《大数据结构》算术表达式求值
数据结构表达式求值实验报告

竭诚为您提供优质文档/双击可除数据结构表达式求值实验报告篇一:数据结构实验二——算术表达式求值实验报告《数据结构与数据库》实验报告实验题目算术表达式求值学院:化学与材料科学学院专业班级:09级材料科学与工程系pb0920603姓学邮名:李维谷号:pb09206285箱:指导教师:贾伯琪实验时间:20XX年10月10日一、需要分析问题描述:表达式计算是实现程序设计语言的基本问题之一,它的实现是栈的应用的一个典型例子。
设计一个程序,演示通过将数学表达式字符串转化为后缀表达式,并通过后缀表达式结合栈的应用实现对算术表达式进行四则混合运算。
问题分析:在计算机中,算术表达式由常量、变量、运算符和括号组成。
由于不同的运算符具有不同的优先级,又要考虑括号,因此,算术表达式的求值不可能严格地从左到右进行。
因而在程序设计时,借助栈实现。
设置运算符栈(字符型)和运算数栈(浮点型)辅助分析算符优先关系。
在读入表达式的字符序列的同时完成运算符和运算数的识别处理,然后进行运算数的数值转换在进行四则运算。
在运算之后输出正确运算结果,输入表达式后演示在求值中运算数栈内的栈顶数据变化过程,最后得到运算结果。
算法规定:输入形式:一个(:数据结构表达式求值实验报告)算术表达式,由常量、变量、运算符和括号组成(以字符串形式输入)。
为使实验更完善,允许操作数为实数,操作符为(、)、.(表示小数点)、+、-、*、/、^(表示乘方),用#表示结束。
输出形式:演示表达式运算的中间结果和整个表达式的最终结果,以浮点型输出。
程序功能:对实数内的加减乘除乘方运算能正确的运算出结果,并能正确对错误输入和无定义的运算报错,能连续测试多组数据。
测试数据:正确输入:12*(3.6/3+4^2-1)#输出结果:194.4无定义运算:12*(3.6/(2^2-4)+1)#输出结果:表达式出错,除数为0,无意义错误输入:12+s#输出结果:eRRoR!二、概要设计拟采用两种类型的展分别对操作数和操作符进行操作。
数据结构——算术表达式求值算法.doc

数据结构——算术表达式求值算法.沈阳航空航天大学课程设计报告课程设计名称:数据结构课程设计课程设计题目:算术表达式求值算法院(系):计算机学院专业:计算机科学与技术班级:学号:姓名:指导教师:丁国辉完成日期:XXXX年01月11日word教育资料.目录第1章概要设计11.1题目的内容与要求11.2总体结构1第2章详细设计32.1栈的顺序存储模块32.2进栈模块32.3出栈模块42.4运算模块42.5判断优先级模块52.6处理表达式主体模块6第3章调试分析8第4章运行结果9参考文献11附录(程序清单)12word教育资料.第1章概要设计1.1题目的内容与要求内容:设计程序,其能够求解任意给定算数表达式的值,算数表达式中的操作符来自于集合{+,-,*,\},表达式允许包括小括号“()”,表达式的输入以“#”作为结束标志。
要求:1) 利用栈结构实现表达式求值算法,即在约定的条件下,正确输入表达式,经过程序的运行之后,给出表达式的值;2) 系统利用C语言实现;3) 独立完成系统的设计、编码和调试。
1.2总体结构本程序主要分为六个模块(主要算法模块图见图1.1):栈的顺序存储模块、进栈模块、出栈模块、运算模块、判断优先级模块、处理表达式主体模块。
栈的顺序存储模块:分别建立两个栈,第一个用来存储运算符,第二个是用来存储数字。
进栈模块:运算符和数字分别存储在运算符栈和数字栈中,以便运算时的调用。
出栈模块:由于运算的需要,就必须把运算符和数字分别从运算符栈和数字栈中取出来。
运算模块:程序在遇到运算符的时候,根据此模块的要求进行运算。
判断优先级模块:找出栈顶算符和即将入栈算符的对应的下标,然后根据算符间的优先关系表判断出算符的优先关系。
处理表达式主体模块:结合运算模块和判断优先级模块,对表达式进行系统处理,求出算数表达式的值。
算术表达式求值算法出栈模块判断优先级模块处理表达式主体模块栈的顺序存储模块运算模块进栈模块图 1.1 主要算法模块图.第2章详细设计在本次课程设计中,我们用到了栈这个重要的数据结构。
数据结构-算术表达式求值(含需求分析和源代码)

