全国高中数学优秀课评选:《9.6空间向量的夹角和距离公式》教学设计教案或说明
用空间向量研究距离和夹角问题说课

用空间向量研究距离和夹角问题说课空间向量是指具有大小和方向的向量,通常用来描述物体在三维空间中的位置和运动。
在数学和物理学中,空间向量经常被用来研究距离和夹角的问题。
我将从距离和夹角两个方面来阐述空间向量的相关知识。
首先,让我们来谈谈空间向量的距离问题。
在三维空间中,两个点的距离可以通过它们对应的空间向量来计算。
假设有两个点A 和B,它们分别对应空间向量OA和OB,那么点A和点B之间的距离可以表示为向量AB的模长。
具体而言,向量AB的模长可以通过以下公式计算,|AB| = √((x_B x_A)^2 + (y_B y_A)^2 + (z_Bz_A)^2),其中(x_A, y_A, z_A)和(x_B, y_B, z_B)分别是点A和点B的坐标。
这个公式实质上就是三维空间中两点之间的距离公式,它利用空间向量的坐标表示来计算点之间的距离。
其次,让我们来探讨空间向量的夹角问题。
在三维空间中,两个向量的夹角可以通过它们的数量积来计算。
假设有两个向量a和b,它们的夹角θ可以通过以下公式计算,cosθ = (a·b) / (|a||b|),其中a·b表示a和b的数量积,|a|和|b|分别表示a和b的模长。
这个公式实质上就是利用数量积的定义来计算两个向量之间的夹角,从而可以通过空间向量的坐标表示来求解夹角问题。
总的来说,通过空间向量的研究,我们可以很好地解决距离和夹角问题。
通过对空间向量的坐标表示和数量积的运用,我们可以准确地计算两点之间的距离和两向量之间的夹角,这对于数学和物理学中的问题都具有重要的意义。
希望通过这样的说课,能够让学生更好地理解和运用空间向量的相关知识。
用空间向量研究距离、夹角问题(第一课时)-高中数学获奖教案

1.4.2用空间向量研究距离、夹角(第一课时)(人教A 版普通高中教科书数学选择性必修第一册第一章)一、教学目标1. 能利用投影向量得到点到直线的距离公式、点到平面的距离公式.2. 能用向量方法解决点到直线、平行线间、点到平面、直线到平面(直线与平面平行)、平行平面间的距离问题.3. 结合一些具体的距离问题的解决,体会向量方法在研究距离问题中的作用,提升学生的直观想象、逻辑推理、数学运算等素养.二、教学重难点1. (重点)利用投影向量推导点到直线的距离公式、点到平面的距离公式..2. (难点)利用投影向量统一研究空间距离问题.三、教学过程1.公式的推导1.1复习回顾【实际情境】如图,在空间中任取一点,作,.问题1:(1)怎样表示向量方向上的单位向量?(2)如何作出向量在向量方向上的投影向量?(3)怎样用单位向量表示向量在向量方向上的投影向量及投影向量的模?【活动预设】学生回忆已学的概念、讨论交流.【预设的答案】(1); (2)过点作垂直于直线,垂足为,向量即为向量在向量方向上的投影向量;(3),即,.【设计意图】投影向量的概念是一个比较抽象的概念,不易被学生理解,而本节课距离公式的推导主要依赖于投影向量.投影向量的几何意义、代数表示及模,既体现了几何直观,又体现了代数定量刻画,从而提供了研究距离的方法. 复习回顾求任意非零向量方向上的单位向O OM = a ON = b b u a b u a b ||b u =b M 1MM ON 1M 1OMab 1=cos=cos |)|(OM θθ |a |u |u u =a |u a u 1=()OM a u u 1||=||OM a u x量,及投影向量的相关知识点,以便于学生更好的参与后续公式的推导过程,以及对公式的理解,进而突破难点.1.2探究思考,提炼公式探究一:已知直线的单位方向向量,是直线上的定点,P 是直线外一点.如何利用这些条件求点到直线的距离?【活动预设】结合已有知识,小组讨论思考,每组选出代表回答. 连接,得到向量在直线直线上的投影向量,表示投影向量,求.进而利用勾股定理,可以求出点到直线的距离.【预设的答案】如图,设,则向量在直线上的投影向量.在中,由勾股定理,得.【设计意图】学生多思考,多发言,老师引导学生实现问题的转化,让学生经历公式的推导过程, 发展学生逻辑推理和数学运算的核心素养.问题2:若与直线垂直,点到直线【预设的答案】若与直线垂直,则.问题3:在立体几何图形中求解距离的问题时,已知条件中一般只会给出点以及直线,l u A l l P l AP APl AQAQ ||AQ P l PQ AP = a AP l |cos |cos |()AQ PAQ PAQ =∠=∠= a |u a |u |u a u u Rt AQP △PQ ==AP l P l AP l 0= a u ||||PA PQ ==P l那么点应该如何确定?【预设的答案】 点到直线的距离,即点到直线的垂线段的长度不会随着点的变化而变化,故点可以是直线上的任意一点.问题4:求解距离的过程中是否需要确定垂线段的垂足?