苏科版初中数学七年级上册4.1 从问题到方程 教案

合集下载

苏科版七年级数学上册《4.1从问题到方程》教学设计

苏科版七年级数学上册《4.1从问题到方程》教学设计

苏科版七年级数学上册《4.1从问题到方程》教学设计一. 教材分析本节课的主题是从问题到方程,是苏科版七年级数学上册第四章第一节的内容。

本节课的主要目的是让学生理解方程的概念,并学会如何将实际问题转化为方程。

教材通过丰富的实例,引导学生认识方程在解决问题中的重要性。

二. 学情分析七年级的学生已经具备了一定的数学基础,对数学概念和运算有一定的了解。

但是,他们可能对将实际问题转化为方程的方法还不够熟悉。

因此,在教学过程中,需要通过具体的实例,让学生体会方程在解决问题中的作用,并逐步学会如何将问题转化为方程。

三. 教学目标1.让学生理解方程的概念,知道方程在解决问题中的重要性。

2.引导学生学会如何将实际问题转化为方程。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.重点:让学生理解方程的概念,并学会如何将实际问题转化为方程。

2.难点:引导学生学会如何将实际问题转化为方程。

五. 教学方法本节课采用问题驱动的教学方法,通过具体的实例,引导学生认识方程的概念,并学会如何将实际问题转化为方程。

同时,采用小组合作的学习方式,培养学生的团队合作意识和解决问题的能力。

六. 教学准备1.准备相关的实例,用于引导学生理解方程的概念。

2.准备练习题,用于巩固学生的学习成果。

七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何解决这个问题。

例如,给出一个实际问题:小明有苹果和香蕉两种水果,苹果的数量是香蕉的两倍,如果小明一共有10个水果,那么请问小明有多少个苹果和香蕉?2.呈现(10分钟)通过呈现实例,让学生理解方程的概念。