需求分析(附代码)一、需求分析(1)首先定义两个栈OPTR、OPND,栈OPTR用于存放运算符,栈OPND 用于存放操作数;定义一个一维数组expr【】存放表达式串。
(2)主函数主要包括两部分:(1)判断运算符优先权,返回优先权高的;(2)操作函数。
(3)开始将‘#’入操作符栈,通过一个函数来判别算术运算符的优先级。
且规定‘#’的优先级最低。
在输入表达式的最后输入‘#’,代表表达式输入结束。
在表达式输入过程中,遇操作数则直接入栈。
遇到运算符则与栈顶运算符比较优先级,当前运算符优先级高(前面的运算还不应执行)则当前运算符入栈,扫描下一符号;否则栈顶运算符出栈,两操作数出栈,进行运算,所得结果入数栈,重新比较当前运算符(注意当前运算符未变)与新栈顶运算符。
如此重复直到栈顶运算符与当前符号均为‘#’,运算结束。
(4)最初实现的加、减、乘、除及带小括号的基本运算,但考虑到实用性,后来的设计中有加上了乘方运算。
在乘方运算中借用了C库中自带的乘方函数pow。
二、概要设计1、设定栈的抽象数据类型定义:ADT Stack {数据对象:D={ ai | ai∈ElemSet, i=1,2,...,n,n≥0 }数据关系:R1={ <ai-1, ai >| ai-1, ai∈D, i=2,...,n }约定an端为栈顶,a1端为栈底。
基本操作:InitStack(&S)操作结果:构造一个空栈S。
DestroyStack(&S)初始条件:栈S已存在。
操作结果:栈S被销毁。
StackEmpty(S)初始条件:栈S已存在。
操作结果:若栈S为空栈,则返回TRUE,否则FALE。
StackLength(S)初始条件:栈S已存在。
操作结果:返回S的元素个数,即栈的长度。
GetTop(S, &e)初始条件:栈S已存在且非空。
操作结果:用e返回S的栈顶元素。
ClearStack(&S)初始条件:栈S已存在。
数据结构实验二——算术表达式求值实验报告

《数据结构与数据库》实验报告实验题目算术表达式求值学院:化学与材料科学学院专业班级:09级材料科学与工程系PB0920603姓名:李维谷学ﻩﻩ号:PB09206285邮ﻩ箱:指导教师:贾伯琪实验时间:2010年10月10日一、需要分析问题描述:表达式计算就是实现程序设计语言得基本问题之一,它得实现就是栈得应用得一个典型例子.设计一个程序,演示通过将数学表达式字符串转化为后缀表达式,并通过后缀表达式结合栈得应用实现对算术表达式进行四则混合运算。
问题分析:在计算机中,算术表达式由常量、变量、运算符与括号组成.由于不同得运算符具有不同得优先级,又要考虑括号,因此,算术表达式得求值不可能严格地从左到右进行。
因而在程序设计时,借助栈实现.设置运算符栈(字符型)与运算数栈(浮点型)辅助分析算符优先关系。
在读入表达式得字符序列得同时完成运算符与运算数得识别处理,然后进行运算数得数值转换在进行四则运算.在运算之后输出正确运算结果,输入表达式后演示在求值中运算数栈内得栈顶数据变化过程,最后得到运算结果。
算法规定:输入形式:一个算术表达式,由常量、变量、运算符与括号组成(以字符串形式输入)。
为使实验更完善,允许操作数为实数,操作符为(、)、、(表示小数点)、+、-、*、/、^(表示乘方),用#表示结束。
输出形式:演示表达式运算得中间结果与整个表达式得最终结果,以浮点型输出。
程序功能:对实数内得加减乘除乘方运算能正确得运算出结果,并能正确对错误输入与无定义得运算报错,能连续测试多组数据。
测试数据:正确输入:12*(3、6/3+4^2—1)#输出结果:194、4无定义运算:12*(3、6/(2^2—4)+1)#输出结果:表达式出错,除数为0,无意义错误输入:12+s#输出结果:ERROR!二、概要设计拟采用两种类型得展分别对操作数与操作符进行操作.程序中将涉及下列两个抽象数据类型:1、设定“操作数”得栈得抽象数据类型定义:ADT SqStack_f{ﻩ数据对象:D={ﻩ数据关系:R1={〈>|,,i=2,…,n}约定端为栈顶,端为栈底。
数据结构课程设计-表达式求值【完整版】

