武汉大学计算机专业数据仓库及数据挖掘期末考试题
数据仓库及数据挖掘考试试题

数据仓库及数据挖掘考试试题⼀、填空题(15分)1.数据仓库的特点分别是⾯向主题、集成、相对稳定、反映历史变化。
2.元数据是描述数据仓库内数据的结构和建⽴⽅法的数据。
根据元数据⽤途的不同可将元数据分为技术元数据和业务元数据两类。
3.OLAP技术多维分析过程中,多维分析操作包括切⽚、切块、钻取、旋转等。
4.基于依赖型数据集市和操作型数据存储的数据仓库体系结构常常被称为“中⼼和辐射”架构,其中企业级数据仓库是中⼼,源数据系统和数据集市在输⼊和输出范围的两端。
5.ODS实际上是⼀个集成的、⾯向主题的、可更新的、当前值的、企业级的、详细的数据库,也叫运营数据存储。
⼆、多项选择题(10分)6.在数据挖掘的分析⽅法中,直接数据挖掘包括(ACD)A 分类B 关联C 估值D 预⾔7.数据仓库的数据ETL过程中,ETL软件的主要功能包括(ABC)A 数据抽取B 数据转换C 数据加载D 数据稽核8.数据分类的评价准则包括( ABCD )A 精确度B 查全率和查准率C F-MeasureD ⼏何均值9.层次聚类⽅法包括( BC )A 划分聚类⽅法B 凝聚型层次聚类⽅法C 分解型层次聚类⽅法D 基于密度聚类⽅法10.贝叶斯⽹络由两部分组成,分别是( A D )A ⽹络结构B 先验概率C 后验概率D 条件概率表三、计算题(30分)11.⼀个⾷品连锁店每周的事务记录如下表所⽰,其中每⼀条事务表⽰在⼀项收款机业务中卖出的项⽬,假定supmin =40%,confmin=40%,使⽤Apriori算法计算⽣成的关联规则,标明每趟数据库扫描时的候选集和⼤项⽬集。
(15分)解:(1)由I={⾯包、果冻、花⽣酱、⽜奶、啤酒}的所有项⽬直接产⽣1-候选C 1,计算其⽀持度,取出⽀持度⼩于supmin的项集,形成1-频繁集L1,如下表所⽰:(2)组合连接L1中的各项⽬,产⽣2-候选集C2,计算其⽀持度,取出⽀持度⼩于supmin 的项集,形成2-频繁集L2,如下表所⽰:⾄此,所有频繁集都被找到,算法结束,所以,confidence ({⾯包}→{花⽣酱})=(4/5)/(3/5)=4/3> conf min confidence ({ 花⽣酱}→{⾯包})=(3/5)/(4/5)=3/4> conf min 所以,关联规则{⾯包}→{花⽣酱}、{ 花⽣酱}→{⾯包}均是强关联规则。
数据仓库与数据挖掘复习题

2014-2015-1《数据仓库与数据挖掘》期末考试题型一、单项选择题(每小题2分,共20分)二、填空题(每空1分,共20分)三、简答题(每题6分,共30分)四、析题与计算题(共30分)请同学们在考试时不要将复习资料带入考场!!!单选题1. 某超市研究销售纪录数据后发现,买啤酒的人很大概率也会购买尿布,这种属于数据挖掘的哪类问题?(A)A. 关联规则发现B. 聚类C. 分类D. 自然语言处理2. 以下两种描述分别对应哪两种对分类算法的评价标准? (A)(a)警察抓小偷,描述警察抓的人中有多少个是小偷的标准。
(b)描述有多少比例的小偷给警察抓了的标准。
