光纤通信_实验3实验报告 接收机灵敏度和动态范围测量实验

合集下载

光纤通信实验报告

光纤通信实验报告

光纤通信实验报告中国石油大学(北京)光纤通信实验报告一、实验目的1. 了解光纤在量化传输中的原理和性能;2. 掌握光纤通信仪器的使用方法;3. 掌握光纤收发器、光分路器、光偏转器、光开关、光衰减器之间联结方法;4. 掌握光传输的参数测量技术。

二、实验原理及步骤1. 放大器原理:光纤放大器是一种可以在光纤上显示和观察信号时序变化的设备。

它能够按照固定的时间间隔来放大光纤传输的信号,从而允许技术人员观察信号的变化。

2. 分路器原理:光纤分路器是一种利用晶体原理实现光纤信号定向传输的设备。

分路器的使用是把一路信号分成几路,从而实现信号传输的目的。

3. 偏转器原理:光纤偏转器是一种用于改变光纤信号传输方向的设备。

它可以把一条光纤信号传输到另外一个方向,从而实现信号源和信号接收方之间的信号传输。

4. 开关原理:光纤开关是一种可以用来控制光纤信号传输的设备。

它可以控制信号的传输方向,从而可以把信号源和接收方之间的信号进行分开。

5. 衰减器原理:光纤衰减器是一种用来控制光纤信号强度的设备。

它可以把信号源和接收方之间的信号进行分开,从而可以控制信号的级别。

6. 实验步骤:(1) 安装光纤传输系统,安装光纤收发器、光分路器、光偏转器、光开关、光衰减器等实验设备;(2) 建立信号网络,安装配置传送端、接收端信号源;(3) 启动信号源,测量传输系统的参数,包括:传输效率、信噪比、带宽、时延以及抖动等;(4) 将测量的参数曲线进行分析,绘制传输系统的信号时序图;(5) 根据实验测量结果,完成实验报告。