XXXXXX大学《数据结构》课程设计报告班级:学号:姓名:指导老师:目录一算术表达式求值一、需求分析二、程序得主要功能三、程序运行平台四、数据结构五、算法及时间复杂度六、测试用例七、程序源代码二感想体会与总结算术表达式求值一、需求分析一个算术表达式就是由操作数(operand)、运算符(operator)与界限符(delimiter)组成得。
假设操作数就是正整数,运算符只含加减乘除等四种运算符,界限符有左右括号与表达式起始、结束符“#”,如:#(7+15)*(23—28/4)#。
引入表达式起始、结束符就是为了方便.编程利用“算符优先法”求算术表达式得值.二、程序得主要功能(1)从键盘读入一个合法得算术表达式,输出正确得结果。
(2)显示输入序列与栈得变化过程。
三、程序运行平台Visual C++6、0版本四、数据结构本程序得数据结构为栈。
(1)运算符栈部分:struct SqStack //定义栈{char *base; //栈底指针char *top; //栈顶指针intstacksize; //栈得长度};intInitStack (SqStack &s) //建立一个空栈S{if (!(s、base= (char *)malloc(50*sizeof(char))))exit(0);s、top=s、base;s、stacksize=50;return OK;}char GetTop(SqStack s,char &e) //运算符取栈顶元素{if (s、top==s、base) //栈为空得时候返回ERROR{ﻩ printf("运算符栈为空!\n");ﻩ return ERROR;}elsee=*(s、top-1); //栈不为空得时候用e做返回值,返回S得栈顶元素,并返回OK returnOK;}int Push(SqStack&s,char e) //运算符入栈{if (s、top—s、base >= s、stacksize)ﻩ{printf("运算符栈满!\n");ﻩs、base=(char*)realloc(s、base,(s、stacksize+5)*sizeof(char));//栈满得时候,追加5个存储空间if(!s、base)exit (OVERFLOW);s、top=s、base+s、stacksize;s、stacksize+=5;}ﻩ*(s、top)++=e;//把e入栈ﻩreturn OK;}int Pop(SqStack &s,char &e) //运算符出栈{if (s、top==s、base) //栈为空栈得时候,返回ERROR{printf("运算符栈为空!\n”);ﻩ return ERROR;}else{ﻩﻩe=*-—s、top;//栈不为空得时候用e做返回值,删除S得栈顶元素,并返回OK return OK;}}int StackTraverse(SqStack&s)//运算符栈得遍历{ﻩchar *t;ﻩt=s、base;ﻩif (s、top==s、base){ﻩ printf(”运算符栈为空!\n”); //栈为空栈得时候返回ERRORreturn ERROR;}while(t!=s、top){ﻩﻩprintf(" %c",*t); //栈不为空得时候依次取出栈内元素t++;ﻩ}return ERROR;}(2)数字栈部分:struct SqStackn//定义数栈{int *base; //栈底指针int*top; //栈顶指针int stacksize; //栈得长度};intInitStackn (SqStackn &s) //建立一个空栈S{s、base=(int*)malloc(50*sizeof(int));if(!s、base)exit(OVERFLOW);//存储分配失败s、top=s、base;s、stacksize=50;return OK;}int GetTopn(SqStackn s,int&e) //数栈取栈顶元素{if(s、top==s、base){printf("运算数栈为空!\n");//栈为空得时候返回ERRORﻩ return ERROR;}elseﻩe=*(s、top-1);//栈不为空得时候,用e作返回值,返回S得栈顶元素,并返回OKreturnOK;}int Pushn(SqStackn &s,int e) //数栈入栈{if(s、top—s、base>=s、stacksize){ﻩﻩprintf("运算数栈满!