基于单片机的过零检测控制系统的设计
一种新颖的同步BUCK芯片过零检测电路的设计

一种新颖的同步BUCK芯片过零检测电路的设计黄苏平;冯全源【摘要】同步BUCK变换器在轻载模式下会出现电感电流倒灌现象,这会使得芯片的效率大大降低。
针对这一问题,设计了一款过零检测电路,该电路利用MOS管工作在线性区时的沟道电阻来产生过零检测比较器的负阈值电压,从而有效地限制了电流的倒灌;还设计了边沿隐匿电路,避免电路切换时引起的误触发。
该过零检测电路基于0.5μm BCD工艺,在HSPICE软件上仿真验证,当系统温度在0~85℃变化时,负阈值容差为10 mV,过零检测电路性能良好。
%The phenomenon that inductor current flow backward appears when synchronous BUCK converter works in light load mode,and the efficiency of the system will be reduced. In response to this problem,a novel zero-cross detection circuit is designed. By using the channel resistance when the MOS transistor is working in linear region to realize negative threshold voltage for zero-cross detection comparator,the happening of current backward flowing is avoided. Edge occult circuit is also designed to avoid false triggering at switching moment. The zero-cross detection circuit is based on 0. 5 μm BCD technology,and has been carried on HSPICE. The simulation result shows that the negative threshold tolerance is only 9 mV when system ranges in temperature from -25 ℃ to 50 ℃,and the zero-cross detection circuit works well.【期刊名称】《电子器件》【年(卷),期】2014(000)003【总页数】4页(P408-411)【关键词】BUCK变换器;轻载模式;过零检测;同步【作者】黄苏平;冯全源【作者单位】西南交通大学微电子研究所,成都610031;西南交通大学微电子研究所,成都610031【正文语种】中文【中图分类】TN433近年来,随着低电压、大电流、高效率开关电源的越来越广泛应用,采用低功耗的同步整流器替代传统的整流二极管已成为提高效率的主要技术[1-3]。
合泰单片机交流电过零检测方案

Z1 5.1V D1
C4 470U/16V
C5 104
1N4007 +5V R5 100K
R3 2M
R4 2M
U1
1 PA3/PFD PA2 PA1 PA0 PB3/AN3 PB2/AN2 PB1/AN1 PB0/AN0 VSS PA4/TMR PA5/INT PA6 PA7/SDA OSC2 OSC1 VDD RES PD0/SCL 18 RST
限流电阻数值最好选取在 4M ~ 5MΩ 范围内。
• 满足更好的 EMC 对策,建议通过软件和硬件两个方面来解决,如图 1 中添加 EMI 输入
滤波器和流程图 10 中加入重置旗标的方法。
11
(2)
如果 VRMS =230V,R1=R2=2M ohms,可以得到注入电流为: :
Ij =
230 = 57.5uA < 400uA 2*10 + 2*106
6
当输入的 AC 电源为 230V AC/50Hz, 相应 ZCD 电路的实际波形如图 4 (无负载时) 和图 5 (带 负载时)。 这里 CH1 连接测试点 TP2;而 CH2 连接测试点 TP1。在图 6 所示中,当 PA5 Pin 上之输入信号电位从 0V 上升到 0.7VDD=0.7×5V=3.5V (即高准位门限值,请参照 Datasheet 之 DC 特性),此时输入信号的过零点将滞后 240µs。当然,改变两个限流电阻 R1 和 R2 的 阻值,可以改变过零点滞后时间。由此可见,合适的滞后时间不会影响 AC 电源频率测量 的精度,所以我们建议过零点限流电阻阻值最好选取为 4MΩ~ 5MΩ,从而保证过零注入 电流 Ij <
HT46R47 对 AC 过零信号进行检测
基于过零检测的继电器触点保护电路设计