A. Precision, RecallB. Recall, PrecisionA. Precision, ROC D. Recall, ROC3. 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C)A. 频繁模式挖掘B. 分类和预测C. 数据预处理D. 数据流挖掘4. 当不知道数据所带标签时,可以使用哪种技术促使带同类标签的数据与带其他标签的数据相分离?(B)A. 分类B. 聚类C. 关联分析D. 隐马尔可夫链5. 什么是KDD? (A)A. 数据挖掘与知识发现B. 领域知识发现C. 文档知识发现D. 动态知识发现6. 使用交互式的和可视化的技术,对数据进行探索属于数据挖掘的哪一类任务?(A)A. 探索性数据分析B. 建模描述C. 预测建模D. 寻找模式和规则7. 为数据的总体分布建模;把多维空间划分成组等问题属于数据挖掘的哪一类任务?(B)A. 探索性数据分析B. 建模描述C. 预测建模D. 寻找模式和规则8. 建立一个模型,通过这个模型根据已知的变量值来预测其他某个变量值属于数据挖掘的哪一类任务?(C)A. 根据内容检索B. 建模描述C. 预测建模D. 寻找模式和规则9. 用户有一种感兴趣的模式并且希望在数据集中找到相似的模式,属于数据挖掘哪一类任务?(A)A. 根据内容检索B. 建模描述C. 预测建模D. 寻找模式和规则11.下面哪种不属于数据预处理的方法? (D)A变量代换 B离散化 C 聚集 D 估计遗漏值12. 假设12个销售价格记录组已经排序如下:5, 10, 11, 13, 15, 35, 50, 55, 72, 92, 204, 215 使用如下每种方法将它们划分成四个箱。
数据挖掘期末考试题库

数据挖掘期末考试题库
进行数据挖掘期末考试前,老师通常会准备一份题库,供学生参考复习。
这个题库包含了一系列的问题,涵盖了数据挖掘的各个方面。
以下是一个示例的数据挖掘期末考试题库,供同学们参考:
1. 什么是数据挖掘?数据挖掘的主要目标是什么?
2. 请简要介绍数据挖掘的主要过程。
3. 数据挖掘中常用的数据预处理方法有哪些?请分别进行介绍。
4. 数据挖掘中常用的特征选择方法有哪些?请分别进行介绍。
5. 数据挖掘中常用的分类算法有哪些?请分别进行介绍。
6. 数据挖掘中常用的聚类算法有哪些?请分别进行介绍。
7. 数据挖掘中常用的关联规则挖掘算法有哪些?请分别进行介绍。
8. 什么是异常检测?数据挖掘中常用的异常检测方法有哪些?请分别进行介绍。
9. 数据挖掘中的交叉验证是什么?请简要说明。
10. 数据挖掘中如何评估分类算法的性能?请简要说明评估指标。
11. 数据挖掘中如何评估聚类算法的性能?请简要说明评估指标。
12. 数据挖掘中如何评估关联规则挖掘算法的性能?请简要说明评估指标。
13. 数据挖掘在实际应用中的案例有哪些?请分别进行介绍。
14. 在数据挖掘过程中,如何选择适当的算法和技术?请简要说明。
15. 数据挖掘存在哪些挑战和限制?请分别进行介绍。
以上题目是一个简要的示例,涵盖了数据挖掘的基本概念、主要过程、常用方法和评估指标等方面。
同学们可以根据这些问题来进行复
习和准备,加深对数据挖掘的理解和掌握。
希望以上题库对同学们的期末考试有所帮助。
祝大家考试顺利!。
12《数据仓库与数据挖掘》复习题

《数据仓库与数据挖掘》复习大纲三、简答题(5×6分=30分)四、分析计算题(3×10分=30分)考试范围:第一讲数据挖掘概述考点:1、数据挖掘、知识发现(KDD)基本概念;2、数据挖掘的过程;3、数据挖掘过技术的三个主要部分。
复习参考题:一、填空题(1)数据库中的知识挖掘(KDD)包括以下七个步骤:数据清理、数据集成、数据选择、数据变换、数据挖掘、模式评估和知识表示。
(2)数据挖掘的性能问题主要包括:算法的效率、可扩展性和并行处理。