\n");//栈满得时候,追加5个存储空间ﻩs、base=(int*)realloc (s、base,(s、stacksize+5)*sizeof(int));if(!s、base) exit (OVERFLOW);ﻩs、top=s、base+s、stacksize;//插入元素e为新得栈顶元素s、stacksize+=5;}*(s、top)++=e; //栈顶指针变化returnOK;}int Popn(SqStackn &s,int &e)//数栈出栈{ﻩif (s、top==s、base){ﻩ printf("运算符栈为空!\n");//栈为空栈得视时候,返回ERRORﻩ return ERROR;ﻩ}else{ﻩﻩe=*—-s、top;//栈不空得时候,则删除S得栈顶元素,用e返回其值,并返回OK ﻩreturnOK;}}int StackTraversen(SqStackn &s)//数栈遍历{ﻩint*t;ﻩt=s、base ;ﻩif(s、top==s、base)ﻩ{printf("运算数栈为空!\n”);//栈为空栈得时候返回ERRORﻩ return ERROR;ﻩ}ﻩwhile(t!=s、top)ﻩ{printf(” %d”,*t); //栈不为空得时候依次输出t++;}return ERROR;}五、算法及时间复杂度1、算法:建立两个不同类型得空栈,先把一个‘#’压入运算符栈。
(完整版)数据结构与算法表达式求值报告

模块
• 各个模块的主要功能: *Push(SC *s,char c):把字符压栈 *Push(SF *s,float f):把数值压栈 *Pop(SC *s):把字符退栈 *Pop(SF *s):把数值退栈 Operate(a,theta,b):根据theta对a和b进行'+' 、'-' 、'*' 、'/' 、'^'操作 In(Test,*TestOp):若Test为运算符则返回true,否则返回false ReturnOpOrd(op,*TestOp):若Test为运算符,则返回此运算符在数组中的下标 precede(Aop,Bop):根据运算符优先级表返回Aop与Bop之间的优先级 EvaluateExpression(*MyExpression):用算符优先法对算术表达式求值
c++;
后ቤተ መጻሕፍቲ ባይዱ表达式的计算机求值
• 与前缀表达式类似,只是顺序是从左至右
• 从左至右扫描表达式, • 遇到数字,将数字压入栈; • 遇到运算符,弹出栈顶的两个数,用运算符对它们做相应的计算
(次顶元素 operate with 栈顶元素),并将结果入栈; • 重复上述过程直到表达式最右端,最后运算得出的值即为表达式
SC *Push(SC *s,char c)
//SC类型的指针Push,返回p {
SC *p=(SC*)malloc(sizeof(SC));
p->c=c; p->next=s;
return p;
}
SF *Push(SF *s,float f) //SF类型的指针Push,返回p { SF *p=(SF*)malloc(sizeof(SF)); p->f=f; p->next=s; return p; }
表达式求值(数据结构)

结束算法,此时在OPND栈的栈顶得到 运算结果。
① 若ch是操作数,进OPND栈,从中缀表达式 取下一字符送入ch; ② 若ch是操作符,比较栈外icp(ch)的优先级和 栈内isp(OPTR)的优先级: 若icp(ch) > isp(OPTR),则ch进OPTR栈, 从中缀表达式取下一字符送入ch; 若icp(ch) < isp(OPTR),则从OPND栈退出 a2 和 a1 , 从 OPTR 栈 退 出 θ, 形 成 运 算 指 令 (a1)θ(a2),结果进OPND栈; 若icp(ch) == isp(OPTR) 且ch == “)”,则从 OPTR栈退出栈顶的“(”,对消括号,然后从 中缀表达式取下一字符送入ch;
优先级 操作符
1
单目-、!