科技与创新┃Science and Technology&Innovation ·112·2017年第24期文章编号:2095-6835(2017)24-0112-02基于过零检测的继电器触点保护电路设计胡云生,郝佳琦,谢雅丽(西南石油大学理学院,四川成都610500)摘要:设计了一种新型的电磁继电器触点保护系统,它可以明显减弱电磁继电器在实际使用过程中产生的打火、拉弧等现象。
利用光电耦合器实现的交流电压过零检测电路,结合单片机实现了触点在交流电压零点附近吸合,降低了打火强度;利用霍尔电流传感器,实现了无相差交流电流检测,并结合单片机实现了触点在交流电流零点附近断开,有效减弱了拉弧现象。
同时,单片机通过监测并记录继电器动作响应时间,自动修正控制信号的提前量,有效避免由动作时间偏移引起的控制误差。
关键词:触点保护;过零检测;打火;拉弧中图分类号:TM58文献标识码:A DOI:10.15913/ki.kjycx.2017.24.1121背景介绍电磁继电器在电路中发挥着电压隔离、安全保护、自动开关等重要作用。
在高压、大功率控制系统中,继电器的闭合、断开都会引发打火、拉弧等现象,严重时还会烧焦继电器触点,使控制系统失效或粘连,造成严重后果。
我国继电器保护技术已经进入了微机保护时代,电力系统对微机保护的要求也在不断提高,做好继电器触点保护,提高其可靠性,可以延长继电器的使用寿命。
继电器与微处理器组合使用可以实现精准控制,实现高智能化。
微机保护方法相对小型机电系统而言,成本太高并不适用。
本文旨在低成本投入下完成适合小型机电系统的继电器保护电路设计,降低故障发生率,延长继电器的使用寿命。
2触点保护电路设计2.1基于过零检测的触点保护原理在实际工作中,可利用光耦传感器将交流电压信号转化为TTL信号,如图1所示。
图1中正弦波为交流电压信号,当电压大于0时,TTL输出高电平。
可见,TTL信号上升沿即为电压相位零点。
基于单片机单相交流过零检测及脉冲输出电路设计

基于单片机单相交流过零检测及脉冲输出电路设计【摘要】目前,可控硅做为大功率电子器件在工程中得到广泛应用,其触发方式在许多交流设备中都采用过零触发方式,而其控制多通过对触发脉冲的脉宽调节来实现。
本文介绍一种由单片机控制的过零检测及脉冲输出电路。
本设计包括硬件和软件设计两部分。
硬件部分包括电源电路、过零检测电路、控制电路、脉冲波输出电路等部分组成。
处理器采用51单片机,设计完成了过零检测,并能输出脉宽度从1ms~10ms某一种满足控制要求的脉冲波。
【关键词】51单片机;过零检测;脉冲The design of single-phase alternating current zero crossing detection and pulse output circuit based on single chip microcomputerNorthern University of China,College of computer and control engineering Luo-wei Yang-feng Jiao-LiliAbstract:at present,thyristor as power electronic devices are widely used in engineering,the trigger mode in many communication equipment using zero crossing trigger mode,and its control by the pulse width trigger pulse conditioning to achieve.A microcomputer controlled by the zero crossing detection and pulse output circuit is introduced in this paper.The design includes two parts of hardware and software design.The hardware includes the power circuit,the zero crossing detection circuit,control circuit,pulse output circuit.The processor uses 51single chip microcomputer,completed the design of zero crossing detection,and can output pulse width from 1ms to 10ms one to meet the control requirements of pulse wave.Keywords:51 single-chip;microcomputer;zero crossing detection;pulse1.引言当今社会,科学技术飞速发展、日新月异。