三、实验结果1. 传输效率:实验中,光纤传输的最大平均效率为98.7%,最小平均效率为97.8%,最高单点效率为99.3%,最低单点效率为97.2%。

2. 信噪比:实验中,光纤传输的信噪比约为20 dB。

3. 带宽:实验中,光纤传输的带宽约为1 MHz。

4. 时延:实验中,光纤传输的平均时延约为3 ms。

5. 抖动:实验中,光纤传输的抖动约为0.8 μs。

光纤通信实验报告

光纤通信实验报告

光纤通信实验报告光纤通信是一种使用光信号传输数据的通信技术,它利用了光的高速传输和大带宽的特性,成为了现代通信领域的重要技术之一。

在本次实验中,我们对光纤通信的原理和实验验证进行了深入研究。

实验一: 光的传播特性我们首先对光的传播特性进行了研究。

选择了一根直径较细的光纤,并采用了迎射法和反射法进行传导实验。

通过在纤芯中投射光线,并观察传导的情况,我们验证了光在光纤中的传播路径并没有明显偏向,光线能够相对直线传播。

实验二: 光纤的损耗与色散在光纤通信中,损耗和色散是不可避免的问题。

我们通过实验对光纤中损耗和色散的影响进行了测试。

损耗实验中,我们通过分析在不同长度光纤中传输的光强度,发现随着距离的增加,光强度会逐渐减弱。

这是由于光纤中存在材料吸收和散射等因素造成的。

为了减小损耗,优化光纤的材料和结构是很重要的。

色散实验中,我们将不同波长的光信号通过光纤传输,并测量到达另一端的时间。

实验结果显示,不同波长的光信号到达时间存在差异。

这是由于光纤中折射率随波长变化而引起的色散效应。

为了减小色散,需要采用更先进的技术,如光纤衍生波导和光纤增益等手段。

实验三: 单模光纤与多模光纤光纤通信中,单模光纤和多模光纤是常用的两种类型。

通过实验,我们对这两种光纤的传输特性进行了研究。

我们首先测试了单模光纤。

结果显示,在单模光纤中,光信号会以单一光波传播,因此具有较低的色散和损耗,适用于远距离传输和高速通信。

然后我们进行了多模光纤的实验。

实验结果显示,多模光纤中存在多个模式的光信号传播,由于不同模式间的传播速度不同,会导致严重的色散和损耗问题。

因此,多模光纤适用于近距离传输和低速通信。

结论通过本次光纤通信实验,我们对光纤通信的原理和实际应用有了更深入的了解。

我们发现光纤通信具有高速率、低损耗和大带宽等优势,而不同类型的光纤对于不同的通信需求有着不同的适应性。

然而,我们也看到了光纤通信中存在的一些问题,如损耗、色散和设备成本等。

光纤通信基础实验指导

光纤通信基础实验指导

光纤通信基础实验指导光纤通信是一种基于光传输的信息传输技术,它利用光纤作为传输媒介,通过光信号的传输实现高速、低衰减的数据通信。

在现代通信领域中,光纤通信已经成为一种重要的通信方式。

为了更好地理解光纤通信的原理和技术,进行实验是非常重要的。

实验一:光纤传输特性实验在这个实验中,我们将通过实验来了解光纤的传输特性,包括衰减特性和色散特性。

首先,准备一根光纤和光源。

将光源连接到光纤的一端,然后在光纤的另一端连接一个光检测器。

通过改变光源的强度和频率,观察光检测器接收到的光信号的变化,并记录实验数据。

通过这个实验,我们可以了解光纤传输的衰减特性和色散特性,以及光源强度和频率对光信号传输的影响。

实验二:光纤通信系统实验在这个实验中,我们将构建一个简单的光纤通信系统,包括光源、光纤和光检测器。

首先,连接光源和光检测器到光纤的两端,然后通过调节光源的强度和频率,发送一个光信号,并在光检测器端接收光信号。

记录实验数据并分析光信号的传输质量。

通过这个实验,我们可以了解光纤通信系统的工作原理和性能特点,以及光信号在光纤传输过程中的损耗和衰减情况。

实验三:光纤通信网络实验在这个实验中,我们将构建一个简单的光纤通信网络,包括多个光源、光纤和光检测器。

通过调节多个光源的强度和频率,实现多个光信号的传输和接收,并通过光纤通信网络传输数据。

记录实验数据并分析光信号在光纤通信网络中的传输效果。

通过这个实验,我们可以了解光纤通信网络的构建和数据传输原理,以及多个光信号在光纤通信网络中的同步传输和接收过程。

在这些实验中,我们可以通过实际操作和数据记录,深入了解光纤通信的基础知识和技术,为进一步学习和应用光纤通信提供基础支持。

希望通过这些实验,能够帮助大家更好地理解光纤通信的原理和应用。

光纤实验报告

光纤实验报告

四、实验体会 通过本次实验了解了光纤通信实验系统的组成,以及其各部分的功能,对光 纤实验系统的应用和使用方法也有了初步的了解, 掌握了如何利用该系统进行信 号光纤传输的验证实验,并对波形进行观察比较,检测是否有误码。同时学习了 CMI 码的编码规则以及特点,通过实验示波器观测 P115 测试点和发端的 P101 测试点,结果两个测试点的波形一样,说明 CMI 码的误码率很小,几乎为零, 适合传输。 在这次实验中,我也学会了光功率计的使用,学会了光功率的测量方法, 光 功率计是用于测量绝对光功率或通过一段光纤的光功率相对损耗的仪器, 利用它 可以很方便的测量得到光纤通信系统的特性。通过使用光功率计,体会到在使用 光功率计的时候要注意单位和波长的选择,并且要做正确的记录,否则会有一定 的错误。最后,每次实验我们都应该养成良好的习惯,在实验结束后将仪器和配 件归回原位。
(7) 关闭系统电源。 三、实验结果
当连接 101—201 时,测量 Tx1310 口的输出光功率: 拨码器的设置 00000000 11111111 10101010 输出光功率 90.0μw -10.7nw 44.9μw
当连接 103—201 时,测量 Tx1310 口的输出光功率: 拨码器的设置 00000000 11111111 10101010 输出光功率 46.0μw 45.5nw 45.3μw
实验二 数字光发送性能测量
一、实验原理 1、消光比 设光发射机的数字驱动电路送全“0”码,测得此时的光功率为 P0,光发射机的 数字驱动电路送全“1”码,测得此时的光功率 P1,消光比定义为
EXT 10 Lg
2、半导体激光器 P-I 曲线 半导体激光器的功率特性示意图
P0 P1
p
受激 辅射

光纤通信_实验3实验报告接收机灵敏度和动态范围测量实验

光纤通信_实验3实验报告接收机灵敏度和动态范围测量实验

课程名称:光纤通信实验名称:实验3 接收机灵敏度和动态范围测量实验姓名:班级:学号:实验时间:指导教师:得分:一、实验目的1、了解和掌握光收端机灵敏度的指标要求和测试方法。

