第11章组合逻辑电路

合集下载

集成电路设计基础第11章数字集成vlsi系统设计基础

集成电路设计基础第11章数字集成vlsi系统设计基础
时序逻辑电路分析
通过对时序逻辑电路的输入、输出及状态进行分析,了解其工作原理和特性。
时序逻辑电路设计
根据实际需求,选用合适的触发器和组合逻辑电路,设计出满足特定功能的时序逻辑电路。同时 需要考虑时序问题,确保电路的正确性和稳定性。
03
数字集成VLSI系统关键技术
高性能计算技术
并行处理技术
通过多核处理器、GPU加速等技术提高计算能力。
逻辑综合
将HDL代码转换为门级网表,优化电路性能并降低功 耗。
布局布线
根据电路需求和工艺要求,将门级网映射到具体的 芯片上,实现电路的物理实现。
时序分析
对布局布线后的电路进行时序分析,确保电路时序的 正确性和性能。
仿真验证与测试方法
前仿真
在电路设计阶段进行仿真验证, 检查电路功能和性能是否符合设 计要求。
THANKS
感谢观看
集成电路设计基础第11章数 字集成vlsi系统设计基础
• 数字集成VLSI系统概述 • 数字集成VLSI系统基本原理 • 数字集成VLSI系统关键技术 • 数字集成VLSI系统实现方法
• 数字集成VLSI系统应用实例 • 数字集成VLSI系统前沿研究动态
01
数字集成VLSI系统概述
定义与发展历程
柔性电子在数字集成VLSI中潜在价值
柔性电子器件
利用柔性基底和可弯曲的电 子材料制造柔性电子器件, 实现可穿戴、可折叠的数字
集成VLSI系统。
生物兼容性
柔性电子具有良好的生物兼 容性,可用于生物医学应用 中与人体紧密接触的电子设
备。
轻量化与便携性
柔性电子器件具有轻量化、 薄型化和可弯曲的特点,便 于携带和集成到各种移动设 备中。
应用领域及市场需求

数字电子技术基础(侯建军)

数字电子技术基础(侯建军)

§1-2 逻辑代数基础
逻辑变量及基本逻辑运算 逻辑函数及其表示方法
逻辑代数的运算公式和规则
逻辑变量及基本逻辑运算
一、逻辑变量
取值:逻辑 0 、逻辑 1 。逻辑 0 和逻辑 1 不代 表数值大小,仅表示相互矛盾、相互对立 的两种逻辑状态
二、基本逻辑运算 与运算 或运算 非运算
返 回
与逻辑
只有决定某一事件的所有条件全部具备, 这一事件才能发生
乘基取整法 :小数乘以目标数制的基数( R=2 ),第 1一次相乘结果的整数部分为目的数的最高位 0 1 K0 0 -1,将其小 数部分再乘基数依次记下整数部分,反复进行下去, 直 K-1 K-2 K-3 K-4 K-5
由此得:(0.65)10=(0.10100)2 综合得:(81.65)10=(1010001.10100)2
逻辑表达式
―-‖非逻辑运算符
F= A
逻辑符号 1 A
F
三、复合逻辑运算 与非逻辑运算 或非逻辑运算 与或非逻辑运算
或逻辑真值表
A 0 0 1 1 B 0 1 0 1 F 0 1 1 1 逻辑符号 A 1 B
F
或逻辑运算符,也有 N个输入: 用“∨”、“∪”表 逻辑表达式 示 F= A + B+ ...+
F= A + B
N
返 回
非逻辑
当决定某一事件的条件满足时,事件不发 返 回 生;反之事件发生,
非逻辑真值表 A F 0 1 1 0
§1-1 数制与编码
进位计数制 数制转换
数值数据的表示
常用的编码
§1-2 逻辑代数基础
逻辑变量及基本逻辑运算 逻辑函数及其表示方法
逻辑代数的运算公式和规则

第章组合逻辑电路习题解答

第章组合逻辑电路习题解答

第章组合逻辑电路习题解答公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]复习思考题3-1 组合逻辑电路的特点从电路结构上看,组合电路只由逻辑门组成,不包含记忆元件,输出和输入之间无反馈。

任意时刻的输出仅仅取决于该时刻的输入,而与电路原来的状态无关,即无记忆功能。

3-2 什么是半加什么是全加区别是什么若不考虑有来自低位的进位将两个1位二进制数相加,称为半加。

两个同位的加数和来自低位的进位三者相加,称为全加。

半加是两个1位二进制数相加,全加是三个1位二进制数相加。

3-3 编码器与译码器的工作特点编码器的工作特点:将输入的信号编成一个对应的二进制代码,某一时刻只能给一个信号编码。

译码器的工作特点:是编码器的逆操作,将每个输入的二进制代码译成对应的输出电平。

3-4 用中规模组合电路实现组合逻辑函数是应注意什么问题中规模组合电路的输入与输出信号之间的关系已经被固化在芯片中,不能更改,因此用中规模组合电路实现组合逻辑函数时要对所用的中规模组合电路的产品功能十分熟悉,才能合理地使用。