(3)当前的数据挖掘研究中,最主要的三个研究方向是:统计学、数据库技术和机器学习。
(4)在万维网(WWW)上应用的数据挖掘技术常被称为:WEB挖掘。
(5)孤立点是指:一些与数据的一般行为或模型不一致的孤立数据。
二、单选题(1)数据挖掘应用和一些常见的数据统计分析系统的最主要区别在于:BA、所涉及的算法的复杂性;B、所涉及的数据量;C、计算结果的表现形式;D、是否使用了人工智能技术(2)孤立点挖掘适用于下列哪种场合?DA、目标市场分析B、购物篮分析C、模式识别D、信用卡欺诈检测(3)下列几种数据挖掘功能中,( D )被广泛的应用于股票价格走势分析。
A. 关联分析B.分类和预测C.聚类分析D. 演变分析(4)下面的数据挖掘的任务中,( B )将决定所使用的数据挖掘功能。
A、选择任务相关的数据B、选择要挖掘的知识类型C、模式的兴趣度度量D、模式的可视化表示(5)下列几种数据挖掘功能中,(A )被广泛的用于购物篮分析。
A、关联分析B、分类和预测C、聚类分析D、演变分析(6)根据顾客的收入和职业情况,预测他们在计算机设备上的花费,所使用的相应数据挖掘功能是( B)。
A.关联分析B.分类和预测C. 演变分析D. 概念描述(7)帮助市场分析人员从客户的基本信息库中发现不同的客户群,通常所使用的数据挖掘功能是( C )。
A.关联分析B.分类和预测C.聚类分析D. 孤立点分析E. 演变分析(8)假设现在的数据挖掘任务是解析数据库中关于客户的一般特征的描述,通常所使用的数据挖掘功能是( E )A.关联分析B.分类和预测C. 孤立点分析D. 演变分析E. 概念描述三、简答题1、何谓数据挖掘?它有哪些方面的功能?答:从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程称为数据挖掘。
历年数据挖掘期末考试试题及答案

历年数据挖掘期末考试试题及答案2019年春选择题1. 关于数据挖掘下列叙述中,正确的是:- A. 数据挖掘只是寻找数据中的有用信息- B. 数据挖掘就是将数据放置于数据仓库中,方便查询- C. 数据挖掘是指从大量有噪音数据中提取未知、隐含、先前未知的、重要的、可理解的模式或知识- D. 数据挖掘就是从数据中提取出数值型变量2. 下列关于聚类分析的说法中,正确的是:- A. 聚类分析是无监督研究- B. 聚类分析的目的是找到一组最优特征- C. 聚类分析只能用于数值型变量- D. 聚类分析是一种监督研究方法3. 一般的数据挖掘流程包括以下哪些步骤:- A. 数据采集- B. 数据清洗- C. 数据转换- D. 模型构建- E. 模型评价- F. 模型应用- G. A、B、C、D、E- H. A、B、C、D、E、F- I. B、C、D、E、F- J. C、D、E、F简答题1. 什么是数据挖掘?介绍一下数据挖掘的流程。
数据挖掘是从庞大、复杂的数据集中提取有价值的、对决策有帮助的信息。
包括数据采集、数据清洗、数据转换、模型构建、模型评价和模型应用等步骤。
2. 聚类分析和分类分析有什么不同?聚类分析和分类分析都是数据挖掘的方法,不同的是聚类分析是无监督研究,通过相似度,将数据集分为不同的组;分类分析是监督研究,通过已知的训练集数据来预测新的数据分类。
也就是说在分类中有“标签”这个中间过程。
3. 请介绍一个你知道的数据挖掘算法,并简单阐述它的流程。
Apriori算法:是一种用于关联规则挖掘的算法。
主要流程包括生成项集、计算支持度、生成候选规则以及计算可信度四步。