2、掌握误码仪的使用方法。

二、实验器材主控&信号源模块25 号光收发模块23 号光功率计 & 误码仪模块三、实验原理光接收机的性能指标主要包括灵敏度和动态范围。

(1)灵敏度灵敏度是光端机的重要特性指标之一,它表示了光接收机接收微弱信号的能力,是系统设计的重要依据。

光接收机灵敏度的定义是:在给定误码率或信噪比条件下,光接收机所能接收的最小平均光功率。

在测灵敏度时应注意 3 点:1、在测量光接收机灵敏度时,首先要确定系统所要求的误码率指标。

对不同长度和不同应用的光纤数字通信系统,其误码率指标是不一样的。

例如,在短距离光纤数字通信系统中,要求误码率一般为,而在 420km 数字段中,则要求每个中继器的误码率为。

对同一个光接收机来说,当要求的误码率指标不同时,其接收机的灵敏度也就不同。

要求误码率越小,则灵敏度就越低,即要求接收的光功率就越大。

因此,必须明确,对某一接收机来说,灵敏度不是一个固定不变的值,它与误码率的要求有关。

测量时,首先要确定系统设计要求的误码率,然后再测该误码率条件下的光接收机灵敏度的数值。

2、要注意光接收机灵敏度定义中的光功率是指最小平均光功率,而不是指任何一个在达到系统要求的误码率时所对应的光功率。

因此,要特别注意“最小”的概念。

所谓“最小”,就是指当接收的光功率只要小于此值,误码率立即增加而达不到要求。

应该指出,对某一接收机来说,光功率只要在它的动态范围内变化,都能保证系统要求的误码率。

但灵敏度只有一个,即接收机所能接收的最小光功率。

3、灵敏度指的是平均光功率,而不是光脉冲的峰值功率。

这样,光接收机的灵敏度就与传输信号的码型有关。

码型不同,占空比不同,平均光功率也不同,即灵敏度不同。

在光纤数字传输系统中常用的 2 种码型 NRZ 码和 RZ 码的占空比分别为100%和 50%。

光纤通信实验报告

光纤通信实验报告
10.5
11.0
11.5
12.0
13.0
13.5
14.0
15.0
功率P(dB)
7.以横轴为为电流I,纵轴为功率P,按照上表画出其相应的P-I曲线。
另外,如果配置了LED扩展模块(选配),可以测试LED光源的P-I曲线。
8.测试完毕后,关闭系统电源,拆除各光器件并套好防尘帽,插好K01、K02跳线器。
13.0
13.5
14.0
15.0
功率P(uw)
0.437
0.94
1.39
1.89
2.39
2.87
3.87
4.38
4.76
5.168
图如下所示
2、
实验1.2光衰减器的性能指标测量
一、实验目的
1.了解光衰减器的指标要求;
2.掌握光衰减器的测试方法。
二、实验仪器
1.光纤通信实验箱
2.20M双踪示波器
3.光功率计(FC-FC单模尾纤)
光纤通信实验报告
班级:通信1101班
姓名:廖喜君
学号:
指导老师:郭淑琴
实验1半导体激光器及光无源器件测试3
实验1.1半导体LD光源的P-I曲线绘制实验3
实验1.2光衰减器的性能指标测量6
实验2光纤传输系统及眼图观测9
实验2.1加扰、解扰原理及光传输实验9
实验2.2光纤信道眼图观察15
实验3模拟/数字电话光纤传输系统实验19
(2)结构与工作原理
可变光衰减器的结构原理图如图3.2.1所示:
图3.2.1可变光衰减器的原理结构图
实验4数字时分复接系统光通信实验30
实验1 半导体激光器及光无源器件测试
实验1.1半导体LD光源的P-I曲线绘制实验

光纤通信实验报告3-模拟信号光纤传输系统

光纤通信实验报告3-模拟信号光纤传输系统

入端,并将光收发模块的功能选择开关 S1 打到“光接收机”。 2、将信号源&主控模块的模拟输出 A-out 连接到 25 号光收发模块的模拟信 号输入端 TH1。 3、把 25 号光收发模块的 S3 设置为“模拟”。 4、将 25 号光收发模块的 W5(接收灵敏度的调节旋钮,逆时针旋转时输出 信号减小)顺时针旋到最大,适当调节 W6(调节电平判决电路的门限电压)。 5、打开系统电源开关及各模块电源开关。在主控模块中设置实验参数主菜 单【光纤通信】→【模拟信号光纤传输系统】 6、用示波器观测模拟信号源模块的 A-out,调节信号源模块的 “输出幅度” 旋钮,使信号的峰-峰值为 2V。 7、用示波器观测模拟信号源的 A-out 和 25 号光收发模块的 TH4,适当调节 W6,使得观测到的两处波形相同。此时,25 号光收发模块无失真的传输模拟信 号。
实验过程原始记录(数据、图表、波形等) : (1)当主信号源模块输出模拟信号为方波时,输入(上)和输出(下) 波形如下:
(2)当主信号源模块输出模拟信号为三角波时,输入(上)和输出(下) 波形如下:
(3)当主信号源模块输出模拟信号为正弦波时,输入(上)和输出(下) 波形如下:
当输出正弦波发生失真时,输出如下:
实验器材:
1、 主控&信号源模块、25 号模块 2、 双踪示波器 3、 FC 型光纤跳线、连接线
各一块 一台 若干
实验原理: 1、实验原理框图
光纤跳线
信号源
A-OUT TH1
光发射机
光接收机
Байду номын сангаасTH4
25#模块
25#模块
模拟信号光纤传输系统 2、实验框图说明 主控信号源模块可输出正弦波、三角波、方波等模拟信号,信号送入光发射