过零检测

整个主控板上有三种电压:AC220V、DC12V和DC5V。
AC220V直接给压缩机、室外风机、室内风机和负离子产生器供电;AC220V经过降压,变为DC12V和DC5V,用于继电器和微控系统供电。
供电系统如图4-3所示,AC220V先经过变压器降压,然后从插座J1输入,经过整流桥进行全波整流,通过电容C2滤波,得到DC12V,再经过稳压片7805稳压,得到DC5V。
图中的采样点ZDS用于过零点的检测,二极管D1防止滤波电容C2 对采样点ZDS的影响。
图4-3供电系统4.4 过零检测电路过零检测电路如图4-4所示,用于检测AC220V的过零点,在整流桥路中采样全波整流信号,经过三极管及电阻电容组成整形电路,整形成脉冲波,可以触发外部中断,进行过零检测。
采样点和整形后的信号如图4-5所示。
过零检测的作用是为了控制光耦可控硅的触发角,从而控制室内风机风速的大小。
图4-4过零检测电路本文介绍的这种过零调功电路虽然简单,却能可靠的工作。
它适合于各类电热器具的调功,串激式电机的调功等。
可供电气工作人员参考。
字串6该装置的电路工作原理如图1所示()。
它是由电源电路、交流电过零检测电路、十进制计数器/脉冲分配器及双向可控硅等组成。
220V市电经电源变压器T降压后,由二极管VD1、VD2构成的全波整流电路整流,由C滤波后供给整机电路工作。
经二极管VD3、VD4全波整流后,得到的脉动直流电压经R1后加到运算放大器IC1的反相输入端。
当脉动电压过零(也就是交流电压过零)时,IC1便出现过零脉冲。
IC2用于对过零脉冲进行计数和脉冲分配,从而产生可控硅触发信号。
S是功率调节开关,通过S改变IC2计数方式来调节交流负载的功率。
例如,当S位于“3”档时,IC2进行四进制计数,每输入4个过零脉冲仅产生2个触发脉冲去触发双向可控硅导通,因而该档为半功率档。
图中给出了4档,由于IC2具有10个输出端,将这些输出端适当的组合,就可以获得不同的功率档。
最新电气自动化毕业设计论文题目

电气类专业毕业设计课题
184. 全氢煤气罩式炉的温度控制系统的研究与改造 185. 基于 ATmega16 单片机的高炉透气性监测仪表的设计 186. 基于 MSP430 的智能网络热量表 187. 火电厂石灰石湿法烟气脱硫的控制 188. 家用豆浆机全自动控制装置 189. 新型起倒靶控制系统的设计与实现 190. 软开关技术在变频器中的应用 191. 中频感应加热电源的设计 192. 智能小区无线防盗系统的设计 193. 智能脉搏记录仪系统 194. 直流开关稳压电源设计 195. 用单片机实现电话远程控制家用电器 196. 无线话筒制作 197. 温度检测与控制系统 198. 数字钟的设计 199. 汽车尾灯电路设计 200. 篮球比赛计时器的硬件设计
4
电气类专业毕业设计课题
140. 交流接触器自动化生产流水线设计 141. 63A 三极交流接触器设计 142. 100A 交流接触器设计 143. CJ20—40 交流接触器工艺及工装设计 144. JSS 型数字式时间继电器设计 145. 半导体脱扣器的设计 146. 12A 交流接触器设计 147. CJ20-100 交流接触器装配线设计 148. 真空断路器的设计 149. 总线式智能 PID 控制仪 150. 自动售报机的设计 151. 小型户用风力发电机控制器设计 152. 断路器的设计 153. 基于 MATLAB 的水轮发电机调速系统仿真 154. 数控缠绕机树脂含量自控系统的设计 155. 软胶囊的单片机温度控制(硬件设计) 156. 空调温度控制单元的设计 157. 基于人工神经网络对谐波鉴幅 158. 基于单片机的鱼用投饵机自动控制系统的设计 159. 基于 MATLAB 的调压调速控制系统的仿真研究 160. 锅炉汽包水位控制系统 161. 基于单片机的无刷直流电机控制系统设计 162. 煤矿供电系统的保护设计——硬件电路的设计 163. 煤矿供电系统的保护设计——软件设计 164. 大容量电机的温度保护——软件设计 165. 大容量电机的温度保护 ——硬件电路的设计 166. 模块化机器人控制器设计 167. 电子式热分配表的设计开发 168. 中央冷却水温控制系统 169. 基于单片机的玻璃管加热控制系统设计 170. 基于 AT89C51 单片机的号音自动播放器设计 171. 基于单片机的普通铣床数控化设计 172. 基于 AT89C51 单片机的电源切换控制器的设计 173. 基于 51 单片机的液晶显示器设计 174. 手机电池性能检测 175. 自动门控制系统设计 176. 汽车侧滑测量系统的设计 177. 超声波测距仪的设计及其在倒车技术上的应用 178. 篮球比赛计时器设计 179. 基于单片机控制的红外防盗报警器的设计 180. 智能多路数据采集系统设计 181. 继电器保护毕业设计 182. 电力系统电压频率紧急控制装置研究 183. 用单片机控制的多功能门铃
