Matlab曲线拟合及工具箱简介

合集下载

Matlab各工具箱功能简介(部分)

Matlab各工具箱功能简介(部分)
对于分析多维数据,Statistics and Machine Learning Toolbox 可让您通过序列特征选择、逐步回归、主成份分析、规则化和其他降维方法确定影响您的模型的主要变量或特征。该工具箱提供了受监督和不受监督机器学习算法,包括支持向量机(SVM)、促进式 (boosted) 和袋装 (bagged) 决策树、k-最近邻、k-均值、k-中心点、分层聚类、高斯混合模型和隐马尔可夫模型。4 Curve Fitting Toolbox 曲线拟合工具箱Curve Fitting Toolbox™ 提供了用于拟合曲线和曲面数据的应用程序和函数。使用该工具箱可以执行探索性数据分析,预处理和后处理数据,比较候选模型,删除偏值。您可以使用随带的线性和非线性模型库进行回归分析,也可以指定您自行定义的方程式。该库提供了优化的解算参数和起始条件,以提高拟合质量。该工具箱还提供非参数建模方法,比如样条、插值和平滑。 在创建一个拟合之后,您可以运用多种后处理方法进行绘图、插值和外推,估计置信区间,计算积分和导数。5 Optimization Toolbox 优化工具箱Optimization Toolbox™ 提供了寻找最小化或最大化目标并同时满足限制条件的函数。工具箱中包括了线性规划、混合整型线性规划、二次规划、非线性优化、非线性最小二乘的求解器。您可以使用这些求解器寻找连续与离散优化问题的解决方案、执行折衷分析、
Toolbox工具箱序号工具箱备注一、数学、统计与优化1 Symbolic Math Toolbox符号数学工具箱Symbolic Math Toolbox™提供用于求解和推演符号运算表达式以及执行可变精度算术的函数。您可以通过分析执行微分、积分、化简、转换以及方程求解。另外,还可以利用符号运算表达式为MATLAB、Simulink和Simscape™生成代码。®®Symbolic Math Toolbox包含MuPAD语言,并已针对符号运算表达式的处理和执®行进行优化。该工具箱备有MuPAD函数库,其中包括普通数学领域的微积分和线性代数,以及专业领域的数论和组合论。此外,还可以使用MuPAD语言编写自定义的符号函数和符号库。MuPAD记事本支持使用嵌入式文本、图形和数学排版格式来记录符号运算推导。您可以采用HTML或PDF的格式分享带注释的推导。2 Partial Differential Euqation Toolbox偏微分方程工具箱偏微分方程工具箱™提供了用于在2D,3D求解偏微分方程(PDE)以及一次使用有限元分析。它可以让你指定和网格二维和三维几何形状和制定边界条件和公式。你能解决静态,时域,频域和特征值问题在几何领域。功能进行后处理和绘图效果使您能够直观地探索解决方案。你可以用偏微分方程工具箱,以解决从标准问题,如扩散,传热学,结构力学,静电,静磁学,和AC电源电磁学,以及自定义,偏微分方程的耦合系统偏微分方程。3 Statistics Toolbox统计学工具箱Statistics and Machine Learning Toolbox提供运用统计与机器学习来描述、分析数据和对数据建模的函数和应用程序。您可以使用用于探查数据分析的描述性统计和绘图,使用概率分布拟合数据,生成用于Monte Carlo仿真的随机数,以及执行假设检验。回归和分类算法用于依据数据执行推理并构建预测模型。

matlab拟合工具箱的使用

matlab拟合工具箱的使用

matlab拟合工具箱使用2011-06-17 12:531.打开CFTOOL工具箱。

在Matlab 6.5以上的环境下,在左下方有一个"Start"按钮,如同Windows的开始菜单,点开它,在目录"Toolboxes"下有一个"Curve Fitting",点开"Curve Fitting Tool",出现数据拟合工具界面,基本上所有的数据拟合和回归分析都可以在这里进行。

也可以在命令窗口中直接输入”cftool”,打开工具箱。

2.输入两组向量x,y。

首先在Matlab的命令行输入两个向量,一个向量是你要的x坐标的各个数据,另外一个是你要的y坐标的各个数据。

输入以后假定叫x向量和y向量,可以在workspace里面看见这两个向量,要确保这两个向量的元素数一致,如果不一致的话是不能在工具箱里面进行拟合的。

例如在命令行里输入下列数据:x = [196,186, 137, 136, 122, 122, 71, 71, 70, 33];y=[0.012605,0.013115,0.016866,0.014741,0.022353,0.019278,0.041803,0.0 38026,0.038128,0.088196];3.数据的选取。