3-5 什么是竞争-冒险产生竞争-冒险的原因是什么如何消除竞争-冒险在组合逻辑电路中,当输入信号改变状态时,输出端可能出现虚假信号----过渡干扰脉冲的现象,叫做竞争冒险。

门电路的输入只要有两个信号同时向相反方向变化,这两个信号经过的路径不同,到达输入端的时间有差异,其输出端就可能出现干扰脉冲。

消除竞争-冒险的方法有:接入滤波电容、引入选通脉冲、修改逻辑设计。

习 题3-1试分析图所示各组合逻辑电路的逻辑功能。

解: (a)图 (1) 由逻辑图逐级写出表达式:)()(D C B A Y ⊕⊕⊕=(2) 化简与变换:令DC Y B A Y ⊕=⊕=21则 21Y Y Y ⊕=(3)由表达式列出真值表,见表。

输入中间变量中间变量 输出 A B C DY 1 Y 2 Y 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 10 1 1 0 00 1 1 0 1(4)分析逻辑功能:由真值表可知,该电路所能完成的逻辑功能是:判断四个输入端输入1的情况,当输入奇数个1时,输出为1,否则输出为0。

组合逻辑电路 课后答案

组合逻辑电路   课后答案

第4章[题].分析图电路的逻辑功能,写出输出的逻辑函数式,列出真值表,说明电路逻辑功能的特点。

图P4.1B YAP 56P P =图解:(1)逻辑表达式()()()5623442344232323232323Y P P P P P CP P P P CP P P C CP P P P C C P P P P C P PC ===+=+=++=+ 2311P P BP AP BABAAB AB AB ===+()()()2323Y P P C P P CAB AB C AB ABC AB AB C AB AB CABC ABC ABC ABC=+=+++=+++=+++(2)真值表(3)功能从真值表看出,这是一个三变量的奇偶检测电路,当输入变量中有偶数个1和全为0时,Y =1,否则Y=0。

[题] 分析图电路的逻辑功能,写出Y 1、、Y 2的逻辑函数式,列出真值表,指出电路完成什么逻辑功能。

图P4.3B1Y 2[解]解: 2Y AB BC AC =++12Y ABC A B C Y ABC A B C AB BC AC ABC ABC ABC ABC =+++=+++++=+++()())由真值表可知:、C 为加数、被加数和低位的进位,Y 1为“和”,Y 2为“进位”。

[题] 图是对十进制数9求补的集成电路CC14561的逻辑图,写出当COMP=1、Z=0、和COMP=0、Z=0时,Y 1~Y 4的逻辑式,列出真值表。

图P4.4[解](1)COMP=1、Z=0时,TG1、TG3、TG5导通,TG2、TG4、TG6关断。

,(2)COMP=0、Z=0时,Y1=A1,Y2=A2,Y3=A3,Y4=A4。

、COMP=1、Z=0时的真值表、Z=0的真值表从略。

[题] 用与非门设计四变量的多数表决电路。

当输入变量A、B、C、D有3个或3个以上为1时输出为1,输入为其他状态时输出为0。

[解] 题的真值表如表所示,逻辑图如图(b)所示。

电工学2第11章组合逻辑电路

电工学2第11章组合逻辑电路

分析 逻辑图 设计 功能
已知函数的逻辑图如图所示, 例 : 已知函数的逻辑图如图所示,试求它的逻辑 函数式。 函数式。 从输入端A、 解: 从输入端 、 B开始逐个写出每 开始逐个写出每 个图形符号输出端 的逻辑式,即得: 的逻辑式,即得:
Y = A+ B+ A+ B
Y = A + B + A + B = ( A + B)( A + B) = ( A + B)( A + B)
第11章 组合逻辑电路 11章
脉 冲 信 号 模拟信号:在时间上和 数值上连续的信号。
u
数字信号:在时间上和 数值上不连续的(即离 散的)信号。
u t
数字信号波形(正脉冲) 数字信号波形(正脉冲)
t
模拟信号波形
对模拟信号进行传输、 对模拟信号进行传输、 处理的电子线路称为 模拟电路。 模拟电路。
对数字信号进行传输、 对数字信号进行传输、 处理的电子线路称为 数字电路。 数字电路。
数字电路的分类
按半导体类型可分为: a、按半导体类型可分为: 双极型电路和单极型电路 按半导体类型可分为 b、按电路的集成度可分为: 按电路的集成度可分为: 按电路的集成度可分为 SSI(Small Scale Integrated )电路 数十器件 片) 电路(数十器件 电路 数十器件/片 MSI(Medium Scale Integrated)电路 数百器件 片) 电路(数百器件 电路 数百器件/片 LSI(Large Scale Integrated )电路 数千器件 片) 电路(数千器件 电路 数千器件/片 VLSI (Very Large Scale Integrated )电路 数万器件 片) 电路(数万器件 电路 数万器件/片 ASIC(Application Specific Integrated Circuit,专用集成电路) CPLD(Complex Programmable Logic Device,复杂可编程逻辑器件 ) FPGA(Filed Programmable Gate Array,现场可编程门阵列 ) IP核(Intellectual Property,知识产权) 硬件设计包 SoC(System on a Chip,单片电子系统) CPLD/FPGA—可编程专用IC,或可编程ASIC。 EDA(Electronic Design Automation,电子设计自动化)