以小明的问题为例,引导学生列出方程:2x + y = 10,其中x表示香蕉的数量,y表示苹果的数量。

解释方程的含义,并让学生认识到方程在解决问题中的重要性。

3.操练(10分钟)让学生分组讨论,尝试解决其他类似的问题。

例如,给出一个新的问题:小红有苹果和香蕉两种水果,苹果的数量是香蕉的三倍,如果小红一共有15个水果,那么请问小红有多少个苹果和香蕉?让学生列出方程并求解。

苏科版初中数学七年级上册4.1 从问题到方程 教案

苏科版初中数学七年级上册4.1 从问题到方程 教案

4.1 从问题到方程教学目标:1.探索实际问题中的已知量和未知量之间的相等关系,并用方程描述,使学生初步感受用方程描述这种相等关系最简明;2.初步认识、体会方程与现实世界的密切联系;3.了解一元一次方程的概念.教学重点:探索实际问题中的相等关系并列出方程.教学难点:改变用算术方法解应用题的习惯,学习如何从实际问题转化为方程.一、情境导入,激发思考1.如图,天平左盘内有一袋食盐,天平右盘内有一些砝码,天平平衡时,你能说出食盐的质量吗?怎样描述天平平衡时数量之间的相等关系?2.(教学活动)已知天平左盘中放有食盐,在天平的右盘内放入砝码,你能称出食盐的质量吗?(设计意图:学生动手操作,激发学生的兴趣,体验天平平衡的相等关系)议一议:1.如图,天平的左盘中有两个相同的小球和一个质量为1g的小球,右盘中有一个5g的砝码.怎样描述天平平衡时所表示的数量之间的相等关系?小结:方程是表达数量之间相等关系的“天平”.(设计意图:体会到未知量与已知量之间的联系,再次感受平衡)2.篮球联赛规则规定:胜一场得2分,负一场得1分.某篮球队赛了12场,共得20分.怎样描述其中数量之间的相等关系?(分析)相等关系: 胜场的得分+负场的得分=20解:设该队胜x场,那么该队负(12-x)场,可列出方程:2x+(12-x)=20总结:实际问题中已知量和未知量之间的相等关系,可以用多种不同的方式描述.通过比较可以看出,用方程描述这种相等关系最简明.(设计意图:在小学知识的基础上,感受方程的简洁明了)想一想:3.我国古代问题:以绳三折测之,绳多四尺;若将绳四折测之,绳多一尺.绳长、井深各几何?意思是:用绳子量井深,把绳三折来量,井外余绳四尺;把绳四折来量,井外余绳一尺.绳长、井深各几尺?(设计意图:复杂关系中寻找不变量和等量关系,多种方法建立方程,思维的发散训练)二、合作探究,建构生成你觉得“从问题到方程”一般要经历哪些过程?(1)弄清题目中已知什么,求什么,找出题目中的相等关系;(2)设未知量为x;(3)用x表示出相关的量,根据相等关系列出方程.试一试:(学生练习)1.我们知道,按下图方式搭n条“小鱼”需要 [8+6(n-1)]根火柴棒.搭n条“小鱼”用了140根火柴棒,怎样用方程来描述其中数量之间的相等关系?2.今年小红5岁,爸爸32岁.(1)用代数式分别表示x年后小红与爸爸的年龄.(2)如果x年后小红的年龄是爸爸年龄的,怎样用方程来描述其中数量之间的相等关系?(设计意图:学生尝试练习,寻求等量关系建立方程)三、观察归纳,理解概念观察归纳:以上所列方程有什么特点?叫一元一次方程.数学小知识:宋元时期,中国数学家创立了“天元术”,用“天元”表示未知数进而建立方程。

苏科版数学七年级上册教学设计《4-1 从问题到方程》

苏科版数学七年级上册教学设计《4-1 从问题到方程》

苏科版数学七年级上册教学设计《4-1 从问题到方程》一. 教材分析《4-1 从问题到方程》这一节内容,主要让学生了解方程的定义,以及如何从实际问题中抽象出方程。

教材通过生活中的实例,引导学生理解方程的概念,感受方程在解决问题中的作用。

同时,培养学生运用数学语言表达现实世界的能力。

二. 学情分析七年级的学生已经掌握了整数、分数、代数等基础知识,具备了一定的逻辑思维能力。

但是对于如何从实际问题中抽象出方程,以及如何运用方程解决问题,可能还存在一定的困难。

因此,在教学过程中,需要关注学生的认知水平,引导学生逐步理解方程的内涵。

三. 教学目标1.知识与技能:理解方程的定义,学会从实际问题中抽象出方程。

2.过程与方法:通过实例,体会方程在解决问题中的作用,培养运用数学语言表达现实世界的能力。

3.情感态度与价值观:感受数学与生活的紧密联系,提高学习数学的兴趣。

四. 教学重难点1.重点:方程的定义,从实际问题中抽象出方程。

2.难点:如何引导学生理解方程在解决问题中的作用,以及如何运用方程解决问题。

五. 教学方法1.情境教学法:通过生活实例,引导学生感受方程在实际问题中的应用。

2.启发式教学法:引导学生主动思考,从问题中抽象出方程。

3.合作学习法:鼓励学生分组讨论,共同解决问题。

六. 教学准备1.教材:苏科版数学七年级上册。

2.课件:相关的生活实例和问题。

3.练习题:针对本节课内容的练习题。

七. 教学过程1.导入(5分钟)利用生活中的实例,如购物时发现找回的钱不对,引出方程的概念。

提问:什么是方程?方程在实际问题中的应用有哪些?2.呈现(15分钟)呈现一系列实际问题,如购物问题、速度与时间问题等。

引导学生思考如何用数学语言表达这些问题,并尝试列出方程。

3.操练(15分钟)学生分组讨论,共同解决问题。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)针对本节课的内容,进行课堂练习。