首先生成单个项集,计算各项集在数据集中的支持度;然后根据单个项集生成项集对,计算各项集对在数据集中的支持度;接着从项集对中找出支持度大于某个阈值的,生成候选规则;最后计算规则的置信度,保留置信度大于某个阈值的规则作为关联规则。
武汉大学计算机专业数据仓库及数据挖掘期末考试题

武汉大学计算机专业数据仓库及数据挖掘期末考试题武汉大学计算机学院2014级研究生“数据仓库和数据挖掘”课程期末考试试题要求:所有的题目的解答均写在答题纸上,需写清楚题目的序号。
每张答题纸都要写上姓名和学号。
一、单项选择题(每小题2分,共20分)1. 下面列出的条目中,()不是数据仓库的基本特征。
BA.数据仓库是面向主题的B.数据仓库是面向事务的C.数据仓库的数据是相对稳定的D.数据仓库的数据是反映历史变化的2. 数据仓库是随着时间变化的,下面的描述不正确的是()。
A.数据仓库随时间的变化不断增加新的数据内容B.捕捉到的新数据会覆盖原来的快照C.数据仓库随事件变化不断删去旧的数据内容CD.数据仓库中包含大量的综合数据,这些综合数据会随着时间的变化不断地进行重新综合3. 以下关于数据仓库设计的说法中()是错误的。
AA.数据仓库项目的需求很难把握,所以不可能从用户的需求出发来进行数据仓库的设计,只能从数据出发进行设计B.在进行数据仓库主题数据模型设计时,应该按面向部门业务应用的方式来设计数据模型C.在进行数据仓库主题数据模型设计时要强调数据的集成性D.在进行数据仓库概念模型设计时,需要设计实体关系图,给出数据表的划分,并给出每个属性的定义域4. 以下关于OLAP的描述中()是错误的。
AA.一个多维数组可以表示为(维1,维2,…,维n)B.维的一个取值称为该维的一个维成员C.OLAP是联机分析处理D.OLAP是数据仓库进行分析决策的基础5. 多维数据模型中,下列()模式不属于多维模式。
DA.星型模式B.雪花模式C.星座模式D.网型模式6. 通常频繁项集、频繁闭项集和最大频繁项集之间的关系是()。
CA.频繁项集?频繁闭项集?最大频繁项集B.频繁项集?最大频繁项集?频繁闭项集C.最大频繁项集?频繁闭项集?频繁项集D.频繁闭项集?频繁项集?最大频繁项集7. 决策树中不包含()结点。
CA.根结点B.内部结点C.外部结点D.叶结点8. 下面选项中t不是s的子序列的是()。
数据挖掘考试题库及答案
数据挖掘考试题库及答案一、选择题1. 数据挖掘是从大量数据中提取有价值信息的过程,以下哪项不是数据挖掘的主要任务?A. 预测B. 分类C. 聚类D. 数据可视化答案:D2. 以下哪种技术不属于数据挖掘的常用方法?A. 决策树B. 支持向量机C. 关联规则D. 数据仓库答案:D3. 数据挖掘中,以下哪项技术常用于分类和预测?A. 神经网络B. K-均值聚类C. 主成分分析D. 决策树答案:D4. 在数据挖掘中,以下哪个概念表示数据集中的属性?A. 数据项B. 数据记录C. 数据属性D. 数据集答案:C5. 数据挖掘中,以下哪个算法用于求解关联规则?A. Apriori算法B. ID3算法C. K-Means算法D. C4.5算法答案:A二、填空题6. 数据挖掘的目的是从大量数据中提取______信息。
答案:有价值7. 在数据挖掘中,分类任务分为有监督学习和______学习。
答案:无监督8. 决策树是一种用于分类和预测的树形结构,其核心思想是______。
答案:递归划分9. 关联规则挖掘中,支持度表示某个项集在数据集中的出现频率,置信度表示______。
