪上加霜寒霜袭人霜林尽染露垂露欲滴朝露晶莹日出露干雷电电光石火雷电大作惊天动地春雷滚滚电劈石击雷电交加小雨阴雨连绵牛毛细雨秋雨连绵随风飘洒大雨倾盆大雨狂风暴雨大雨滂沱瓢泼大雨大雨淋漓暴雨如注风秋风送爽金风送爽北风呼啸微风习习寒风刺骨风和日丽雾大雾迷途云雾茫茫雾似轻纱风吹雾散云消雾散云彩云满天天高云淡乌云翻滚彤云密,布霞彩霞缤纷晚霞如火朝霞灿烂丹霞似锦星最远的地方:天涯海角最远的分离:天壤之别最重的话:一言九鼎最可靠的话:一言为定其它成语一、描写人的品质:平易近人宽宏大度冰清玉洁持之以恒锲而不舍废寝忘食大义凛然临危不俱光明磊落不屈不挠鞠躬尽瘁死而后已二、描写人的智慧:料事如神足智多谋融会贯通学贯中西博古通今才华横溢出类拔萃博大精深集思广益举一反三三、描写人物仪态、风貌:憨态可掬文质彬彬风度翩翩相貌堂堂落落大方斗志昂扬意气风发,威风凛凛容光焕发神采奕奕四、描写人物神情、情绪:悠然自得眉飞色舞喜笑颜开神采奕奕欣喜若狂呆若木鸡喜出望外垂头丧气无动于衷勃然大怒五、描写人的口才:能说会道巧舌如簧能言善辩滔滔不绝伶牙俐齿,出口成章语惊四座娓娓而谈妙语连珠口若悬河六、来自历史故事的成语:三顾茅庐铁杵成针望梅止渴完璧归赵四面楚歌负荆请罪精忠报国手不释卷悬梁刺股凿壁偷光七、描写人物动作:走马——花欢呼雀跃扶老携幼手舞足蹈促膝谈心前俯后仰奔走相告跋山涉水前赴后继张牙舞爪八、描写人间情谊:恩重如山深情厚谊手足情深形影不离血浓于水志同道合风雨同舟赤诚相待肝胆相照生死相依九、说明知事晓理方面:循序渐进日积月累温故——新勤能补拙笨鸟先飞学无止境学海无涯滴水穿石发奋图强开卷有益十、来自寓言故事的成语:夏天的,景色鸟语蝉鸣万木葱茏枝繁叶茂莲叶满池秋天秋高气爽天高云淡秋风送爽秋菊怒放秋菊傲骨秋色迷人秋色宜人金桂飘香秋天的景色果实累累北雁南飞满山红叶五谷丰登芦花飘扬冬天天寒地冻北风呼啸滴水成冰寒冬腊月瑞雪纷飞冰天雪地冬天的景色冰封雪盖漫天飞雪白雪皑皑冰封大地冰天雪地早晨东方欲晓旭日东升万物初醒空气清醒雄鸡报晓晨雾弥漫晨光绚丽中午烈日当头丽日临空艳阳高照万里无云碧空如洗傍晚日落西山夕阳西斜残阳如血炊烟四起百鸟归林华灯初上夜幕低垂日薄西山夜晚夜深人静月明星稀夜色柔美夜色迷人深更半夜漫漫长夜城镇风光秀丽人山人海车水马龙宁静和谐村庄草木苍翠竹篱瓦舍山幽路辟小桥流水大楼、饭店直指青云古色古香青砖素瓦耸入碧云工厂机器轰鸣铁流直泻热气腾腾钢花飞溅商店粉饰一新门可罗雀冷冷清清错落有致馆场富丽堂皇设施齐全气势雄伟金碧辉煌学校风景如画闻名遐迩桃李满天下车站、码头井然有序杂乱无章布局巧妙错落有致街道宽阔平坦崎岖不平拥挤不堪畅通无阻花花红柳绿花色迷人花香醉人花枝招展百花齐放百花盛开百花争艳,绚丽多彩五彩缤纷草绿草如,标准答案一、填空题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档