教师及时批改,给予反馈。

5.拓展(10分钟)引导学生思考:如何判断一个方程是否成立?让学生尝试解决一些稍复杂的问题,提高他们的解决问题的能力。

苏科版七年级上册(教案一)4.1从问题到方程

苏科版七年级上册(教案一)4.1从问题到方程

4.1从问题到方程(1)一、教材分析:1.学习目标:知识与技能:学会用方程描述问题中数量之间的相等关系.过程与方法:通过对多种实际问题中数量关系的分析,使学生初步感受方程是刻画现实世界的有效模型.情感、态度与价值观:初步认识方程与现实世界的密切联系,感受数学的价值.2.重、难点:理解题意,寻求数量间的等量关系并列出方程.二、教材处理:1.情景创设:(1)天平称球(或硬币、铅笔等),见课本P114.(2)排球联赛,某队胜多少场?见课本P114.……建议根据实际情况,创设较多的与学生生活相关的实际问题,以激发学生学习兴趣. 2.学生活动、意义建构、数学理论:用天平演示实验后,学生思考问题一:可以用什么方法解决这个问题?问题二:你是如何解决这个问题的?借助方程能否解,怎样解?对排球队胜多少场的问题,学生思考问题一:猜一猜,该队胜了多少场?问题二:可以用什么方法解决这个问题?(尝试法;枚举法;列方程等)问题三:设该队胜了x场,能用方程来解吗?如何解?从而揭示课题——从问题到方程.3.数学运用:例1(补):见教师教学参考资料“某校七年级共有216名师生参加某次活动,用一辆面包车和若干辆客车接送,已知这一辆面包车只能坐16人,还需用多少辆40座的客车?”学生思考一:设用x辆40座的客车,则客车能接送多少人?学生思考二:列方程,等量关系是什么?师提供正确的解题格式“设还需用x辆40座的客车.根据题意,得40x+16=216”.变式训练一:用四辆轿车和若干辆客车接送,已知一辆轿车只能坐4人,还需用多少辆40座的客车?变式训练二:用轿车和客车共9辆车接送,已知一辆轿车只能坐4人,还需用多少辆轿车和多少辆40座的客车?……思维拓展见课本P115试一试;也可补充题,见教师教学参考资料……习题处理,见课本P115练一练1,2,3.学生说清每小题的等量关系式,而后师小结.建议补充一些能借用一元一次方程来解的简单的实际问题,如行程问题、工程问题、形积问题、商品销售问题等,介绍一些名词,为后面的学习作一铺垫,但一定要控制难度. 4.回顾反思:(1)本课只是要求教师帮助学生在现实情境中,通过对多种实际问题的分析,感受方程是作为刻画现实世界模型的重要意义,建立方程思想.为第3单元作铺垫,对本章知识的学习起到提纲挈领的作用.(2)教学时,要在调动学生的积极性和激发他们的学习兴趣上下工夫.。

苏科版-数学-七年级上册--4-1从问题到方程教案

苏科版-数学-七年级上册--4-1从问题到方程教案

4、1从问题到方程(共1课时,第1课时)教学目标:1、对实际问题的分析,体会方程作为实际问题的数学模型的作用;2、会列一元一次方程解决一些简单的实际应用。

教学重点:方程的概念及方程与生活的应用教学难点:方程的概念及方程与生活的应用课时:1第1课时教学过程:一、创设情境,引入新课问题一:(1)如图,天平右盘内的砝码质量为160g ,天平平衡时,你能说出食盐的质量吗?(2)已知右图中食盐的质量为160g ,在天平的右盘中共放几个20g 的砝码才可以使天平平衡呢?(3)已知右图中食盐的质量为160g ,在天平的右盘内有一个50g 的砝码,那么还需加多重的砝码才可以使天平平衡呢?(4)若在天平的左盘中有一个小球和一袋160g 的食盐,天平的右盘内砝码的质量和为200g ,当天平平衡时,你能求出这个小球的质量吗?(5)若在天平的左盘中有两个质量相等的小球和一袋160g 的食盐,天平的右盘内有总质量为200g 的砝码,当天平平衡时,你能求出小球的质量吗?(学生一起讨论完成)问题二:某排球队参加排球联赛,得分规则:胜一场得2分,负一场得1分。