2
*、/、%
3
+、-
4 <、<=、>、>=
5
==、!=
6
&&
7
||
一般表达式的操作符有4种类型:
1 算术操作符 如双目操作符(+、-、 *、/ 和%)以及单目操作符(-);
2 关系操作符 包括<、<=、==、!=、 >=、>。这些操作符主要用于比较;
3 逻辑操作符 如与(&&)、或(||)、非 (!);
38
icp (栈外) 0 8 6 4
21
isp叫做栈内(in stack priority)优先数。
icp叫做栈外(in coming priority)优先数。
操作符优先数相等的情况只出现在括号 配对或栈底的“;”号与输入流最后的“;” 号配对时。
数据结构表达式求值

数据结构表达式求值在计算机科学中,数据结构是组织和存储数据的方式,而表达式求值则是一个常见且重要的任务。
表达式求值可以帮助我们计算数学表达式的结果,无论是简单的四则运算,还是复杂的包含函数和变量的表达式。
让我们从一个简单的算术表达式开始,比如“2 +3 4”。
要计算这个表达式的值,我们不能简单地从左到右依次计算,因为乘法的优先级高于加法。
所以,正确的计算顺序应该是先计算 3 4 = 12,然后再计算 2 + 12 = 14。
为了能够正确地处理表达式中不同运算符的优先级,我们需要使用特定的数据结构和算法。
其中,栈(Stack)是一种非常有用的数据结构。
栈就像是一个只能从一端进出的容器,遵循“后进先出”(Last In First Out,LIFO)的原则。
在表达式求值中,我们可以使用两个栈,一个用来存储操作数(Operand Stack),另一个用来存储运算符(Operator Stack)。
当我们读取表达式中的数字时,将其压入操作数栈;当读取到运算符时,需要和运算符栈顶的运算符比较优先级。
如果当前运算符的优先级高于栈顶运算符,那么将其压入运算符栈;如果当前运算符的优先级低于或等于栈顶运算符,就从操作数栈中弹出相应数量的操作数,进行计算,将结果压回操作数栈,然后再将当前运算符压入运算符栈。
例如,对于表达式“2 +3 4”,我们首先读取到数字 2,将其压入操作数栈。
接着读取到“+”号,此时运算符栈为空,所以将“+”号压入运算符栈。
然后读取到数字 3,压入操作数栈。
再读取到“”号,由于“”号的优先级高于“+”号,将“”号压入运算符栈。
接着读取到数字 4,压入操作数栈。
此时,表达式已经读取完毕。
因为“”号的优先级高于“+”号,所以先从操作数栈中弹出 3 和 4 进行乘法运算,得到 12,将 12 压回操作数栈。
然后从运算符栈中弹出“+”号,从操作数栈中弹出 2 和 12 进行加法运算,得到 14,这就是表达式的最终结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实用标准文档二课程设计2——算术表达式求值一、需求分析二、程序的主要功能三、程序运行平台四、数据结构五、算法及时间复杂度六、测试用例七、程序源代码三感想体会与总结算术表达式求值一、需求分析一个算术表达式是由操作数(operand)、运算符(operator)和界限符(delimiter)组成的。
假设操作数是正整数,运算符只含加减乘除等四种运算符,界限符有左右括号和表达式起始、结束符“#”,如:#(7+15)*(23-28/4)#。
引入表达式起始、结束符是为了方便。
编程利用“算符优先法”求算术表达式的值。
二、程序的主要功能(1)从键盘读入一个合法的算术表达式,输出正确的结果。
(2)显示输入序列和栈的变化过程。
三、程序运行平台Visual C++ 6.0版本四、数据结构本程序的数据结构为栈。
(1)运算符栈部分:struct SqStack //定义栈{char *base; //栈底指针char *top; //栈顶指针int stacksize; //栈的长度};int InitStack (SqStack &s) //建立一个空栈S{if (!(s.base = (char *)malloc(50 * sizeof(char))))exit(0);s.top=s.base;s.stacksize=50;return OK;}char GetTop(SqStack s,char &e) //运算符取栈顶元素{if (s.top==s.base) //栈为空的时候返回ERROR{printf("运算符栈为空!\n");return ERROR;}elsee=*(s.top-1); //栈不为空的时候用e做返回值,返回S的栈顶元素,并返回OKreturn OK;}int Push(SqStack &s,char e) //运算符入栈{if (s.top-s.base >= s.stacksize){printf("运算符栈满!\n");s.base=(char*)realloc (s.base,(s.stacksize+5)*sizeof(char) ); //栈满的时候,追加5个存储空间if(!s.base) exit (OVERFLOW);s.top=s.base+s.stacksize;s.stacksize+=5;}*(s.top)++=e; //把e入栈return OK;}int Pop(SqStack &s,char &e) //运算符出栈{if (s.top==s.base) //栈为空栈的时候,返回ERROR{printf("运算符栈为空!