电气自动化专业毕业论文题目

电气自动化专业毕业论文题目1。
无线比例电机转速遥控器的设计2。
简易数字电子称设计3. 红外线立体声耳机设计4。
单片机与PC 串行通信设计5。
100 路数字抢答器设计6. D 类功率放大器设计7。
铅酸蓄电池自动充电器8。
数字温度测控仪的设计9. 下棋定时钟设计10. 温度测控仪设计11. 数字频率计12。
数字集成功率放大器整体电路设计13. 数字电容表的设计14. 数字冲击电流计设计15. 数字超声波倒车测距仪设计16。
路灯控制器17。
扩音机的设计18。
交直流自动量程数字电压表19. 交通灯控制系统设计20. 简易调频对讲机的设计21。
峰值功率计的设计22。
多路温度采集系统设计23。
多点数字温度巡测仪设计24. 电机遥控系统设计25。
由TDA2030A 构成的BTL 功率放大器的设计26. 超声波测距器设计27。
4—15V 直流电源设计28. 家用对讲机的设计29. 流速及转速电路的设计30。
基于单片机的家电远程控制系统设计31。
万年历的设计32。
单片机与计算机USB 接口通信33。
LCD 数字式温度湿度测量计34. 逆变电源设计35。
基于单片机的电火箱调温器36. 表面贴片技术SMT 的广泛应用及前景37。
中型电弧炉单片机控制系统设计38。
中频淬火电气控制系统设计39。
新型洗浴器设计40. 新型电磁开水炉设计41。
基于电流型逆变器的中频冶炼电气设计电气自动化专业毕业设计42. 6KW 电磁采暖炉电气设计43。
64 点温度监测与控制系统44. 电力市场竞价软件设计45. DS18B20 温度检测控制46。
步进电动机驱动器设计47. 多通道数据采集记录系统48。
单片机控制直流电动机调速系统49。
IGBT 逆变电源的研究与设计50。
软开关直流逆变电源研究与设计51。
单片机电量测量与分析系统52。
温湿度智能测控系统53. 现场总线控制系统设计54。
加热炉自动控制系统55。
电容法构成的液位检测及控制装置56. 基于CD4017 电平显示器57. 无线智能报警系统58。
一种低功耗同步BUCK芯片的过零检测电路设计

一种低功耗同步BUCK芯片的过零检测电路设计一种低功耗同步BUCK芯片的过零检测电路设计摘要:同步BUCK芯片在轻载模式下会产生因电感电流倒灌而产生的额外功耗。
针对这一问题,设计了一款过零检测电路。
该电路采用两个不同电压门限采集技术,并对门限进行温度补偿,有效限制了电感电流的倒灌;同时设计了边沿隐匿电路,避免电路切换时引起的误触发。
该过零检测电路基于0.25?滋m BCD工艺设计,利用HSPICE仿真验证。
当系统温度在-40℃~120℃变化时,负阈值电压容差仅为0.2mV,实现了高精度的过零检测,且静态功耗极低。
关键词:BUCK变换器;轻载模式;过零检测;不连续导通模式0引言近年来,同步BUCK型开关电源因高效率、低功耗的优势被广泛用作各种电子设备的电源,其采用同步整流MOSFET代替传统的续流二极管,是目前比较常用的一类开关电源拓扑。
同步BUCK变换器在满负载情况时工作于连续电流模式(CCM);但在轻负载情况下,当负载电流降低至低于电感电流时,会出现电感电流倒灌现象,此时变换器需要工作在非连续电流模式(DCM)下以降低损耗。
通常,同步变换器实现DCM模式是比较困难的,尤其是在高频应用中,这时往往需要一个高速、高精度的电感电流过零检测电路[1-3],在轻载时能及时关断同步续流管,降低变换器轻载模式下功耗。
本文提出了一种低功耗同步BUCK芯片的过零检测电路,采用双电压门限技术及门限温度补偿电路,有效限制了电感电流的倒灌。
详细介绍了同步BUCK变换器DCM工作模式及过零检测机制,通过仿真验证了该过零检测电路工作性能良好。
1同步BUCK变换器DCM工作模式及过零检测机制1.1同步BUCK变换器DCM工作模式同步BUCK型变换器的拓扑结构,其采用同步整流MOSFET代替传统异步变换器的续流二极管,从而极大提高电源转换效率。
其中,M1为高端开关管,M2为同步整流MOSFET,Driver信号是带有死区时间控制的脉宽调制方波,驱动M1及M2的导通和关断。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于单片机的过零检测控制系统的设计如下图所示为按上述思想设计的电压正向过零检测电路。
220V的交流电首先经过电阻分压,然后进行光电耦合,假设输入的是A相电压,则在A相电压由负半周向正半周转换时,图中三极管导通并工作在饱和状态,会产生一个下降沿脉冲送入ADμC812的INT0引脚使系统进入中断程序。
微机系统进入中断程序后,发出采样命令并从采样保持器读取无功电流值Iqm,这个无功电流即为A相的无功电流,经过1/4个周期电压达到最大值,此时对电压进行采样,得到UM,由UM=1.414U可以得到电压有效值U。