(1)若该队全胜,共得20分,请问该队胜了多少场?(2)若该队负了2场,共得20分,请问该队胜了多少场?(3)若该队赛了12场,共得20分,请问该队胜了多少场? 10g100g 50g(4)若得分规则改为:胜一场得2分,平一场得1分,负一场得0分。

该队赛了14场,负了5场,共得13分,问这个队胜了几场?二、新课讲解:引导学生回忆小学时对方程的理解,巩固方程的概念。

给出不含有未知数的等式、方程、代数式、不等式的具体事例,让学生判断,辨别方程的真面貌。

总结出方程含有两个必不可少的条件:(1)含有未知数,(2)是等式。

练习:1、下列各式是方程的是( )A .23-xB .257=-yC .b a +D .5-3=22、下列各式是一元一次方程的是( )A .122+-x xB .x x 11+=C .43-=+x yD .132=-y y 『问题研讨』 已知m x m =+-632是关于x 的一元一次方程,试求代数式()20093-m 的值。

4.1从问题到方程-苏科版七年级数学上册教案

4.1从问题到方程-苏科版七年级数学上册教案

4.1 从问题到方程-苏科版七年级数学上册教案
一、教学目标
1.理解从实际问题到方程的思想过程。

2.掌握列出简单一元一次方程的方法。

3.培养解决实际问题的数学建模能力。

二、教学重点
1.理解问题到方程思想过程。

2.掌握列出简单一元一次方程的方法。

三、教学难点
1.如何将实际问题转化为数学问题。

2.如何列出简单一元一次方程。

四、教学过程
1.引入新知
1.通过一个简单的题目引入新知:“一支笔加两个铅笔等于五支笔,铅笔减一只铅笔等于两只铅笔,求笔和铅笔各是几只?”
2.让学生用自己的语言描述这个问题。