\n");return ERROR;}else{e=*--s.top; //栈不为空的时候用e做返回值,删除S的栈顶元素,并返回OKreturn OK;}}int StackTraverse(SqStack &s) //运算符栈的遍历{char *t;t=s.base ;if (s.top==s.base){printf("运算符栈为空!\n"); //栈为空栈的时候返回ERRORreturn ERROR;}while(t!=s.top){printf(" %c",*t); //栈不为空的时候依次取出栈元素t++;}return ERROR;}(2)数字栈部分:struct SqStackn //定义数栈{int *base; //栈底指针int *top; //栈顶指针int stacksize; //栈的长度};int InitStackn (SqStackn &s) //建立一个空栈S{s.base=(int*)malloc(50*sizeof(int));if(!s.base)exit(OVERFLOW); //存储分配失败s.top=s.base;s.stacksize=50;return OK;}int GetTopn(SqStackn s,int &e) //数栈取栈顶元素{if (s.top==s.base){printf("运算数栈为空!\n"); //栈为空的时候返回ERRORreturn ERROR;}elsee=*(s.top-1); //栈不为空的时候,用e作返回值,返回S的栈顶元素,并返回OK return OK;}int Pushn(SqStackn &s,int e) //数栈入栈{if (s.top-s.base >=s.stacksize){printf("运算数栈满!\n"); //栈满的时候,追加5个存储空间s.base=(int*)realloc (s.base,(s.stacksize+5)*sizeof(int) );if(!s.base) exit (OVERFLOW);s.top=s.base+s.stacksize; //插入元素e为新的栈顶元素s.stacksize+=5;}*(s.top)++=e; //栈顶指针变化return OK;}int Popn(SqStackn &s,int &e) //数栈出栈{if (s.top==s.base){printf(" 运算符栈为空!\n"); //栈为空栈的视时候,返回ERRORreturn ERROR;}else{e=*--s.top; //栈不空的时候,则删除S的栈顶元素,用e返回其值,并返回OKreturn OK;}}int StackTraversen(SqStackn &s) //数栈遍历{int *t;t=s.base ;if (s.top==s.base){printf(" 运算数栈为空!\n"); //栈为空栈的时候返回ERRORreturn ERROR;}while(t!=s.top){printf(" %d",*t); //栈不为空的时候依次输出t++;}return ERROR;}五、算法及时间复杂度1、算法:建立两个不同类型的空栈,先把一个‘# ’压入运算符栈。
输入一个算术表达式的字符串(以‘#’结束),从第一个字符依次向后读,把读取的数字放入数字栈,运算符放入运算符栈。
判断新读取的运算符和运算符栈顶得运算符号的优先级,以便确定是运算还是把运算符压入运算符栈。
最后两个‘#’遇到一起则运算结束。
数字栈顶的数字就是要求的结果。
2、时间复杂度:O(n)数据压缩存储栈,其操作主要有:建立栈int Push(SeqStack *S, char x)入栈int Pop(SeqStack *S, char x)出栈。
以上各操作运算的平均时间复杂度为O(n),其主要时间是耗费在输入操作。
六、测试用例如图所示。
最终结果如图所示:七、源代码/********************************************************************************* *****************第七题算术表达式求值[问题描述]一个算术表达式是由操作数(operand)、运算符(operator)和界限符(delimiter)组成的。
假设操作数是正整数,运算符只含加减乘除等四种运算符,界限符有左右括号和表达式起始、结束符“#”,如:#(7+15)*(23-28/4)#。
引入表达式起始、结束符是为了方便。
编程利用“算符优先法”求算术表达式的值。
[基本要求](1)从键盘读入一个合法的算术表达式,输出正确的结果。
(2)显示输入序列和栈的变化过程。
********************************************************************************** *****************/#include <stdio.h>#include <string.h>#include <stdlib.h>#include <math.h>#include <conio.h>#include <ctype.h>#define OK 1#define ERROR 0#define STACK_INIT_SIZE 100//#define STACKINCREMENT 10//================================================= =======// 以下定义两种栈,分别存放运算符和数字//================================================= =======//*******************运算符栈部分*************************struct SqStack //定义栈{char *base; //栈底指针char *top; //栈顶指针int stacksize; //栈的长度};int InitStack (SqStack &s) //建立一个空栈S{if (!