答案:包含项集的记录中同时包含结论的记录的比例10. 数据挖掘中,聚类分析是将数据集划分为若干个______的子集。
答案:相似三、判断题11. 数据挖掘只关注大量数据中的异常值。
()答案:错误12. 数据挖掘是数据仓库的一部分。
()答案:正确13. 决策树算法适用于处理连续属性的分类问题。
()答案:错误14. 数据挖掘中的聚类分析是无监督学习任务。
()答案:正确15. 关联规则挖掘中,支持度越高,关联规则越可靠。
()答案:错误四、简答题16. 简述数据挖掘的主要任务。
答案:数据挖掘的主要任务包括预测、分类、聚类、关联规则挖掘、异常检测等。
17. 简述决策树算法的基本原理。
答案:决策树算法是一种自顶向下的递归划分方法。
它通过选择具有最高信息增益的属性进行划分,将数据集划分为若干个子集,直到满足停止条件。
数据仓库与数据挖掘期末试题 (1)
1、数据仓库数据仓库(Data Warehouse)是一个面向主题的(Subject Oriented)、集成的(Integrate)、相对稳定的(Non-Volatile)、反映历史变化(Time Variant)的数据集合,用于支持管理决策。
2、数据挖掘:数据挖掘(Data Mining),又称为数据库中的知识发现(Knowledge Discovery in Database, KDD),就是从大量数据中获取有效的、新颖的、潜在有用的、最终可理解的模式的非平凡过程,简单的说,数据挖掘就是从大量数据中提取或“挖掘”知识。
3、雪花模型:雪花模式中某些维表是规范化的,因而把数据进一步分解到附加的表中,模式图形成了类似雪花的形状。
通过最大限度地减少数据存储量以及联合较小的维表来改善查询性能。
雪花模型增加了用户必须处理的表数量,增加了某些查询的复杂性,但同时提高了处理的灵活性,可以回答更多的商业问题,特别适合系统的逐步建设要求。
4、OLAP OLAP是联机分析处理,是使分析人员、管理人员或执行人员能够从多角度对信息进行快速、一致、交互地存取,从而获得对数据的更深入了解的一类软件技术。
它支持复杂的分析操作,侧重决策支持,并且提供直观易懂的查询结果。
5、决策树:决策树是将训练集函数表示成树结构,通过它来近似离散值的目标函数。
这种树结构是一种有向树,它以训练集的一个属性作节点,这个属性所对应的一个值作边。
决策树一般都是自上而下的来生成的。
1、企业面对海量数据,应如何具体实施数据挖掘,使之转换成可行的结果/模型?首先进行数据的预处理,主要进行数据的清洗,数据清洗,处理空缺值,数据的集成,数据的变换和数据规约。
2、请列举您使用过的各种数据仓库工具软件(包括建模工具,ETL工具,前端展现工具,OLAP Server、数据库、数据挖掘工具)和熟悉程度。
ETL工具:AscentialDataStage ,IBM warehouseMANAGER、Informatica公司的PowerCenter、Cognos 公司的DecisionStream市场上的主流数据仓库存储层软件有:SQL SERVER、SYBASE、ORACLE、DB2、TERADATA但是使用过的只有SQLSERVER和数据挖掘工具Analysis Services,而且不大熟悉。
数据仓库与数据挖掘考试试题
数据仓库与数据挖掘考试试题
1. 简答题
a) 数据仓库的定义是什么?
b) 数据挖掘的基本任务有哪些?
c) 数据清洗在数据挖掘中的作用是什么?