2.解决问题
1.将问题转化为数学问题,找出变量;
2.列出方程;
3.求解方程。

3.讲解新知
1.定义一元一次方程;
2.介绍解方程的过程。

4.练习
1.让学生提供一些问题,并帮助他们将这些问题转换为数学问题;
2.让学生应用所学知识,列出相应的一元一次方程并求解。

5.总结
提醒学生复习一元一次方程的相关知识,加强练习。

五、教学反思
这节课主要教授如何将实际问题转换为数学问题,并通过建立方程进行求解。

学生需要理解如何将自然语言转化为数学语言并清晰呈现。

同时也需要理解什么是一元一次方程,如何列方程和解方程,并独立解决问题。

整节课呈现生动有趣,语言简洁,思维导向强烈,提高了学生的数学建模能力,培养了学生的数学思维方式。

但在实际操作时容易出错,需要老师提前准备好充分的例子,慢慢让学生感受到解题的感觉,增强学生的自信心。

苏科版七年级数学上册教案4.1 从问题到方程

《4.1从问题到方程》教学设计一.教学内容初中数学七年级上册(苏科版)教材第96~98页二.教材分析本章主要内容是一元一次方程及其解法,这是中学数学的重要内容,也是数学中的基本运算工具,对培养学生分析问题、解决问题的能力,体会数学的价值具有重要意义,也是今后学习一次方程组、一元一次不等式、一次函数及一元二次方程的基础.本节课《从问题到方程》是本章第一节内容.教材从贴近学生生活的实际问题出发,设计了许多“做数学”的内容,让学生感受方程可以用来描述问题中数量之间的相等关系,体验并领会实际问题抽象成数学问题的过程,渗透建模的数学思想.三. 教学目标(一)知识与能力1.探索实际问题中的相等关系,并用方程描述.2.通过对多种实际问题中数量关系的分析,使学生初步感受方程是刻画现实世界的有效模型.(二)过程与方法1.经历将一些实际问题抽象为数与代数问题(方程问题)的过程.2.经历运用数学符号和图形描述现实世界的过程.(三)情感态度与价值观1.通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义.2.体验在生活中学数学、用数学的价值,感受学习数学的乐趣.四. 教学重难点重点:引导学生自主探索实际问题中的相等关系,感受方程作为刻画现实世界有效模型的意义.难点:分析和确定问题中的相等关系,能用方程来描述和刻画事物间的相等关系.五. 教学过程(一)情境创设1.数学实验室:现有三袋同样重的食盐、一架天平和一些砝码(有10克、20克、50克、100克、200克砝码各两个),你如何称出每袋食盐的质量?若设每袋食盐的质量为x g,你能各用一个数学式子来描述两种方案下天平平衡的相等关系吗?(学生观察天平,知道天平平衡时,左右两边是相等的,并会用等式表示相等的量.)2.归纳总结:像这种含有未知数的等式叫做方程.方程是表达数量之间相等关系的“天平”.(板书方程的概念)跟踪练习:下列式子哪些是方程?3.引出课题:今天这节课,我们就来学习第四章第一小节《从问题到方程》(板书课题)4212)(463)(3212)(2312)(1=+-=+>-+m n x x a(二)探索活动1.合作探究(1)探究例题一:比赛得分问题学校篮球队上周五参加了区篮球联赛,得分规则:胜一场得2分,负一场得1分,没有平局.若该队赛了12场,共得20分.你知道该队胜了多少场吗?相等关系:胜的场数+负的场数=12场,胜场得分+负场得分=20分(板书)猜一猜:该队胜了多少场?方法一:枚举法(列表格计算得分)方法二:列方程 (板书解题过程,强调问题中的两个相等关系,一个用于设未知数,另一个用于列方程)你觉得哪种方法更简洁些呢?(2)探究例题二:年龄问题问题1:老师今年30岁,比小明年龄的2倍还多6岁,你知道小明多大吗?设小明今年x岁,可得方程________________问题2:小明今年12岁,老师今年30岁,多少年后老师年龄是小明年龄的两倍?设a年后老师年龄等于小明年龄的两倍,此时老师的年龄是_____岁,小明的年龄是_____岁,可得方程_____________(3)交流总结:通过上面的学习,你觉得“从问题到方程”一般要经历哪些过程?(学生交流讨论得出结论)①审:认真审题,找出问题中的相等关系②设:设合适的未知数③列:根据相等关系列出方程关键:找到数量之间的相等关系(板书从“实际问题→数学问题→方程”的过程)2.挑战自我(1)巩固练习:用方程描述下列问题中数量之间的相等关系一星题:(数字问题)如果设某数为m ,那么某数的6倍与它的一半的差等于9,可得方程 .二星题:(调动问题)七年级(1)班分两组参加学校某项活动,第一组16人,第二组28人,现在要重新分组,使两组人数相同.如果设从第二组调x人到第一组去,那么可得方程 . (列表格分析)第一组第二组原有 16 28现有调动问题变式训练:七年级(1)班分两组参加学校某项活动,第一组16人,第二组28人,现在要重新分组,使第二组人数是第一组的3倍.如果设从第一组调y 人到第二组去,那么可得方程 .(列表格分析)三星题:(租船问题)某班学生到公园划船,共租用9条船,每条大船可坐5人,每条小船可坐3人, 39人正好坐满每条船.问大船租了多少条?(强调问题中的两个相等关系,一个用于设未知数,另一个用于列方程,一般问什么设什么)四星题:(路程问题)甲、乙两城市间的铁路经过技术改造后,列车在两城市间的运行速度从100km/h 提高到120km/h ,运行时间缩短了2小时.设甲、乙两城市间的路程为x km ,可得方程___________________复习路程、速度、时间之间的三个关系式?想一想:提速前所需时间和提速后所需时间哪个长?(2)交流讨论:问题中的这些方程有哪些特点?(列举前面问题中出现的所有方程,学生观察方程讨论得出结论)① 方程两边都是________② 方程中含有_____个未知数(元)③ 方程中未知数的次数都是_____次(3)归纳总结:只含有一个未知数(元),并且未知数的次数都是1(次),像这样的方程叫做一元一次方程 .(板书一元一次方程的概念)注意:必须满足三个条件:①两边都是整式②只含有一个未知数(元)③未知数的次数都是1(次)(4)跟踪练习:①若关于x 的方程 5x |m|+3=0是一元一次方程,则m=_________.②下列方程哪些是一元一次方程?(三)小结与思考谈谈你本节课的收获是什么?1. 经历将一些实际问题抽象为数与代数问题(方程问题)的过程2.从“问题到方程”的几个步骤:(1)审清题意,找出相等关系(2)设未知数(3)列方程关键是找到数量之间的相等关系3.方程、一元一次方程的概念(四)拓展提升1.阅读资料:丢番图的墓志铭同学们,你知道丢番图去世时的年龄是多少吗?相等关系:各阶段的年数和=丢番图的年龄如果设丢番图去世时的年龄是x 岁,由题意,得:012)5(312)4(3145.2)3(102)2(6.053)1(22=-=+-=-=+-=-xy y x x y x x你会解这个方程吗?下节课我们再来讨论怎么解一元一次方程。