(s.base = (char *)malloc(50 * sizeof(char))))exit(0);s.top=s.base;s.stacksize=50;return OK;}char GetTop(SqStack s,char &e) //运算符取栈顶元素{if (s.top==s.base) //栈为空的时候返回ERROR{printf("运算符栈为空!\n");return ERROR;}elsee=*(s.top-1); //栈不为空的时候用e做返回值,返回S的栈顶元素,并返回OKreturn OK;}int Push(SqStack &s,char e) //运算符入栈{if (s.top-s.base >= s.stacksize){printf("运算符栈满!\n");s.base=(char*)realloc (s.base,(s.stacksize+5)*sizeof(char) ); //栈满的时候,追加5个存储空间if(!s.base) exit (OVERFLOW);s.top=s.base+s.stacksize;s.stacksize+=5;}*(s.top)++=e; //把e入栈return OK;}int Pop(SqStack &s,char &e) //运算符出栈{if (s.top==s.base) //栈为空栈的时候,返回ERROR{printf("运算符栈为空!\n");return ERROR;}else{e=*--s.top; //栈不为空的时候用e做返回值,删除S的栈顶元素,并返回OKreturn OK;}}int StackTraverse(SqStack &s) //运算符栈的遍历{char *t;t=s.base ;if (s.top==s.base){printf("运算符栈为空!\n"); //栈为空栈的时候返回ERRORreturn ERROR;}while(t!=s.top){printf(" %c",*t); //栈不为空的时候依次取出栈元素t++;}return ERROR;}//**********************数字栈部分***************************struct SqStackn //定义数栈{int *base; //栈底指针int *top; //栈顶指针int stacksize; //栈的长度};int InitStackn (SqStackn &s) //建立一个空栈S{s.base=(int*)malloc(50*sizeof(int));if(!s.base)exit(OVERFLOW); //存储分配失败s.top=s.base;s.stacksize=50;return OK;}int GetTopn(SqStackn s,int &e) //数栈取栈顶元素{if (s.top==s.base){printf("运算数栈为空!\n"); //栈为空的时候返回ERRORreturn ERROR;}elsee=*(s.top-1); //栈不为空的时候,用e作返回值,返回S的栈顶元素,并返回OKreturn OK;}int Pushn(SqStackn &s,int e) //数栈入栈{if (s.top-s.base >=s.stacksize){printf("运算数栈满!\n"); //栈满的时候,追加5个存储空间s.base=(int*)realloc (s.base,(s.stacksize+5)*sizeof(int) );if(!s.base) exit (OVERFLOW);s.top=s.base+s.stacksize; //插入元素e为新的栈顶元素s.stacksize+=5;}*(s.top)++=e; //栈顶指针变化return OK;}int Popn(SqStackn &s,int &e) //数栈出栈{if (s.top==s.base){printf(" 运算符栈为空!\n"); //栈为空栈的视时候,返回ERRORreturn ERROR;}else{e=*--s.top; //栈不空的时候,则删除S的栈顶元素,用e返回其值,并返回OKreturn OK;}}int StackTraversen(SqStackn &s) //数栈遍历{int *t;t=s.base ;if (s.top==s.base){printf(" 运算数栈为空!\n"); //栈为空栈的时候返回ERRORreturn ERROR;}while(t!