【预设的答案】不需要,只需要参考向量和直线的单位方向向量.【设计意图】通过问题串,引导学生继续深入理解用空间向量的方法解决点到直线距离问题的方法,理解利用向量求解点到直线距离问题时,只需该点和直线上的任意一点确定的参考向量,不必确定垂足的位置,体会向量方法的的优越性.教师讲授:要理解公式中各字母的含义,明确点到直线的距离为参考向量的平方与投影向量的平方差的算术平方根.因此,求解点到直线距离问题时,只需直线的方向向量及直线上的任意一点,这样得到参考向量或, 再求得直线的单位方向向量带入公式即可.问题5:求点到直线距离的主要有哪些方法?【预设的答案】(1)作点到直线的垂线,点到垂足的距离即为点到直线的距离;(2)在三角形中用等面积法求解;(3)向量法,即点到直线的距离为参考向量的平方与投影向量的平方差的算术平方根.思考:类比点到直线的距离的求法,如何求两条平行线间的距离?【预设的答案】在其中一条直线上任取一点,将求两条平行直线之间的距离转化为求点到另一条直线的距离.【设计意图】根据已有知识类比学习,引导学生明确平行直线间的距离的求法:转化为一条直线上的任一点到另一条直线的距离,让学生感悟转化思想,化未知为已知.为后续把直线与平面间的距离、两个平行平面间的距离转化为点到平面的距离,在思想方法上做铺垫.A A A l P l P l A P l l l A AP PA P P2探究二 已知平面的法向量为,是平面内的定点,是平面外一点.过点作出平面的垂线,交平面于点.类比点到直线距离的研究过程,如何用向量表示?【预设的答案】如图,向量在直线上的投影向量是,且. 问题6:点到平面的距离应该怎样表示?【预设的答案】 . 【设计意图】 教师提出问题串,类比点到直线距离的研究过程,合作探究,得到点到平面的距离公式,让学生进一步体会平面的法向量在刻画平面、求距离中的作用.在求解点到平面的距离的过程中,平面的法向量的方向和法向量上投影向量的长度既体现了图形直观,又提供了代数定量刻画.在这个过程中,向量与起点无关的自由性也为求距离带来了便利.问题7: 在立体几何图形中求解距离的问题时,已知条件中一般只会给出点以及平面,那么点应该如何确定?求解距离的过程中是否需要找出点在平面内的投影以及垂线段?【预设的答案】点可以是平面内的任意一点.不需要找出点在平面内的投影以及垂线段.【活动预设】教师提出问题串,引导学生思考,加深对公式的理解,教师总结.αn A αP αP αl αQ AP QP APl QP |cos QP AP PAQ =∠ n ||n |P α|||||||||cos |||||AP QP AP PAQ ⋅=∠= n n n n P αA P αA αPα教师讲授:求解点到平面距离问题时,理解公式中各字母的含义,只需平面的法向量及平面内的任意一点,这样得到“参考向量”,明确点到平面的距离为参考向量与法向量数量积的绝对值与法向量的模之比,即参考向量与法向量方向上的单位向量的数量积取绝对值.【设计意图】 类比点到直线距离的研究方法,以类似的方法研究点到平面的距离,使学生学会距离公式的同时,体会数学中常见的研究问题的方法“类比”.思考:如果直线与平面平行,如何求直线与平面的距离?如何求两平行平面之间的距离?【预设的答案】 先证明直线与平面平行或面面平行,再转化为点到平面的距离.【设计意图】 通过对所提问题的思考,引导学生明确直线到平面的距离以及两平行平面的距离的求法:都可以转化为点到平面的距离.师生共析,将平行于平面的直线和两个平行平面间的距离转化为点到平面的距离,得到统一的向量表达式,进一步体会转化的思想.问题8:求点到平面的距离主要有哪些方法?【预设的答案】 (1)作点到平面的垂线,点与垂足的距离即为点到平面的距离. (2)在三棱锥中用等体积法求解. (3)向量法,即点到平面的距离为参考向量与法向量数量积的绝对值与法向量的模之比.2.初步应用,解决问题例1 如图,在棱长为1的正方体中,为线段的中点,为线段的中点.(1)求点到直线的距离;(2)求直线到平面的距离.P αααA l α1111ABCD A B C D -E 11A B F AB B 1AC FC 1AEC【活动预设】学生分析解题思路,教师给出解答示范.让学生注意到点在直线上,因此,可以选择作为参考向量.事实上,可以选择直线上的任意一点和确定“参考向量”,另外,让学生注意到平面的法向量不唯一.【预设的答案】解:以为原点, ,,所在直线为轴、轴、轴,建立如图所示的空间直角坐标系,则,,,,,,所以,,,,,. (1) 取,,则 ,. 所以,点到直线. (2) 因为,所以,又面,面,所以平面,所以点到平面的距离,即为直线到平面的距离.