七年级数学上册 从问题到方程教案 苏科版 教案

1 一、目的要求:通过对实际问题中数量关系的分析,初步感受方程是刻画现实世界的有效模型。

二、教学过程:1、 问题情境:(1)如图所示,如果两个小球的质量是相等的,你能求出每个小球的质量吗?(2)某排球队参加排球联赛,胜一场得2分,负一场得1分,该队赛了12场,共得20分,该队胜了多少场?小结:解决上面的两个问题,你有什么体会: 。

2、 例题(1)用一辆面包车和几辆客车接送216名师生参加某项活动。

已知一辆面包车可坐16人,设还需用x 辆40座的客车,试用方程表示这个实际问题中的数量之间的相等关系?(2)军军今年5岁,爸爸今年32岁,如果设x 年以后军军的年龄是爸爸的41,请用方程来描述这个问题中的数量之间的关系。

(3)七年级(1)班分两组参加学校的某项活动,第一组16人,第二组28人,现在要重新分组,使两组的人数相同。

如果从第二组调x 人到第一组去,那么可以用怎样的方程表达这个问题中的数量之间的相等关系?3、 练习:课本P92页练一练4、课堂检测:试用方程表达下列问题中的数量之间的相等关系(仅列方程) (1)已知某数为x ,若比它的43大1的数的相反数是5,求x(2)某商店对超过15000元的商品提供分期付款服务,顾客可以先付3000元,以后每月付1500元,王叔叔想用分期付款的方式购买价值19500元的电脑,他需要多少时间才能付清全部货款?(3)有一种足球是由32块黑白相间的牛皮缝制而成的,如图黑牛皮看做 正五边形,白牛皮看做正六边形,设白牛皮的块数为x,求白牛皮的块数。

(4)A 、B 两地相距50千米,甲、乙两人分别从A 、B 两地出发,相向而行,甲每小时比乙多行2千米,若两人同时出发,经过3小时相遇,设甲的速度为x 千米每小时,求x(5)为创建全国卫生文明城市,扬州市政府准备对瘦西湖某水上工程进行改造,若请甲工程对单独做此工程需3个月完成,若请乙工程对单独做需6个月完成,现在甲 乙两队合作,则几个月完成?(6)一个两位数,十位数字比个位数字小3,若把这个两位数的十位数字与个位数字交换,所得的两位数与原来的两位数的和是165,求原来的两位数.设其十位数字是x,请列方程(7)据报道,某省2004年中小学共装备计算机16.42万台,平均每42名中小学生拥有一台,2005年在学生数不变的情况下,计划平均每35名中小学生拥有一台计算机,问还需装备多少台计算机?设还需装备x 台,请列方程。