=s.top){printf(" %d",*t); //栈不为空的时候依次输出t++;}return ERROR;}//================================================= =======// 以下定义函数//================================================= =======int Isoperator(char ch) //判断是否为运算符,分别将运算符和数字进入不同的栈{switch (ch){case '+':case '-':case '*':case '/':case '(':case ')':case '#':return 1;default:return 0;}}int Operate(int a, char op, int b) //运算操作{int result;switch(op){case '+':result=a+b;break;case '-':result=a-b;break;case '*':result=a*b;break;case '/':result=a/b;break;}return result;}char Precede(char ch1, char ch2) //运算符优先级的比较{char p;switch(ch1){case '+':case '-':if (ch2=='+'||ch2=='-'||ch2==')'||ch2=='#')p = '>'; //ch1运算符的优先级小于ch2运算符elsep = '<';break;case '*':case '/':if (ch2 == '(')p = '<';elsep = '>';break;case '(':if (ch2 == ')')p = '=';else if (ch2 == '#'){printf(" 表达式错误!运算符不匹配!\n") ;exit(0);}elsep = '<';break ;case ')':if (ch2 == '('){printf(" 表达式错误!运算符不匹配!\n") ;exit(0);}elsep = '>';break ;case '#':if (ch2 == ')'){printf(" 表达式错误!运算符不匹配!\n") ;exit(0);}else if (ch2 == '#')p = '=';elsep='<';break;}return p;}//================================================= =======// 以下是求值过程//================================================= =======int EvaluateExpression() //参考书p53算法3.4{int a, b, temp, answer;char ch,op,e;char *str;int j = 0;SqStackn OPND; //OPND为运算数字栈SqStack OPTR; //OPTR为运算符栈InitStack(OPTR);Push(OPTR,'#'); //,所以此栈底是'#',因为运算符栈以'#'作为结束标志InitStackn(OPND);// printf("\n\n按任意键开始求解:\n\n");// ch=getch();printf("\n请输入表达式并以'#'结束:\n");str =(char*)malloc(50*sizeof(char));gets(str);ch=str[j]; //ch是字符型的,而e是整型的整数j++;GetTop(OPTR,e); //e为栈顶元素返回值while (ch!='#' || e!='#'){if (!Isoperator(ch)) //遇到数字,转换成十进制并计算{temp=ch-'0'; //将字符转换为十进制数ch=str[j];j++;while(!Isoperator(ch)){temp=temp*10 + ch-'0'; //将逐个读入运算数的各位转化为十进制数ch=str[j];j++;}Pushn(OPND,temp);}else if (Isoperator(ch)) //判断是否是运算符,不是运算符则进栈switch (Precede(e,ch)){case '<' : Push(OPTR,ch); // 栈顶元素优先权低ch = str[j++];printf("\n\n 运算符栈为:\n"); //输出栈,显示栈的变化StackTraverse(OPTR);printf("\n 运算数栈为:\n");StackTraversen(OPND);break;case '=' : Pop(OPTR,op); // 脱括号并接收下一字符ch = str[j++] ;printf("\n\n 运算符栈为:\n");StackTraverse(OPTR);printf("\n 数栈为:\n");StackTraversen(OPND);break;case '>' : Pop(OPTR,op); //弹出最上面两个,并运算,把结果进栈Popn(OPND,b);Popn(OPND,a);Pushn(OPND,Operate(a,op,b));printf("\n\n 运算符栈为:\n");StackTraverse(OPTR);printf("\n 数栈为:\n");StackTraversen(OPND);}else{printf("您的输入有问题,请检查重新输入!");exit(0);}GetTop(OPTR,e); //取出运算符栈最上面元素是否是'#'} //whileGetTopn(OPND,answer); //已输出。