打开曲线拟合共工具界面,点击最左边的"Data..."按钮,出现一个Data对话框,在Data Sets页面里,在X Data选项中选取x向量,Y Data 选项中选取y向量,如果两个向量的元素数相同,那么Create data set按钮就激活了,此时点击它,生成一个数据组,显示在下方Data Sets列表框中。

关闭Data对话框。

此时Curve Fitting Tool窗口中显示出这一数据组的散点分布图。

4.曲线拟合(幂函数power)。

点击Fitting...按钮,出现Fitting对话框,Fitting对话框分为两部分,上面为Fit Editor,下面为Table of Fits,有时候窗口界面比较小,Fit Editor 部分会被收起来,只要把Table of Fits上方的横条往下拉就可以看见Fit Editor。

matlab 数据 曲线拟合

matlab 数据 曲线拟合

matlab 数据曲线拟合
在MATLAB中,曲线拟合是通过拟合函数来找到一条曲线,使其
最好地逼近给定的数据点。

曲线拟合在数据分析和模型建立中非常
常见,可以用于预测、趋势分析和模式识别等领域。

在MATLAB中,
有多种方法可以进行曲线拟合,包括多项式拟合、指数拟合、对数
拟合、幂函数拟合等。

首先,要进行曲线拟合,需要准备好要拟合的数据。

在MATLAB 中,可以使用plot函数将数据点绘制成散点图,然后再用拟合函数
拟合这些数据点。

拟合函数的选择取决于数据的特点和拟合的要求。

例如,如果数据的变化趋势与指数函数相似,可以选择使用fit函
数进行指数拟合;如果数据呈现多项式的变化规律,可以使用
polyfit函数进行多项式拟合。

另外,在MATLAB中,也可以使用cftool命令来进行曲线拟合。

cftool是MATLAB提供的一个交互式工具,可以通过图形界面直观
地进行曲线拟合操作。

用户可以导入数据,选择拟合类型,调整拟
合参数,实时观察拟合效果,并且可以导出拟合结果供后续分析使用。

除了以上提到的方法,MATLAB还提供了丰富的工具箱和函数,如curve fitting toolbox、lsqcurvefit等,用于更复杂和高级的曲线拟合需求。

这些工具可以帮助用户处理各种不同类型的数据,并进行更精确的曲线拟合。

总之,MATLAB提供了多种方法和工具用于数据的曲线拟合,用户可以根据自己的需求和数据的特点选择合适的方法进行曲线拟合分析。

希望这些信息能够帮助你更好地理解在MATLAB中进行曲线拟合的方法和技巧。

matlab曲线拟合 - 非常好非常全面的介绍M拟合的参考资料

matlab曲线拟合 - 非常好非常全面的介绍M拟合的参考资料

Mathworks Tech-Note 1508 曲线拟合向导1.介绍2. Mathworks 产品的曲线拟合特色a.曲线拟合工具箱(Curve Fitting Toolbox)b.Matlab 内建函数与其他的带有曲线拟合能力的附加产品(工具箱)c.线性曲线拟合d.非线性曲线拟合3.加权曲线拟合方法a.曲线拟合工具箱b.统计工具箱c.优化工具箱4.利用曲线拟合工具箱提高曲线拟合结果5.其他的相关资料第1节:简介MA TLAB即有内建的解决很多通常遇到的曲线拟合问题的能力,又具有附加这方面的产品。