苏科版数学七年级上册4.1 从问题到方程 教案

4.1从问题到方程教学目标1.探索实际问题中的已知量和未知量之间的相等关系,并用方程描述,使学生初步感受用方程描述这种相等关系最简明;2.初步认识、体会方程与现实世界的密切联系;3.了解一元一次方程的概念.教学重、难点1.探索实际问题中的数量关系并列出方程;2.改变用算术方法解应用题的习惯,学习如何从实际问题转化为方程.教学过程(一)情景创设教师演示用天平称量物体,天平保持平衡,然后展示用天平称小球,并提出问题:如何描述天平平衡所表示的数量之间的相等关系?【设计意图】1、引起学生学习的兴趣,实现师生互动.2、从实际问题中数量之间的相等关系的描述,到用方程,从而引入新课.(二)探索活动1.对篮球联赛这个问题中的数量之间的相等关系描述,【设计意图】引导学生用方程描述数量之间的相等关系最简洁,感受方程是表达数量之间相等关系的“天平”,并形成从实际问题到方程的过程。

2.对于“以绳测井”、“搭小鱼所需火柴棒”“小红和他的爸爸的年龄”问题,【设计意图】让学生反复经历“从问题到方程”的过程,能熟练的用方程来描述数量之间的相等关系;从这些问题到所列的方程,为归纳一元一次方程做铺垫。

3.归纳出一元一次方程的概念,并出示辨析题和填空题对一元一次方程的概念进行考察。

【设计意图】从方程到一元一次方程的概念,让学生明了一元一次方程增加了内涵“含有一个未知数”、“未知数的次数是1”,通过设计正、反例,明确一次方程的概念。

(三)例题教学对于“两城市之间的路程”的问题,【设计意图】在了解了一元一次方程的概念后,再次经历从实际问题到一元一次方程的过程,规范解题步骤。

对于“蓝鲸体重”、“海拔温度”、“卫星离地面距离”问题,【设计意图】巩固所学,培养学生思维的开放性、灵活性、创造性.体会学数学用数学的快乐.从实际问题到一元一次方程的练习,为了强化解题的条理性和规范性,对于“古希腊数学家丢番图的年龄”问题【设计意图】“古希腊数学家丢番图的年龄”问题激发学生的学习数学的探究欲望,并能体验从实际问题到方程的解题步骤,以及学生从实际问题到方程能力的提升。