设平面的法向量为,则 所以 所以取,则,,所以,是平面的一个法向量,又因为, A 1AC AB 1AC F 1AEC 1D 11D A 11D C 1D D x y z (1,0,1)A (1,1,1)B (0,1,1)C 1(0,1,0)C 1(1,,0)2E 1(1,,1)2F (0,1,0)AB = 1(1,1,1)AC =-- 1(0,,1)2AE =- 11(1,,0)2EC =- 1(1,,0)2FC =- 1(0,,0)2AF = (0,1,0)AB == a 11||1,1,1)AC AC ==-- u 21=a ⋅=a u B 1AC ==11(1,,0)2FC EC ==- 1//FC EC FC ⊄1AEC 1EC ⊂1AEC //FC 1AEC F 1AEC FC 1AEC 1AEC (,,)x y z =n 10,0.AE EC ⎧⋅=⎪⎨⋅=⎪⎩ n n 10,210.2y z x y ⎧-=⎪⎪⎨⎪-+=⎪⎩2,.y z x z =⎧⎨=⎩1z =1x =2y =(1,2,1)=n 1AEC 1(0,,0)2AF =所以点到平面的距离为即直线到平面【设计意图】通过典型例题,使学生巩固并逐步掌握利用向量方法求空间距离的方法,体会向量方法再解决距离问题中的作用,渗透用空间向量解决立体几何问题的一般过程,并注意培养学生规范的解题能力.追问: 求两种距离的步骤是怎样的?【活动预设】学生结合具体实例及公式特征,尝试总结解题步骤,教师总结.【预设的答案】点到直线的距离 :第一步:建系,在直线上任取一点 (注:选择特殊便于计算的点),求“参考向量(或)”的坐标. 第二步: 依据图形先求出直线的单位方向向量.第三步:带入公式求解.点到面的距离 :第一步:建系,选择“参考向量”;第二步:确定平面的法向量;第三步: 带入公式求值.【设计意图】总结求解距离问题的步骤,培养学生抽象概括的数学素养.3. 梳理归纳,感悟本质思考:回顾这节课的学习,我们学习了哪些内容?用的是什么方法?【预设的答案】本节课我们一起应用空间向量及其运算研究了求空间中的距离问题,包括两点间的距离,点到直线的距离,平行直线之间的距离,点到平面的距离,直线到平面的距离,平行平面之间的距离等,结合投影向量、勾股定理以及向量数量积运算等,我们得到F 1AEC ||||AF ⋅== n n FC 1AEC P l l A AP PA l u P αAP αn了这些距离问题的计算公式,并通过例题的解决,体会了公式的使用,在很多问题中,我们需要建立空间直角坐标系,求出点的坐标,以及直线的方向向量、平面的法向量的坐标表示,代入公式进行计算.我们用类比和转化的研究方法,把要解决的五个距离问题转化为两个距离问题,几何问题转化为向量问题,求解距离转化为向量运算,在此过程中提升直观想象、数学运算和逻辑推理等数学学科核心素养.教师讲授:本节课的学习你体会到向量方法解决立体几何问题的“三步曲”吗?与用平面向量解决平面几何问题的 “三步曲”类似,我们可以得出用空间向量解决立体几何问题的 “三步曲”:(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面, 把立体几何问题转化为向量问题;(2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间的距离和夹角等问题;(3)把向量运算的结果“翻译”成相应的几何结论.四、课后作业1.在棱长为的正方体中,点到平面的距离等于_________;直线到平面的距离等于________;平面到平面的距离等于__________.2.已知直线过定点,且为其一个方向向量,则点到直线的距离为( )ABCD3.已知平面的一个法向量,点在平面内,则点到平面的距离为( )A .B .C .D . 4.如图,在棱长为的正方体中,求平面与平面的距离.11111ABCD A B CD -A 1B C CD1AB 1DA 1CB l (2,3,1)A (0,1,1)=n ()4,3,2P l α()2,2,1=--n ()1,3,0A -α()2,1,4P -α1038310311111ABCD A B C D -1A DB 11D CB【设计意图】作业中的4个题目,包括了求点到直线的距离、点到平面的距离、直线到平面的距离以及两平行平面间的距离等主要的距离问题,尤其突出训练了本节课的重点以及难点,即点到直线、点到平面的距离.这样可以使学生巩固课上所学习的知识,提升对公式的应用能力.。
空间向量的坐标运算-夹角和距离公式(教案说明)

空间向量的坐标运算-夹角和距离公式教案说明江西省宜丰中学熊星飞一、教材在本章节中的地位及作用1.向量的坐标运算是在空间向量的运算(加减法运算、实数与向量的积,空间向量的基本定理的基础上,用坐标对几何图形进行量化,通过对运算来掌握向量的关系和性质;2.向量的运夹角和距离公式是在空间向量的坐标及坐标运算的基础上,对向量的夹角和距离进行的一种运算,是空间解析几何的基础;3.本节内容渗透了转化、化归、数形结合数学思想,是向学生进行数学思想方法教学的好教材,也是培养学生观察、作图等能力的好教材;4.本节内容与实际问题联系紧密,有利于培养学生抽象思维及空间想象的能力。