2. 选择题
请从以下选项中选择正确答案:
a) 数据仓库的主要特点是:
A. 面向主题
B. 面向过程
C. 面向对象
D. 面向细节
b) 数据挖掘的主要方法包括:
A. 分类
B. 聚类
C. 关联分析
D. 回归分析
c) 数据清洗的过程包括:
A. 数据标准化
B. 数据去重
C. 数据缺失值处理
D. 数据转换
3. 算法题
使用Apriori算法来进行关联规则挖掘,假设有以下购物篮数据集:{牛奶,面包,尿布}
{可乐,面包,尿布}
{牛奶,可乐,尿布}
{牛奶,面包,可乐}
请按照步骤描述如何使用Apriori算法来找出频繁项集和关联规则。
4. 应用题
某电商网站的用户行为数据包括用户ID、商品ID、购买时间等字段,试设计一个数据挖掘任务,根据历史数据预测用户未来可能购买
的商品。
请描述具体的数据处理流程和算法选择,以及如何评估模型
的准确性。
5. 论述题
数据仓库和数据挖掘在实际应用中的价值和意义是什么?结合具体案例或行业来说明,并探讨未来数据仓库和数据挖掘的发展方向。
以上为数据仓库与数据挖掘考试试题的内容,希望您认真针对每个问题进行回答,考试时间为2小时,请自行安排时间和注意事项,祝您考试顺利!。
2022年武汉大学计算机科学与技术专业《数据库原理》科目期末试卷B(有答案)
2022年武汉大学计算机科学与技术专业《数据库原理》科目期末试卷B(有答案)一、填空题1、安全性控制的一般方法有____________、____________、____________、和____________视图的保护五级安全措施。
2、数据库内的数据是______的,只要有业务发生,数据就会更新,而数据仓库则是______的历史数据,只能定期添加和刷新。
3、____________和____________一起组成了安全性子系统。
4、主题在数据仓库中由一系列实现。
一个主题之下表的划分可按______、______数据所属时间段进行划分,主题在数据仓库中可用______方式进行存储,如果主题存储量大,为了提高处理效率可采用______方式进行存储。
5、数据库管理系统的主要功能有______________、______________、数据库的运行管理以及数据库的建立和维护等4个方面。
6、在VB 6.0中,已经用Adobel连接到数据库,并已绑定到数据库中的某个关系表,现要通过此控件向表中插入数据,需要用到Adobel.Recordset的_____方法和Update方法,使用Adobel.Recordset的_____方法可以使当前行指针在结果集中向前移动一行。
7、设在SQL Server 2000环境下,对“销售数据库”进行的备份操作序列如下图所示。
①出现故障后,为尽可能减少数据丢失,需要利用备份数据进行恢复。
首先应该进行的恢复操作是恢复_____,第二个应该进行的恢复操作是恢复_____。
②假设这些备份操作均是在BK设备上完成的,并且该备份设备只用于这些备份操作,请补全下述恢复数据库完全备份的语句RESTORE_____FROM BKWITH FILE=1,_____;8、关系模型由______________、______________和______________组成。
9、关系系统的查询优化既是关系数据库管理系统实现的关键技术,又是关系系统的优点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
武汉大学计算机学院
2014级研究生“数据仓库和数据挖掘”课程期末考试试题
要求:所有的题目的解答均写在答题纸上,需写清楚题目的序号。
每张答题纸都要写上姓名和学号。
一、单项选择题(每小题2分,共20分)
1. 下面列出的条目中,()不是数据仓库的基本特征。
B
A.数据仓库是面向主题的
B.数据仓库是面向事务的
C.数据仓库的数据是相对稳定的
D.数据仓库的数据是反映历史变化的
2. 数据仓库是随着时间变化的,下面的描述不正确的是()。