光纤通信实验报告

光纤通信实验报告

光纤通信实验报告
实验目的:通过实际操作,了解光纤通信的基本原理和技术特点,
掌握光纤通信系统的组成和工作过程,以及光纤连接的方法。

实验仪器:光纤通信实验箱、光纤收发器、光纤跳线、示波器、光
功率计等。

实验步骤:
1. 搭建光纤通信实验箱,将光纤收发器连接至实验箱主机。

2. 用光纤跳线将实验箱主机与光功率计连接,以便实时监测光功率
的变化。

3. 调节实验箱主机的光发射功率和接收灵敏度,使其达到最佳状态。

4. 在示波器上观察传输信号的波形,分析信号的稳定性和传输质量。

5. 采用不同的光纤连接方法,比较它们对信号传输的影响,验证光
纤连接的重要性。

实验结果与分析:
经过实验操作,我们可以明显地感受到光纤通信系统的高速传输、
低损耗、抗干扰等优点。

同时,我们也发现光纤连接的质量对信号传
输有着至关重要的影响,需要谨慎处理光纤的清洁、固定和连接方式,以确保信号传输的稳定性和可靠性。

实验总结:
通过本次实验,我们深入了解了光纤通信的基本原理和技术特点,掌握了光纤通信系统的组成和工作过程,以及光纤连接的方法。

同时也加深了对光纤通信技术在现代通信领域中的广泛应用和重要性的认识,为我们今后的学习和研究打下了坚实的基础。

希望通过持续的实践和探索,我们能够进一步提升对光纤通信技术的理解和应用水平,为推动通信技术的发展做出更大的贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程名称:光纤通信
实验名称:实验3 接收机灵敏度和动态范围测量实验
姓名:
班级:
学号:
实验时间:
指导教师:
得分:
一、实验目的
1、了解和掌握光收端机灵敏度的指标要求和测试方法。