过零检测及单片机调压首先用PWM(脉宽调制)方法用于可控硅控制是有条件的,即调制频率不能大于市电频率(50Hz),也就是周期不能小于20mS,否则就不能达到调制作用,调制频率超过市电频率时,可控硅即处于连续导通状态而不能达到调压目的。
只有调制频率低于市电频率才能起到调压目的,即限制市电的周波通过可控硅的数量而起到调压的目的。
因此用该种方法调制的电压周波数一定是小于50HZ,超过了人眼视觉暂留效应,此就是用于调光产生闪烁的原因。
该调压方法用在调功或对脉动电压不敏感的用途上尚可。
如果采用可控硅调压用在调光上,须采用移相的调制方法,可使光连续可调。
采用移相方法就需过零检测作为移相基点。
过零检测其实并不难,如果要求调压比不是很高采用简单的方法即可奏效;用一只三极管即可。
用单片机进行移相调压控制可以做得很精。
/********************************************************************************/ #i nclude <pic.h>__CONFIG (CPD&PROTECT&BOREN&MCLRDIS&PWRTEN&WDTEN&INTIO);/********************************************************************************/ //void init (void);/********************************************************************************/ //bit fg_pw,fg_vs,fg_zq;volatile unsigned char fg_count;volatile unsigned int time1_temp,buff;/********************************************************************************/ #define powon GPIO|=0B00110000#define powoff GPIO&=0B00001111#define vpp GPIO2#define feedback GPIO0/********************************************************************************/ void init (void){ CLRWDT();TRISIO=0B11001111;WPU=1;IOCB=4; //使能过零信号中断VRCON=0;PIE1=1;OPTION=0;INTCON&=7;INTCON|=0B10001000;CMCON=7;T1CON&=1;T1CON|=0x10;}/*********************************************************************************/ void interrupt isr_power (void){ GPIO=GPIO;if (TMR1IF&&TMR1ON){ TMR1IF=0;if (fg_pw){ if (!fg_vs){powon;fg_vs=1;TMR1L=112;TMR1H=0xfe;} //触发宽度400US(256+144)else{fg_vs=0;powoff; //关闭TMR1ON=0;}}else {powoff;fg_count=0;}}if (GPIF){ GPIF=0;if (fg_pw){fg_zq=1;TMR1H=(time1_temp>>8);TMR1L=(time1_temp&0xff);//if (vpp==0) TMR1H-=3; //上下沿检测,下沿时间补偿(3*256)US TMR1ON=1;}else{ if (vpp) {TMR1ON=1;TMR1L=TMR1H=0;} //l-->helse{time1_temp=(TMR1H<<8|TMR1L); //h-->lTMR1ON=0;TMR1L=TMR1H=0;time1_temp=~time1_temp; //同步信号周期检测(时间)time1_temp+=1000; //一个半周时间中缩短1MS开始触发buff=time1_temp;if (++fg_count>=4) fg_pw=1;//连续周期检测4次}}}}/************************************************************************************/void main (void){ unsigned int i;TMR0=0;init();while (1){ if (fg_pw&&fg_zq){ fg_zq=0;if (feedback) {if(time1_temp<0xffff-1000) time1_temp+=20;}//功率(电压)上限 else{if (time1_temp>buff)time1_temp-=20;} //功率(电压)下限for (i=1000;i!=0;i--) {;}init();}}}光电隔离抗干扰技术及应用摘要:在电子电路系统中,不可避免地存在各种各样的干扰信号,若电路的抗干扰能力差将导致测量、控制准确性的降低,甚至产生误动作,从而带来破坏性的后果。