本技术手册描述了几种拟合给定数据集的曲线的方法,另外,本手册还解释了加权曲线拟合、针对复数集的曲线拟合以及其他一些相关问题的拟合技巧。

在介绍各种曲线拟合方法中,采用了典型例子的结合介绍。

第2节:MathWorks产品的曲线拟合特色MATLAB有可以用于曲线拟合的内建函数。

MathWorks公式也提供了很多工具箱可以用于曲线拟合。

这些方法可以用来做线性或者非线性曲线拟合。

MATLAB也有一个开放的工具箱――曲线拟合工具箱(Curve Fitting Toolbox),她可以用于参数拟合,也可以用于非参数拟合。

本节将介绍曲线拟合工具箱与其他工具箱、以及各种MA TLAB可以用于曲线拟合的内建函数的详细特征。

a.曲线拟合工具箱曲线拟合工具箱是专门为数据集合进行曲线拟合而设计的。

这个工具箱集成了用MA TLAB建立的图形用户界面(GUIs)和M文件函数。

•利用工具箱的库方程(例如线性,二次,高阶多项式等)或者是用户自定义方程(局限于用户的想象力)可以进行参数拟合。

当你想找出回归系数以及他们背后的物理意义的时候就可以采用参数拟合。

•通过采用平滑样条或者其他各种插值方法,你就可以进行非参数拟合。

当回归系数不具有物理意义并且不在意他们的时候,就采用非参数拟合方法。

曲线拟合工具箱提供了如下功能:•数据回归,譬如截面(?sectioning)与平滑;•标准线性最小二乘拟合,非线性最小二乘拟合,加权最小二乘拟合,约束二乘(constrained least squares)拟合以及稳健(robust)拟合;•根据诸如R2以及误差平方和(SSE)确定的拟合性能的统计特征。

MATLAB常用工具箱与函数库介绍

MATLAB常用工具箱与函数库介绍

MATLAB常用工具箱与函数库介绍1. 统计与机器学习工具箱(Statistics and Machine Learning Toolbox):该工具箱提供了各种统计分析和机器学习算法的函数,包括描述统计、概率分布、假设检验、回归分析、分类与聚类等。

可以用于进行数据探索和建模分析。

2. 信号处理工具箱(Signal Processing Toolbox):该工具箱提供了一系列信号处理的函数和算法,包括滤波、谱分析、信号生成与重构、时频分析等。

可以用于音频处理、图像处理、通信系统设计等领域。

3. 控制系统工具箱(Control System Toolbox):该工具箱提供了控制系统设计与分析的函数和算法,包括系统建模、根轨迹设计、频域分析、状态空间分析等。

可以用于控制系统的设计和仿真。

4. 优化工具箱(Optimization Toolbox):该工具箱提供了各种数学优化算法,包括线性规划、非线性规划、整数规划、最优化等。

可以用于寻找最优解或最优化问题。

5. 图像处理工具箱(Image Processing Toolbox):该工具箱提供了图像处理和分析的函数和算法,包括图像滤波、边缘检测、图像分割、图像拼接等。

可以用于计算机视觉、医学影像处理等领域。

6. 神经网络工具箱(Neural Network Toolbox):该工具箱提供了神经网络的建模和训练工具,包括感知机、多层前馈神经网络、循环神经网络等。

可以用于模式识别、数据挖掘等领域。

7. 控制系统设计工具箱(Robust Control Toolbox):该工具箱提供了鲁棒控制系统设计与分析的函数和算法,可以处理不确定性和干扰的控制系统设计问题。

8. 信号系统工具箱(Signal Systems Toolbox):该工具箱提供了分析、设计和模拟线性时不变系统的函数和算法。

可以用于信号处理、通信系统设计等领域。

9. 符号计算工具箱(Symbolic Math Toolbox):该工具箱提供了符号计算的功能,可以进行符号表达式的运算、求解方程、求解微分方程等。

matlab toolbox类型

matlab toolbox类型

matlab toolbox类型Matlab Toolbox 类型Matlab 是一种强大的数值计算与科学编程工具,由于其卓越的性能和丰富的功能,被广泛应用于科学、工程和金融等领域。

为了更好地满足不同领域用户的需求,Matlab 提供了丰富的工具箱(Toolbox),包含了各种专门用于特定领域的函数和工具。

本文将介绍 Matlab Toolbox 的类型及其应用。

一、控制系统工具箱(Control System Toolbox)控制系统工具箱是 Matlab 中用于设计、分析和模拟控制系统的重要工具箱。

它包含了许多在控制工程中常用的函数和算法,如PID 控制器设计、稳定性分析、系统响应等。

控制系统工具箱的使用可以帮助工程师快速实现对控制系统的建模、仿真和优化。

二、图像处理工具箱(Image Processing Toolbox)图像处理工具箱是专门用于数字图像处理的工具箱,提供了丰富的图像处理函数和算法。

它可以帮助用户实现图像的滤波、增强、分割、配准等操作,还支持图像的压缩和编码。

图像处理工具箱被广泛应用于计算机视觉、医学影像分析、遥感图像处理等领域。

三、信号处理工具箱(Signal Processing Toolbox)信号处理工具箱提供了丰富的信号处理函数,用于设计和分析各种类型的信号。

这些函数包括了离散傅里叶变换(DFT)、滤波器设计、频谱分析等。

信号处理工具箱在音频处理、通信系统设计、生物医学信号处理等领域具有广泛的应用。

四、机器学习工具箱(Machine Learning Toolbox)机器学习工具箱是 Matlab 中用于实现各种机器学习算法的工具箱。

它包含了常用的分类、回归、聚类、降维等算法,如支持向量机(SVM)、决策树、神经网络等。

机器学习工具箱的使用使得用户能够在数据挖掘、模式识别、预测分析等任务中实现自动化的学习与决策。

五、优化工具箱(Optimization Toolbox)优化工具箱是用于解决数学最优化问题的工具箱,提供了各种优化算法和函数。

使用MATLAB曲线拟合工具箱做曲线拟合(2013)