苏科版-数学-七年级上册-4.1 从问题到方程 教案

(3)0.52x-(1-0.52x)=80
小结:像上面方程,它们都含有1个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程。
教师主导活动
学生主体活动
方程的解
如方程 =4中, =?
方程 中的 呢?
请用小学所学过的逆运算尝试解决上面的问题。
解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。
【答案】1. 是方程 的解
2.解:设小华要x分钟才能完成.
根据题意列方程50x+700=2000
总结反思:
板书设计
(用案人完成)
当堂作业
课外作业
教学札记
答:“√”,不是打“×”:
① ;()②3+4=7;()
③ ;()④ ;()
⑤ ;()⑥ ;()
【答案】1:含有未知数的等式
2:判断下列是不是方程,是打“√”,不是打“×”:
1×②×
③× ④×
⑤× ⑥×
二、自主探究
1. 一元一次方程的概念
观察下面方程的特点
(1)4 =24;(2)1700+150=2450
例检验2和-3是否为方程 的解。
解:2是方程 的解;
-3不是方程 的解.
要点归纳:
1.这节课我们学习了什么内容?
2.什么是方程的解?如何检验一个数是否是方程的解?
拓展训练:
1.检验2和 是否为方程 的解。
2.老师要求把一篇有2000字的文章输入电脑,小明输入了700字,剩下的让小华输入,小华平均每分钟能输入50个字,问:小华要多少分钟才能完成?(请设未知数列出方程)
4.1从问题到方程
教学目标
1.理解什么是一元一次方程。
2.理解什么是方程的解及解方程,学会检验一个数值是不是方程的解的方法。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.1 从问题到方程
教学目标:1.探索实际问题中的已知量和未知量之间的相等关系,并用方程描述,使学生初步感受用方程描述这种相等关系最简明;
2.初步认识、体会方程与现实世界的密切联系;
3.了解一元一次方程的概念.
教学重点:探索实际问题中的相等关系并列出方程.
教学难点:改变用算术方法解应用题的习惯,学习如何从实际问题转化为方程.
一、情境导入,激发思考
1.如图,天平左盘内有一袋食盐,天平右盘内有一些砝码,天平平衡时,你能说出食盐的质量吗?
怎样描述天平平衡时数量之间的相等关系?
2.(教学活动)已知天平左盘中放有食盐,在天平的右盘内放入砝码,你能称出食盐的质量吗?
(设计意图:学生动手操作,激发学生的兴趣,体验天平平衡的相等关系)
议一议:
1.如图,天平的左盘中有两个相同的小球和一个质量为1g的小球,右盘中有一个5g的砝码.怎样描述天平平衡时所表示的数量之间的相等关系?
小结:方程是表达数量之间相等关系的“天平”.
(设计意图:体会到未知量与已知量之间的联系,再次感受平衡)
2.篮球联赛规则规定:胜一场得2分,负一场得1分.某篮球队赛了12场,共得20分.怎样描述其中数量之间的相等关系?
(分析) 相等关系: 胜场的得分+负场的得分=20
解:设该队胜x 场,那么该队负(12-x)场,可列出方程:2x+(12-x)=20
总结:实际问题中已知量和未知量之间的相等关系,可以用多种不同的方式描述.通过比较可以看出,用方程描述这种相等关系最简明.
(设计意图:在小学知识的基础上,感受方程的简洁明了)
想一想:3.我国古代问题:以绳三折测之,绳多四尺;若将绳四折测之,绳多一尺.绳长、井深各几何?
意思是:用绳子量井深,把绳三折来量,井外余绳四尺;把绳四折来量,井外余绳一尺.绳长、井深各几尺?
(设计意图:复杂关系中寻找不变量和等量关系,多种方法建立方程,思维的发散训练)
二、合作探究,建构生成
你觉得“从问题到方程”一般要经历哪些过程?
(1)弄清题目中已知什么,求什么,找出题目中的相等关系;
(2)设未知量为x; (3)用x表示出相关的量,根据相等关系列出方程.
试一试:(学生练习)
1.我们知道,按下图方式搭n 条“小鱼” 需要 [8+6(n-1)]根火柴棒.
搭n 条“小鱼”用了140根火柴棒,怎样用方程来描述其中数量之间的相等关系?
2.今年小红5岁,爸爸32岁.
(1)用代数式分别表示x 年后小红与爸爸的年龄.
(2)如果x 年后小红的年龄是爸爸年龄的4
1,怎样用方程来描述其中数量之间的相等关系? (设计意图:学生尝试练习,寻求等量关系建立方程)
三、观察归纳,理解概念
观察归纳:以上所列方程有什么特点?
叫一元一次方程.
数学小知识:
宋元时期,中国数学家创立了“天元术”,用“天元”表示未知数进而建立方程。

这种方法的代表作是数学家李冶写的《测圆海镜》,书中所说的“立天元一”相当于“设未知数x 。

”所以在简称方程时,将未知数称为“元”,如一个未知数的方程叫“一元方程”。

而两个以上的未知数,在古代又称为“天元”、“地元”、“人元”。

(设计意图:对数学知识的拓展,认识到方程的作用和重要意义)
练一练:
1.下列各式中,哪些是一元一次方程?
① x =1, ②3x +2=8x -7, ③ -2x -3=0 , ④ x +1>3 ,
⑤ 2x+1 , ⑥ 3
12-=+y x , ⑦42=x
课堂小结:
1.你学到了什么数学知识?
2.你体会到了什么数学思想方法?
大家名言:早在300多年前法国数学家笛卡尔有一个伟大的设想:首先把宇宙万物的所有问题都转化为数学问题;其次,把所有的数学问题转化为代数问题;最后,把所有的代数问题转化为方程问题。

虽然笛卡尔的“伟大设想”没有实现,但是充分说明了方程的重要性 。

课后作业:课本P98 习题1、2、3、4.。

相关文档
最新文档