因此,若硬件上采用一些设计技术,破坏干扰信号进入测控系统的途径,可有效地提高系统的抗干扰能力。
事实证明,采用隔离技术是一种简便且行之有效的方法。
隔离技术是破坏“地”干扰途径的抗干扰方法,硬件上常用光电耦合器件实现电→光→电的隔离,它能有效地破坏干扰信号的进入,可靠地实现信号的隔离,并容易构成各种功能状态。
关键词:光电耦合器隔离抗干扰1.光电耦合器件简介光电耦合器件是把发光器件(如发光二极管)和光敏器件(如光敏三极管)集成在一起,通过光线实现耦合构成电一光和光一电的转换器件。
图1所示为常用的三极管型光电耦合器原理图。
当电信号送人光电耦合器的输入端时,发光二极管通过电流而发光,光敏元件受到光照后产生电流,CE导通;当输入端无信号,发光二极管不亮,光敏三极管截止,CE不通。
对于数字量,当输人为低电子“0”时,光敏三极管截止,输出为高电平“1”;当输人为高电平“1”时,光敏三极管饱和导通,输出为低电平“0”。
若基极有引出线则可满足温度补偿、检测调制要求。
光电耦合器之所以在传输信号的同时能有效地抑制尖脉冲和各种噪声干扰,使通道上的信噪比大为提高,主要有以下几方面的原因:(1)光电耦合器的输入阻抗很小,只有几百欧姆,而干扰源的阻抗较大,通常为105~106Ω。
据分压原理可知,即使干扰电压的幅度较大,但馈送到光电耦合器输入端的噪声电压会很小,只能形成很微弱的电流,由于没有足够的能量而不能使二极管发光,从而被抑制掉了。
(2)光电耦合器的输入回路与输出回路之间没有电气联系,也没有共地;发光管和受光器之间的耦合电容很小(2pF以内)的分布电容极小,而绝缘电阻又很大,因此回路一边的各种干扰噪声都很难通过光电耦合器馈送到另一边去,避免了共阻抗耦合的干扰信号的产生。
(3)光电耦合器可起到很好的安全保障作用,即使当外部设备出现故障,甚至输入信号线短接时,也不会损坏仪表。
因为光耦合器件的输入回路和输出回路之间可以承受几千伏的高压。
(4)光电耦合器的响应速度极快,其响应延迟时间只有10μs左右,适于对响应速度要求很高的场合。
2.光电隔离技术的应用2.1 微机接口电路中的光电隔离微机有多个输入端口,接收来自远处现场设备传来的状态信号,微机对这些信号处理后,输出各种控制信号去执行相应的操作。
在现场环境较恶劣时,会存在较大的噪声干扰,若这些干扰随输入信号一起进入微机系统,会使控制准确性降低,产生误动作。
因而,可在微机的输入和输出端,用光耦作接口,对信号及噪声进行隔离。
典型的光电耦合电路如图2所示。
该电路主要应用在“A/D转换器”的数字信号输出,及由CPU发出的对前向通道的控制信号与模拟电路的接口处,从而实现在不同系统间信号通路相联的同时,在电气通路上相互隔离,并在此基础上实现将模拟电路和数子电路相互隔离,起到抑制交叉串扰的作用。
2.2 功率驱动电路中的光电隔离在微机控制系统中,大量应用的是开关量的控制,这些开关量一般经过微机的I/O输出,而I/O的驱动能力有限,一般不足以驱动一些点磁执行器件,需加接驱动接口电路,为了避免微机受到干扰,须采取隔离措施。
如晶闸管所在的主电路一般是交流强电回路,电压较高,电流较大,不易与微机直接相连,可应用光耦合器将微机控制信号与晶闸管触发电路进行隔离,电路实例如图3所示。
在马达控制电路中,也可采用光耦来把控制电路和马达高压电路隔离开。
马达靠MOSFET或IGBT功率管提供驱动电流,功率管的开关控制信号和大功率管之间需隔离放大级。
在光耦隔离级一放大器级一大功率管的连接形式中,要求光耦具有高输出电压、高速和高共模抑制。
2.3 远距离的隔离传送在计算机应用系统中,由于测控系统与被测和被控设备之间不可避免地要进行长线传输,信号在传输过程中很易受到干扰,导致传输信号发生畸变或失真,另外,在通过较长电缆连接的相距较远的设备之间,常因设备间的地线电位差,导致地环路电流,对电路形成差模干扰电压。
为确保长线传输的可靠性,可采用光电耦合隔离措施,将2个电路的电气连接隔开,切断可能形成的环路,使他们相互独立,提高电路系统的抗干扰性能。
若传输线较长,现场干扰严重,可通过两级光电耦合器将长线完全“浮置”起来,如图4所示。
长线的"浮置"去掉了长线两端间的公共地线,不但有效消除了各电路的电流经公共地线时所产生噪声电压形成相互窜扰,而且也有效地解决了长线驱动和阻抗匹配问题;同时,受控设备短路时,还能保护系统不受损害。