5.课时安排空间向量的坐标运算共分4个课时(第一课时:空间直角坐标系;第二课时:空间向量的直角坐标运算;第三课时:空间向量夹角与距离公式的掌握及简单运用;第四课时:空间向量的坐标运算综合运用。
本节课是第三课时(夹角与距离公式的掌握及简单运用)二、教学目标1.知识目标:能把实际问题转化为立体几何的问题,立体几何问题再用坐标运算进行解决;2.能力目标:培养学生观察、联想以及作图的能力,渗透化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力.3.情感目标:结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生勇于创新.4.知识教学点(1).掌握空间向量的模长公式、夹角公式、两点间的距离公式;(2).会根据向量的坐标判断两个向量共线或垂直;(3).会运用向量的夹角公式求异面直线所成的角。
三、教学重点与难点1.教学重点:模长公式、夹角公式、两点间的距离公式及其运用。
2.教学难点:异面直线所成的角与空间两向量夹角的关系。
四、教学方法与手段1.教学方法为了激发学生学习的主体意识,面向全体学生,使学生在获取知识的同时,各方面的能力得到进一步的培养.根据本节课的内容特点,本节课采用对比学习、启发引导、讲练结合的教学方法,着重于培养学生分析、解决实际问题的能力以及良好的学习品质。
空间向量高中数学教案

空间向量高中数学教案
一、教学目标:
1.认识空间向量的基本概念和性质;
2.掌握空间向量的表示方法和运算规律;
3.能够应用空间向量解决实际问题。
二、教学重点:
1.空间向量的定义和表示方法;
2.空间向量的加法和减法;
3.空间向量的数量积和夹角公式。
三、教学内容:
1.空间向量的概念和表示方法:
(1)空间向量的定义;
(2)空间向量的表示方法:坐标表示、分量表示;
2.空间向量的加法和减法:
(1)向量的加法和减法规律;
(2)向量相等的条件;
3.空间向量的数量积和夹角公式:
(1)向量的数量积定义和性质;
(2)向量夹角的余弦公式。
四、教学过程:
1.导入:通过一个实际问题引入空间向量的概念;
2.讲解:讲解空间向量的定义、表示方法、运算规律和性质;
3.练习:让学生进行一些空间向量的计算练习;
4.拓展:引导学生应用空间向量解决实际问题;
5.总结:对本节课所学内容进行总结回顾。
五、课后作业:
1.完成课上未完成的练习题;
2.阅读相关教材知识,做一些拓展练习;
3.思考并总结今天所学内容,准备下节课的复习。
六、教学反思:
通过本节课的教学设计,学生能够掌握空间向量的基本概念和运算方法,锻炼学生的空间思维能力,提高解决问题的能力。
在教学过程中要注重引导学生主动思考和探究,激发学生学习的兴趣和积极性。
用空间向量研究距离、夹角问题(第二课时)-高中数学获奖教案

1.4.2用空间向量研究距离、夹角问题(第二课时)(人教A 版普通高中教科书数学选择性必修第一册第一章)一、教学内容两条直线所成的角,直线与平面所成角,两个平面的夹角.二、教学目标1、理解两异面直线所成角与它们的方向向量之间的关系,会用向量方法求两异面直线所成角.2、理解直线与平面所成角与直线的方向向量和平面的法向量夹角之间的关系,会用向量方法求直线与平面所成角.3、理解二面角大小与两个平面法向量夹角之间关系,会用向量方法求二面角的大小.4、让学生体验向量方法在解决立体几何问题中的作用.5、通过本节学习,提升学生的直观想象、数学运算、逻辑推理和数学抽象等数学学科核心素养.三、教学重点与难点重点:利用向量的数量积研究两条直线所成的角、直线与平面所成角、两个平面的夹角.难点:根据问题的条件选择适当的基底.四、教学过程设计导入问题:与距离一样,角度是立体几何中的另一类度量问题.本质上,角度是对两个方向的差的度量,向量是有方向的量,所以利用向量研究角度问题有其独特的优势.本节我们用空间向量研究夹角问题,你认为可以按怎样的顺序展开研究.师生活动:学生独立思考、小组讨论后,通过全班讨论达成对研究路径的共识,即:直线与直线所成的角直线与平面所成的角平面与平面所成的角.设计意图:明确研究路径,为具体研究提供思路.1.典型例题,求解直线与直线所成的角例7 如图1.4-19,在棱长为1的正四面体(四个面都是正三角形)中,分别为的中点,求直线和夹角的余弦值.用向量方法求解几何问题时,首先要用向量表示问题中的几何元素.对于本问题,如何用向量表示异面直线和?它们所成的角可以用向量之间的夹角表示吗?追问1:这个问题的已知条件是什么?根据以往的经验,你打算通过什么途径将这个立体几何问题转化成向量问题?师生活动:首先教师分析题目的条件:已知正四面体的棱长和棱与棱之间夹角,和是中线,其模长可求,与其他棱的夹角也是确定的,这些条件都有利用向量基底的选取.接着在学生回答的基础上,教师补充后形成共识:求异面直线和的夹角时,只要用基底向量表示它们的方向即可,这样,异面直线和的夹角,可以转化为求向量与向量的夹角.