使用MATLAB曲线拟合工具箱做曲线拟合(2013)

使用 MATLAB 曲线拟合工具箱做曲线拟合在实际的工程应用领域和经济应用领域中,人们往往通过实验或者观测得到一些数据, 为了从这些数据中找到其内在的规律性, 也就是求得自变量和因变量之间的近似函数关系表 达式。

这类问题可以归结曲线拟合。

1.MATLAB 曲线拟合工具箱简介MATLAB 做曲线拟合可以通过内建函数或者拟合工具箱(Curve Fitting Toolbox )。

这个 工具箱集成了用MATLAB 建立的图形用户界面(GUIs )和 M 文件函数。

利用这个工具箱 可以进行参数拟合(当想找出回归系数以及他们背后的物理意义的时候就可以采用参数拟 合),或者通过采用平滑样条或者其他各种插值方法进行参数拟合(当回归系数不具有物理 意义并且不在意他们的时候,就采用非参数拟合)。

利用这个界面,可以快速地在简单易用 的环境中实现许多基本的曲线拟合。

2.实际例子应用数学模型书上关于汽车刹车距离模型,建立的模型如下:2 1 d t v kv=+ 其中v 是汽车速度, 1 t 是反应时间,按大多数人平均取 0.75 秒,d 是刹车距离。

交通部 门提供了一组刹车的距离实际数据如表1 所示(刹车距离括号内为最大值)。

表 1车速(英尺 秒)29.3 44 58.7 73.3 88 102.7 1173 刹车距离 (英尺) 42(44) 73.5(78) 116(124) 173(186) 248(268) 343(372) 464(506) 利用表 1 的数据,我们拟合在 MATLAB 的 command window 里输入:>>v=[29.3 44 58.7 73.3 88 102.7 117.3];>>d1=[42 73.5 116 173 248 343 464];>>cftool %cftool 是打开拟合工具箱的命令;则跳出曲线拟合工具箱的界面如图 1 所示, 如果输入数据非常大, 并且每次输入有困难, 可以新建一个 M 文件,依次输入上述命令行,保存之后执行,同样可以进入曲线拟合工具 箱界面。