A.数据仓库随时间的变化不断增加新的数据内容
B.捕捉到的新数据会覆盖原来的快照
C.数据仓库随事件变化不断删去旧的数据内容C
D.数据仓库中包含大量的综合数据,这些综合数据会随着时间的变化不断地进行重新综合
3. 以下关于数据仓库设计的说法中()是错误的。
A
A.数据仓库项目的需求很难把握,所以不可能从用户的需求出发来进行数据仓库的设计,只能从数据出发进行设计
B.在进行数据仓库主题数据模型设计时,应该按面向部门业务应用的方式来设计数据模型
C.在进行数据仓库主题数据模型设计时要强调数据的集成性
D.在进行数据仓库概念模型设计时,需要设计实体关系图,给出数据表的划分,并给出每个属性的定义域
4. 以下关于OLAP的描述中()是错误的。
A
A.一个多维数组可以表示为(维1,维2,…,维n)
B.维的一个取值称为该维的一个维成员
C.OLAP是联机分析处理
D.OLAP是数据仓库进行分析决策的基础
5. 多维数据模型中,下列()模式不属于多维模式。
D
A.星型模式
B.雪花模式
C.星座模式
D.网型模式
6. 通常频繁项集、频繁闭项集和最大频繁项集之间的关系是()。
C
A.频繁项集⊂频繁闭项集⊂最大频繁项集
B.频繁项集⊂最大频繁项集⊂频繁闭项集
C.最大频繁项集⊂频繁闭项集⊂频繁项集
D.频繁闭项集⊂频繁项集⊂最大频繁项集
7. 决策树中不包含()结点。
C
A.根结点
B.内部结点
C.外部结点
D.叶结点
8. 下面选项中t不是s的子序列的是()。
C
A.s=<{2,4},{3,5,6},{8}> t=<{2},{3,6},{8}>
B.s=<{2,4},{3,5,6},{8}> t=<{2},{8}>
C.s=<{1,2},{3,4}> t=<{1},{2}>
D.s=<{2,4},{2,4}> t=<{2},{4}>
9. 前馈神经网络用于分类时,以下()是不合理的迭代结束条件。
D
A.前一周期所有的Δw ij都很小,小于某个指定的阈值
B.前一周期未正确分类的样本百分比小于某个阈值
C.超过预先指定的周期数
D.学习率小于某个阈值
10. 以下叙述中,()是错误的。
D
A.逻辑回归用于分析二分类或有次序的依变量和自变量之间的关系
B.SVM是一种基于分类边界的方法
C.朴素贝叶斯算法和树增强朴素贝叶斯算法是按照描述属性是否独立来划分的
D.以上都不对
二、(20分)假设某大型人事部门已有一个人事管理系统,包含如下数据表:
职工(编号,姓名,出生日期,工作地点,月工资,备注)
现要设计一个人事数据仓库,用于分析各地区(华北、华中、华东、…)、各年龄层次(老、中、青)的工资水平(高、中、低)等。
回答以下问题:
(1)根据你的思考设计该数据仓库的模式图,包含每个维表和事实表的结构。
(10分)(2)指出你设计的数据仓库属于哪种模式。
(5分)
(3)由[出生日期,工作地点,月工资]的基本方体开始,求华东地区的青年职工中高收入的人数,应当执行哪些OLAP操作?(5分)
三、(20分)有一个如表1所示的事务数据库,设最小支持度为40%,最小置信度为80%。
表1 一个事务数据库
回答以下问题:
(1)采用Apriori算法求出所有的频繁集。
要求给出求解过程。
(15分)
(2)求出所有与元规则“item1∧item2→item3”相匹配的强关联规则。
(5分)
四、(15分)对于如表2所示的决策表(U,C∪D),C={a,b,c,d},D={e},回答以下问题:
(1)求U/C和U/D。
(5分)
(2)求POS C(D),该决策表是否为一致(或协调)决策表?(5分)
(3)采用分辨矩阵求其所有条件属性约简和核。
(5分)
表2 一个决策表
五、(25分)回答以下关于聚类的问题:
(1)k-中心点算法和k-均值算法相比有什么优点?(5分)
(2)BIRCH算法是什么类型的聚类算法?通常采用簇的聚类特征为CF=(N,LS,SS),设置这样的聚类特征有什么好处?(10分)
(3)什么是离群点?简述将DBSCAN算法用于离群点检测的基本过程。
(10分)。