为此,选择为基底并表示向量,. 在此基础上,将此问题推广到一般,学生思考后作答,教师对学生的回答给予补充.梳理出将立体几何问题转化成向量问题的途径:途径1:通过建立一个基底,用空间向量表示问题中涉及的点、直线、平面等元素,从而把立体几何问题转化成向量问题;途径2:通过建立空间直角坐标系,用坐标表示问题中涉及的点、直线、平面等元素,从而把立体几何问题转化成向量问题.实际上,空间直角坐标系也是基底,是“特殊”的基底.→→ABCDM N ,BC AD , AM CN AM CN AM CN AM CN AM CN MA CN {},,CA CB CD MA CN追问2:请你通过向量运算,求出向量,夹角的余弦值,进而求出直线和夹角的余弦值. 师生活动:学生利用向量的数量的数量积求出向量,夹角的余弦值,从来解决问题. 解:化为向量问题 以为基底,则, 设向量夹角为,则直线和夹角的余弦值为.进行向量运算, 而都是正三角形,所以, 所以,, 回到图形问题所以,直线和夹角的余弦值为. 小结:研究立体几何问题要注意转化思想,将立体几何问题化为向量问题进行向量运算回到图形,解决立体几何问题.追问3:回顾问题1的求解过程,你能归纳出利用向量求空间直线与直线所成的角的一般方法吗? 师生活动:教师引导学生梳理,得出:将直线与直线所成的角转化成直线的方向向量的夹角,进而利用向量的数量积求解.也就是说,若异面直线所成的角为,其方向向量分别为,则 在此基础上,教师板书下面的过程,让学生进一步认识用向量方法解决几何问题的基本步骤:几何问题向量问题向量运算几何解释设计意图:通过用向量方法求解一个空间直线与直线所成角的具体问题,归纳得出用向量方法求解直线与直线所成角的角度的一般方法.MA CN AM CN MA CN {,}CA CB CD,12MA CA CM CA CB =-=- 11.22CN CA CD =+ MA CN 和θAM CN θcos CN MA ⋅= 1122CA CD ⎛⎫+⋅ ⎪⎝⎭ 12CA CB ⎛⎫- ⎪⎝⎭211112424CA CA CB CD CA CD CB =-⋅+⋅-⋅ 2181418121=-+-=ACD ABC ∆∆和MA CN == 2cos 3θAM CN 32⇒⇒12,l l θ,u v cos cos ,.u v u v u v u v u vθ⋅⋅=<>== →→→2.类比研究,求解直线与平面、平面与平面所成的角问题2:你能用向量方法求问题1中的直线与平面所成的角吗?一般地,如何求直线和平面所成的角?追问:这个问题的已知条件是什么?如何将几何问题转化成向量问题?师生活动:教师引导学生分析已知条件,明确平面的法向量在解决直线与平面所成角的问题中的关键作用,将直线与平面所成的角转化成直线的一个方向向量与平面的一个法向量的夹角,进而利用向量的数量积求解.进一步地,师生共同给出求直线与平面所成角的步骤和方法.即将直线与平面所成的角转化为直线的方向向量与平面的法向量的夹角,从而得到直线与平面所成角的一般表达式 其中,为直线的方向向量,为平面的法向量.设计意图:通过本问题的解决,让学生体会法向量在求解直线与平面所成角时的关键作用,并得出一般的求解直线和平面所成角的量表达式.问题3:类比已有的直线、平面所成角的定义,你认为应如何合理定义两个平面所成的角?进一步地,如何求平面和平面的夹角?师生活动:教师给出两个相交平面的图形,让学生类比已有的空间基本元素所成角的定义,给两个平面所成的角下定义.教师可以追问学生:“角度是度量方向差异的量,那么决定平面方向的是什么?”从而启发学生用两个平面的法向量刻画两个平面所成的角.在学生讨论、交流的基础上,教师小结如下:如右图,平面和平面相交,形成四个二面角,我们把这四个二面角中不大于的二面角称为平面和平面的夹角. 类似两条异面直线所成的角,若平面,的法向量分别是,,则平面和平面的夹角即为向量和的夹角或其补角.设平面和平面的夹角为,则 追问1:如何求平面的法向量?师生活动:学生思考、回答后,师生共同总结求平面法向量的方法:在平面内找两个不共线的向量和,设平面的法向量为,则 AB BCD AB BCD AB BCD sin cos ,.u n u n u n u n u nα⋅⋅=<>== u n αβ090αβαβ2n1n αβ1n 2n αβθ1212121212cos cos ,.n n n n n n n n n n θ⋅⋅=<>== a b (),,n x y z = 0,0.n a n b ⎧⋅=⎪⎨⋅=⎪⎩根据这个不定方程组,可以求得一个法向量. 教师在学生回答的基础上进一步指出,求得的是法向量中的一个,不是所有的法向量,但所有法向量可以用表示,即.追问2:你能说说平面与平面的夹角与二面角的区别和联系吗?师生活动:学生思考、回答,教师与学生共同总结.二面角的大小是指其两个半平面的张开程度,可以用其平面角的大小来定义,它的取值范围是;而平面和平面的夹角是指平面和平面相交,形成的四个二面角中不大于的二面角.