Matlab数据拟合与曲线拟合方法

Matlab数据拟合与曲线拟合方法

Matlab数据拟合与曲线拟合方法【引言】数据拟合与曲线拟合是在科学研究和工程应用中常见的问题之一。

随着大数据时代的到来,数据拟合与曲线拟合方法在各个领域的重要性日益凸显。

本文将介绍基于Matlab的数据拟合与曲线拟合方法,包括最小二乘法、多项式拟合、样条拟合、指数拟合等,以及在实际应用中的一些注意事项。

【数据拟合方法一:最小二乘法】最小二乘法是一种常见的数据拟合方法,它通过最小化残差平方和,寻找最优解。

在Matlab中,我们可以使用内置函数“polyfit”来实现最小二乘法拟合。

该函数可以使用一条直线或多项式进行拟合,并返回拟合参数。

对于非线性函数,可以通过线性化或迭代求解的方式进行。

【数据拟合方法二:多项式拟合】多项式拟合是一种常用的数据拟合方法,它用一个多项式函数来近似拟合数据。

在Matlab中,我们可以使用“polyfit”函数实现多项式拟合。

该函数可以拟合任意次数的多项式,并返回拟合系数。

然后,利用这些系数可以计算拟合曲线,并评估拟合的准确性。

【数据拟合方法三:样条拟合】样条拟合是一种平滑且灵活的数据拟合方法,它基于样条函数的概念,将数据划分为多个区间,并在每个区间内拟合一个多项式。

在Matlab中,我们可以使用“spline”函数来实现样条拟合。

该函数需要提供拟合的数据点和拟合阶数,并返回拟合曲线。

【数据拟合方法四:指数拟合】指数拟合是一种适用于指数增长或衰减趋势的数据拟合方法,它将数据拟合为一个指数函数。

在Matlab中,我们可以使用“fit”函数和指数模型来实现指数拟合。

该函数可以自动调整模型参数,使拟合曲线与数据最匹配。

通过评估拟合结果的可靠性指标,我们可以判断拟合是否准确。

【数据拟合实例:气象数据分析】为了更好地理解数据拟合方法的应用,我们以气象数据分析为例进行探讨。

假设我们有一组记录了气温变化的数据点,并希望找到一个拟合曲线以准确地预测未来的气温变化情况。

通过应用多项式拟合或样条拟合方法,我们可以得到一个平滑的曲线,并计算出拟合曲线与实际数据的拟合度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MATLAB曲线拟合
一、单一变量的曲线逼近
Matlab有一个功能强大的曲线拟合工具箱cftool ,使用方便,能实现多种类型的线性、非线性曲线拟合。

下面结合我使用的Matlab
R2007b 来简单介绍如何使用这个工具箱。

假设我们要拟合的函数形式是y=A*x*x + B*x, 且A>0,B>0 。

1、在命令行输入数据:
》x=[110.3323 148.7328 178.064 202.8258033 224.7105 244.5711 262.908 280.0447 296.204 311.5475];
》y=[5 10 15 20 25 30 35 40 45 50];
2、启动曲线拟合工具箱
》cftool
3、进入曲线拟合工具箱界面“Curve Fitting tool”
(1)点击“Data”按钮,弹出“Data”窗口;
(2)利用X data和Y data的下拉菜单读入数据x,y,可修改数据集名“Data set name”,然后点击“Create data set”按钮,退出“Data”窗口,返回工具箱界面,这时会自动画出数据集的曲线图;
(3)点击“Fitting”按钮,弹出“Fitting”窗口;
(4)点击“New fit”按钮,可修改拟合项目名称“Fit name”,通过“Data
set”下拉菜单选择数据集,然后通过下拉菜单“Type of fit”选择拟合曲线的类型,工具箱提供的拟合类型有:
Custom Equations:用户自定义的函数类型
Exponential:指数逼近,有2种类型,a*exp(b*x) 、a*exp(b*x) + c*exp(d*x)
Fourier:傅立叶逼近,有7种类型,基础型是a0 + a1*cos(x*w) + b1*sin(x*w)
Gaussian:高斯逼近,有8种类型,基础型是a1*exp(-((x-b1)/c1)^2) Interpolant:插值逼近,有4种类型,linear、nearest neighbor、cubic spline、shape-preserving
Polynomial:多形式逼近,有9种类型,linear ~、quadratic ~、cubic ~、4-9th degree ~
Power:幂逼近,有2种类型,a*x^b 、a*x^b + c
Rational:有理数逼近,分子、分母共有的类型是linear ~、quadratic ~、cubic ~、4-5th degree ~;此外,分子还包括constant型Smoothing Spline:平滑逼近(翻译的不大恰当,不好意思)
Sum of Sin Functions:正弦曲线逼近,有8种类型,基础型是
a1*sin(b1*x + c1)
Weibull:只有一种,a*b*x^(b-1)*exp(-a*x^b)
选择好所需的拟合曲线类型及其子类型,并进行相关设置:
——如果是非自定义的类型,根据实际需要点击“Fit options”按钮,
设置拟合算法、修改待估计参数的上下限等参数;
——如果选Custom Equations,点击“New”按钮,弹出自定义函数等式窗口,有“Linear Equations线性等式”和“G eneral Equations构造等式”两种标签。

在本例中选Custom Equations,点击“New”按钮,选择“General Equations”标签,输入函数类型y=a*x*x + b*x,设置参数a、b的上下限,然后点击OK。

(5)类型设置完成后,点击“Apply”按钮,就可以在Results框中得到拟合结果,如下例:
general model:
f(x) = a*x*x+b*x
Coefficients (with 95% confidence bounds):
a = 0.009194 (0.009019, 0.00937)
b = 1.78e-011 (fixed at bound)
Goodness of fit:
SSE: 6.146
R-square: 0.997
Adjusted R-square: 0.997
RMSE: 0.8263
同时,也会在工具箱窗口中显示拟合曲线。

这样,就完成一次曲线拟合啦,十分方便快捷。

当然,如果你觉得拟合效果不好,还可以在“Fitting”窗口点击“New fit”按钮,按照步骤(4)~(5)进行一次新的拟合。

不过,需要注意的是,cftool 工具箱只能进行单个变量的曲线拟合,即待拟合的公式中,变量只能有一个。

对于混合型的曲线,例如y = a*x + b/x ,工具箱的拟合效果并不好。

相关文档
最新文档