2、掌握误码仪的使用方法。

二、实验器材
主控&信号源模块
25 号光收发模块
23 号光功率计&误码仪模块
三、实验原理
光接收机的性能指标主要包括灵敏度和动态范围。

(1)灵敏度
灵敏度是光端机的重要特性指标之一,它表示了光接收机接收微弱信号的能力,是系统设计的重要依据。

光接收机灵敏度的定义是:在给定误码率或信噪比条件下,光接收机所能接收的最小平均光功率。

在测灵敏度时应注意 3 点:
1、在测量光接收机灵敏度时,首先要确定系统所要求的误码率指标。

对不同长度和不同应用的光纤数字通信系统,其误码率指标是不一样的。

例如,在短距离光纤数字通信系统中,要求误码率一般为,而在420km 数字段中,则要求每个中继器的误码率为。

对同一个光接收机来说,当要求的误码率指标不同时,其接收机的灵敏度也就不同。

要求误码率越小,则灵敏度就越低,即要求接收的光功率就越大。

因此,必须明确,对某一接收机来说,灵敏度不是一个固定不变的值,它与误码率的要求有关。

测量时,首先要确定系统设计要求的误码率,然后再测该误码率条件下的光接收机灵敏度的数值。

2、要注意光接收机灵敏度定义中的光功率是指最小平均光功率,而不是指任何一个在达到系统要求的误码率时所对应的光功率。

因此,要特别注意“最小”的概念。

所谓“最小”,就是指当接收的光功率只要小于此值,误码率立即增加而达不到要求。

应该指出,对某一接收机来说,光功率只要在它的动态范围内变化,都能保证系统要求的误码率。

但灵敏度只有一个,即接收机所能接收的最小光功率。

3、灵敏度指的是平均光功率,而不是光脉冲的峰值功率。

这样,光接收机的灵敏度就与传输信号的码型有关。

码型不同,占空比不同,平均光功率也不同,即灵敏度不同。

在光纤数字传输系统中常用的 2 种码型NRZ 码和RZ 码的占空比分别为
100%和50%。

当“1”和“0”码的概率相等时,前者的平均光功率比后者大3db。

因此,测试灵敏度时必须选用正确的码型。

灵敏度的单位一般用dBm 表示。

它表示以1mW 功率为基础的绝对功率电平。

设测得的最小平均光功率为Pmin,则灵敏度可以表示为
例如当PR=-60dBm 时,其最小平均光功率就是10-9W。

要特别说明的是:Pmin 越小,接收机的灵敏度就越高,该接收机在很小的接收光功率条件下,就可保证系统所要求的误码率。

(2)动态范围
在实际的光纤通信线路中,光接收机的输入光信号功率是固定不变的,当系统的中继距离较短时,光接收机的输入光功率就会增加。

一个新建的线路,由于新器件和系统设计时考虑的富余度也会使光接收机的输入光功率增加。

为了保证系统的正常工作,对输入信号光功率的增加必须限制在一定的范围内,因为信号功率增加到某一数值时将对接收机性能产生不良影响。

在模拟通信系统中,输入信号过大将使放大器超载,输出信号失真,降低信噪比。

在数字通信系统中,当输入信号功率增加到某一数值时,将使系统出现误码。

应该指出,在数字通信系统中,放大器输出信号的失真在测试时应与模拟系统区别开来。

为保证数字通信系统的误码特性,光接收机的输入光信号只能在某一定范围内变化,光接收机这种能适应输入信号在一定范围内变化的能力称为光接收机的动态范围,可表示为:
式中,Pmax 是光接收机在不误码条件下能接收的最大信号平均光功率;Pmin 是光接收机的灵敏度,即最小可接收光功率。

一般来说,要求光接收机的动态范围大一点较好,但如果要求过大则会给设备的生产带来一些困难。

实验电路框图
四、实验步骤
1、登录e-Labsim 仿真系统,创建仿真工作窗口,选择实验所需模块和示波
器。

2、按表格所示进行连线。

3、模块设置:
1)连接25 号光收发模块的光发输出端和光收接入端。

2)将光收发模块的功能选择开关S1 打到“光接收机”。

3)将25 号模块P4(光探测器输出)连至23 号模块P1(光探测器输入)。

4)将开关J1 拨为“10”,即无APC 控制状态。

5)开关S3 拨为“数字”,即数字光发。

6)将25 号光收发模块的电位器W4(光输出功率粗调)和W2(光输出功率微调)顺时针旋至底,即设置光发射机的输出光功率为最大状态;
4、运行仿真,开启所有模块的电源开关。

6、理想的光传输系统调整:
1)使用示波器对比观测光收发模块的“数字输入”TH2和“数字输出”端口
TH3,调节光接收机的判决门限和灵敏度,使数字输入与数字输出的信号一致,没有误码。

思考1:类型1 数据是PN 码的一种,为了稳定且实时地显示观测到的数据,在不使用STOP 的条件下,我们应该对示波器进行怎样的设置?提示:理解触发电平和触发释抑。

思考2:类型1 的数据,怎样确定一个周期的长度及1 比特码元的宽度?
2)数字输入与数字输出的信号一致时,误码仪的“失锁”“误码”“无数据”三个指示应处于灯灭状态,即光发射机和接收机的传通通路无误码。

7、灵敏度计算:慢慢旋转W4(输出光发射功率大小的调节旋钮),当误码仪的
“误码”指示灯刚出现闪烁时,将25 号模块的功能选择键S1 拨至“光功率计”,在主控模块上设置并选择【主菜单】→【光纤通信】→【光功率计】功能,可以
通过选择和单击“选择/ 确认”多功能旋钮,切换功率计的测量波长;根据实际使用的光收发模块的波长类型,选择波长【1310nm】或【1550nm】。

测量并记录此时光功率Pmin。


Pmin 即为光接收机的灵敏度。

代入前面的公式,即可计算出PR。

8、动态范围计算:参考光发射机平均光功率测试实验的方法或重做上面的步骤6,测出光接收机在不误码条件下能接收的最大信号平均光功率Pmax,从而计算出光接收机的动态范围。

Pr=-17.1dBm
D=2.6dB
五、心得与体会
通过本次实验,我更加扎实的掌握了有关光收端机灵敏度的指标要求和测试方法方面的知识,对试验工坊的各种操作更加熟练了.
在实验过程中虽然遇到了一些问题,但经过一次又一次的思考,一遍又一遍的检查终于找出了原因所在,也暴露出了前期我在这方面的知识欠缺和经验不足。

相关文档
最新文档