设计意图:引导学生类比已有的空间基本元素所成角的定义,建立平面与平面的夹角的概念,并进一步利用向量方法得到求解两个平面夹角的表达式.结合法向量的求解,使学生体验不定方程组的“通解”和“特解”之间的关系,体会一般性寓于特殊性之中的道理.通过对平面与平面的夹角和二面角的辨析,使学生对平面与平面的夹角的理解更加深入.3.巩固应用,解决立体几何中的角度问题例8 如图1.4-22,在直棱柱中,,,,为中点,分别在棱,上,,.求平面与平面夹角的余弦值.师生活动:教师引导学生先分析题意,明确解题思路,再让学生独立解答,教师根据学生的解答板书补充,其中重点关注法向量的求法.为了保证解题规范,教师展示学生的解答,并适当完善学生板书.设计意图:通过例题巩固平面与平面所成的角的求解方法,进一步理解法向量的夹角和两个平面所成角的关系,进一步体会向量方法解决立体几何问题的一般步骤.分析:平面与平面夹角可以转化为平面与平面法向量的夹角.解:转化为向量问题以为坐标原点,所在直线为建立空间直角坐标系,设平面法向量为,平面法向量为,平面与平面夹角即为,的夹角或其补角.进行向量运算平面的一个法向量为.()0000,,n x y z = ()0000,,n x y z = (),,n x y z = ()0000,,n x y z = 0n kn = θ0θπ≤≤αβαβ090111C B A ABC -2==CB AC 31=AA 090=∠ACB P BC R Q ,1AA 1BB AQ Q A 21=12RB BR =PQR 111C B A PQR 111C B A PQR 111C B A 1C C C B C A C 11111,,轴轴、轴、z y x 111C B A 1n PQR 2n PQR 111C B A 1n 2n 111C B A )1,0,0(1=n由题意,,,,,.设,则即 所以 令得,则 回到图形问题设平面与平面夹角为,则, 即平面与平面. 小结:用空间向量解决立体几何问题的“三部曲”:建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、线、面,把立体几何问题转化为向量问题;通过向量的运算,研究点、线、面之间的位置关系和它们之间距离、夹角等问题;把向量运算的结果“翻译”成相应的几何问题.4.归纳小结教师引导学生回顾本节课的学习内容,回答下面的问题:(1)这节课主要学习了哪些内容?(2)研究这些内容主要用了什么方法?(3)用向量方法解决立体几何问题的一般步骤是什么?设计意图:师生共同小结本节课学习的内容和学习过程,通过小结,让学生体会到,直线、平面间的角度刻画了它们的方向的差异,因而可用方向向量或法向量“代表”直线或平面,从而将直线、平面间的角度问题转化为相应的求相应的方向向量、法向量的夹角.进一步体会用向量方法解决立体几何问题的一般步骤.5.布置作业教科书习题1.4第9,10题.五、目标检测设计教科书练习第1,2,3,4题.设计意图:考查利用向量方法解决直线与直线、直线与平面、平面与平面所成角的能力.)310(,,P )202(,,Q )120(,,R )112(--=,,PQ )210(-=,,PR 2(,,)n x y z =⎪⎩⎪⎨⎧=⋅=⋅,0,022PR n PQ n ⎩⎨⎧=-=--,02,02z y z y x ⎪⎩⎪⎨⎧==,2,23z y z x 2z =)2,4,3(2=n 121212cos ,||||n n n n n n ⋅<>===⋅PQR 111C B A θ12cos cos ,n n θ=<>=PQR 111C B A 38P。
空间向量的夹角和距离公式(讲课)

| AM| 5 30 6.故 点 A到 直 线 EF的 距 离 为6.
2 10 4
4
课堂练习:
1 . 若 正 方 体 A B C D A 1 B 1 C 1 D 1 的 边 长 为 1 , E , F 分 别 是
C C 1 , D 1 A 1 的 中 点 . 求 ( 1 ) < F E , F A , ( 2 ) 点 A 到 直 线 E F 的 距 离 .
四、课堂小结:
1.基本知识: (1)向量的长度公式与两点间的距离公式; (2)两个向量的夹角公式。 2.思想方法:用向量计算或证明几何问题 时,可以先建立直角坐标系,然后把向量、点坐 标化,借助向量的直角坐标运算法则进行计算或 证明。
作业与练习
P74:1、2、4
A B (x 2 x 1,y 2 y 1,z2 z 1 )
|A B |A BA B(x 2 x 1 )2 (y 2y 1 )2 (z2 z1 )2
d A ,B(x 2 x 1 )2 (y 2y 1 )2 (z2 z1 )2
(2).两个向量夹角公式
cosa,b ab
a1b1a2b2a3b3
;
|a||b| a12a22a32 b12b22b32
cosFE,FA 30.
4
10
课堂练习:
1 . 若 正 方 体 A B C D A 1 B 1 C 1 D 1 的 边 长 为 1 , E , F 分 别 是
C C 1 , D 1 A 1 的 中 点 . 求 ( 1 ) < F E , F A , ( 2 ) 点 A 到 直 线 E F 的 距 离 .
D
O
A
x
C
y
|BE1|
1 47,|DF1|
高中数学教学备课教案向量的应用空间向量的夹角和平面与空间曲面的位置关系

高中数学教学备课教案向量的应用空间向量的夹角和平面与空间曲面的位置关系高中数学教学备课教案向量的应用:空间向量的夹角和平面与空间曲面的位置关系一、引言数学中的向量概念是重要且基础的内容之一,在高中数学教学中,向量的应用更是不可或缺的一部分。
本教案将针对向量的应用进行备课,并重点探讨空间向量的夹角以及平面与空间曲面的位置关系。
二、空间向量的夹角1. 概念解析空间中的两个向量之间可以通过夹角进行描述。
向量的夹角是指两个向量之间的夹角,可以通过向量的点乘和模的乘积来求解。
2. 夹角的定义设有两个非零向量u和v,它们之间的夹角θ满足cosθ = (u·v) / (|u|·|v|)。
3. 夹角的性质- 夹角θ的范围为0 ≤ θ ≤ π。
- 夹角θ为锐角时,cosθ > 0;夹角θ为直角时,cosθ = 0;夹角θ为钝角时,cosθ < 0。
- 若向量u和v平行,则夹角θ为0或π。
4. 夹角的应用夹角的概念在几何学和物理学中有广泛的应用。
例如,在力学中,如果两个力的夹角为0,则它们的方向相同;如果夹角为π,则它们的方向相反。
三、平面与空间曲面的位置关系1. 平面与曲面的交线平面和曲面之间的交线是理解平面与曲面的位置关系的重要概念之一。
2. 平面与柱面的位置关系- 当平面与柱面平行时,它们之间没有交点。
- 当平面与柱面相交时,它们的交线在柱面上。
3. 平面与锥面的位置关系- 当平面与锥面平行时,它们之间没有交点。
- 当平面与锥面相交时,它们的交线在锥面上。
4. 平面与球面的位置关系- 当平面与球面相切时,它们的交线是球面上的一条切线。
- 当平面与球面相交时,它们的交线是球面上的一条曲线。
四、教学案例为了加深学生对空间向量的夹角和平面与空间曲面的位置关系的理解,可以通过以下教学案例进行讲解和演示。
教学案例1:给定一个平面和一个空间曲面,让学生利用向量的知识求解它们的位置关系,并用图形进行说明。
高中高三数学《空间向量及其应用》教案、教学设计

1.教学活动设计:将学生分成若干小组,针对空间向量相关知识,设计具有挑战性的问题,让学生进行小组讨论。
2.教学内容:
-设计问题:如空间向量的线性组合、线性相关性的判断等;
-小组讨论:学生在小组内部分享观点,共同探讨解决问题的方法。
3.教师引导:在学生讨论过程中,教师巡回指导,关注学生的讨论进展,适时给予提示和建议。
-学生自主总结:让学生用自己的语言描述空间向量的概念、坐标表示、线性运算等。
3.教师引导:引导学生从知识、方法和情感等方面进行总结,提升学生的综合素质。
4.学生参与:学生积极参与总结过程,分享自己的学习心得和感悟,为下一节课的学习做好准备。
五、作业布置
为了巩固学生对空间向量的理解,提升学生的解题能力,特布置以下作业:
作业要求:
1.学生需认真对待每一次作业,确保作业质量;
2.提交作业前,相互检查,确保答案正确,书写规范;
3.教师将对作业进行认真批改,并及时给予反馈,学生应认真对待教师的评价和建议;
4.鼓励学生在完成作业的过程中,积极思考、探索,形成自己的解题思路和方法。
2.增强学生解决问题的信心,让学生在面对复杂问题时,能够运用所学知识进行分析、求解;
3.培养学生良好的学习习惯,如预习、复习、总结等,提高学习效率;
4.培养学生的团队合作精神,使学生认识到团队合作的重要性,学会与他人共同解决问题。
二、学情分析
本章节面向的是高中三年级学生,他们在前两年的数学学习中,已经掌握了平面向量的基本概念与运算,具备了一定的逻辑思维能力和空间想象力。在此基础上,学生对空间向量的学习具备以下特点:
4.学生参与:让学生观察三维坐标系,尝试用自己的语言描述空间向量的特点。在此基础上,引导学生讨论空间向量在现实生活中的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.6空间向量的夹角和距离公式
三维目标:
知识与技能: ⒈使学生知道如何建立空间直角坐标系,掌握向量的长度公式、
夹角公式、两点间距离公式、中点坐标公式,并会用这些公式
解决有关问题;
⒉使学生经历对从生活中如何抽象出数学模型的过程,从而提高
分析问题、解决问题的能力.
过程与方法: 通过采用启发探究、讲练结合、分组讨论等教学方法使学生在
积极活跃的思维过程中,从“懂”到“会”到“悟”.
情感、态度和价值观:⒈通过自主探究与合作交流的教学环节的设置,激发学生的学习
热情和求知欲,充分体现学生的主体地位;
⒉通过数形结合的思想和方法的应用,让学生感受和体会数学的
魅力,培养学生“做数学”的习惯和热情.
教学重点:夹角公式、距离公式.
教学难点:数学模型的建立.
关键: 将生活中的问题转化为数学问题,建立恰当的空间直角坐标系,正确写出空
间向量的坐标.
教具准备:多媒体投影,实物投影仪.
教学过程:
(一) 创设情境,新课导入
2008年5月16日,南昌可以说是万人空巷,大家都把自己的爱国热情聚集在圣火的传递上,让我们值得骄傲的是火炬传递中的一站就是我们的南昌大学,其中途经我市雄伟而壮观的生米大桥,为记录传递过程,我校派了小记者在船上进行全景拍摄,出现了这么一个问题.
引例:在离江面高30米的大桥上,火炬手由东向西以2 m/s 的速度前进,小船以1 m/s 的速度由南向北匀速行驶,现在火炬手在桥上1D 点以东30米的1C 点处,小船在水平D 点以南方向30米的A 处(其中1D D ⊥水面)
求(1)6s 后火炬手与小船的距离? C 1
(2)此时的视线与开始时的视线所成角的余弦值?
(不考虑火炬手与小船本身的大小).
今天我们从另一个角度来分析这个问题.
分析:建立数学模型
问题(1)转化为:如何求空间中两点间的距离?
问题(2)转化为:如何求空间中两条直线所成角的余弦值?
1、空间两点间的距离公式
111222(,,)(,,),A x y z B x y z 已知:,则 ()212121,,AB x x y y z z =---
(AB AB AB x =⋅= ,A B d =2、夹角公式
设()()111222,,,,,a x y z b x y z ==,
则,a OA b OB =
=
cos ,a b
a b a b ⋅<>==
(二)例题示范,形成技能
例1: 在离江面高30米的大桥上,火炬手由东向西以2 m/s 的速度前进,小船以1 m/s 的速度由南向北匀速行驶,现在火炬手在桥上1D 点以东30米的1C 点处,小船在水平D 点以南方向30米的A 处(其中1D D ⊥水面)
求(1)6s 后火炬手与小船的距离?
(2)此时的视线与开始时的视线所成角的余弦值?
(不考虑火炬手与小船本身的大小).
解:建立如图空间直角坐标系, x y z O 111(,,)
A x y z 222(,,)
B x y z a a b
则 ()()130,0,0,0,30,30A C
()()0,18,30,24,0,0M N ;
(1)24MN =
=
(2)()()124,18,30,30,30,30MN AC =--=-. 111cos ,MN AC MN AC MN AC ⋅〈〉=⋅
243018303030
5
⨯-+-⨯+-⨯==- 此题所求的是空间两条直线所成角的余弦值,而不是两个空间向量夹角的余弦值,两者有什么区别?我们又如何转化为本题的结论?
(三)学生互动 巩固提高
变式训练:实际上,我们刚刚就是在一个正方体中讨论两点间的距离, 两条直线所成的角,而在正方体中还有许多的点与线,
例2:(1)若G 为MN 的中点,求GB 两点间的距离.
(2)若1111114
A B B E D F ==,求1BE 与1DF 所成的角的余弦值. (1)解:设G 点的坐标为(,,)G x y z ,则 ()12
D G D M D N =+ ()()10,18,3024,0,02=+⎡⎤⎣⎦
()12,9,15
=. ∴()()12,9,
15,30
,30,0
G B , GB ∴==
(2)解:如图,()14530,30,0,30,,302B E ⎛⎫ ⎪⎝⎭
(
)1150,0,0,0,,302D F ⎛⎫ ⎪⎝⎭
.
1115150,,30,0,,3022BE DF ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭
. 111111cos ,BE DF BE DF BE DF ⋅
〈〉=⋅1515303015.1722
⎛⎫-⨯+⨯ ⎪== 请在上面例题的基础上,各编一个关于求夹角和距离的题目.
拓展提高:我们知道平面上到两点距离相等的点的轨迹是一条直线,那么猜想空间上到两点距离相等的点的轨迹是一个平面,我们能不能把它表示出来呢?
例3:求到M ,N 两点距离相等的点),,(z y x P 的坐标x 、y 、z 满足的条件. 解: 点),,(z y x P 到M ,N 两点距离相等,
则
P M P N =
=化简,得
435540
x y z --+= 即到到M ,N 两点距离相等的点的坐标点(,,)x y z 满足的条件是
435540
x y z --+= (四)概括提炼,总结升华
求空间两点间的距离 求空间两条直线的夹角
(五)布置作业,探究延续
1.课本P 42习题9.6 ⒎
⒏ ⒐
2.请同学们各编写一道关于求夹角和距离的题目,并解答.
M N
P
3.思考题:引例:何时小船与火炬手之间的距离最短?
(六)板书设计:。