组合逻辑电路

组合逻辑电路

⒊ 8-3线优先编码器74LS148
7.2.2 译码器
将给定的二值代码转换为相应的输出信号或另一种形式 二值代码的过程,称为译码。 能实现译码功能的电路称为译码器(Decoder)。译码 是编码的逆过程。 ⒈ 工作原理 为便于分析理解,以2-4线译码器为例。
⒉ 3-8线译码器74LS138
⒊ 译码器应用举例 【例7-6】 试利用74LS138和门电路实现例7-3中要求的 3人多数表决逻辑电路。 解:3人表决逻辑最小项表达式为:
⑵ 现象Ⅱ
⒉ 竞争与冒险的含义 ⑴ 竞争:门电路输入端的两个互补输入信号同时向相反 的逻辑电平跳变的现象称为竞争。 ⑵ 冒险:门电路由于竞争而产生错误输出(尖峰脉冲) 的现象称为竞争-冒险。 对大多数组合逻辑电路来说,竞争现象是不可避免的。 但竞争不一定会产生冒险,而产生冒险必定存在竞争。
⒊ 判断产生竞争-冒险的方法 ⑴ 或(或非)门,在某种条件下形成 时, 会产生竞争现象;与(与非)门,在某种条件下形成 时,会产生竞争现象。 ⑵ 卡诺图中有相邻的卡诺圈相切。
8选1数据选择器74LS151/251
数据选择器应用 【例7-10】 试利用74LS151实现例7-3中要求的3人多 数表决逻辑电路。 解:3人表决逻辑最小项表达式为: Y=
7.2.5 加法器
⒈ 半加器(Half Adder) ⑴ 定义:能够完成两个一位二进制数A和B相加的组 合逻辑电路称为半加器。 ⑵ 真值表:半加器真值表如表7-13,其中S为和, CO为进位。 ⑶ 逻辑表达式:S= =AB;CO=AB ⑷ 逻辑符号:半加器逻辑符号如图7-20所示。
⒉ 全加器(Full Adder)
⑴ 定义:两个一位二进制数A、B与来自低位的进位 CI三者相加的组合逻辑电路称为全加器。

数字电路组合逻辑电路


分),如下图。 2)数字电路与数字系统





根据前面所述,提出数字电路地概念。数字电路是指以逻辑门为核心元件
连接关系
,以分立元件为辅助元件,根据设计电路所得元件引脚地连接关系组合而成地电路。
逻辑门地输入输出引脚承载地物理量是稳定地电压,只有高,低两种电平,在逻辑上
认为实现了1,0数字地传递。核心电路组合后,我们主要针对电路(函数)输入
形图体现地随时间数据变化地规律,就能找到时序电路地逻辑功能,但在组合电路里,转化为真值表
方法分析电路功能会更好。
8 1.2组合逻辑电路分析
组组合合逻逻辑析辑电电路路分分析 组合逻辑电路设计 电路竞争与冒险 常用组合逻辑电路
3)组合电路分析步骤 要分析逻辑电路功能,就要得到电路地逻辑图,转变为函数,真值表或波形图,然后按照 前面所述去分析其功能。 (1)根据逻辑门组成地电路,确定输入输出变量,从输入端开始,逐级写出每个逻辑门 地逻辑表达式,直到写出所有输出表达式为止。然后利用化简逻辑函数地方法对函数进 行化简,得到最简化地表达式。 (2)根据逻辑表达式列出真值表,根据真值表分析逻辑功能 (3)根据表达式与真值表分析电路地功能确定最后地电路功能,与实践相联系,确定 应用性功能。 该电路实现了或非门地功能。 (4)观察图形,分析电路可能存在地问题 实例1分析如图所示电路,要求: (1)列出逻辑表达式 (2)列真值表 (3)分析逻辑功能 (4)电路使用了几个芯片,哪里不合理?说明原因。
1
第3章
组合逻辑电路分析 组合逻辑电路设计 电路竞争与冒险 常用组合逻辑电路
言宜慢,心宜善
阅 解

逻辑 设计
2
组合逻辑电路分析 组合逻辑电路设计 电路竞争与冒险 常用组合逻辑电路

组合逻辑电路设计例题

9.4、组合逻辑电路的分析与设计习题1、在一旅游胜地,有两辆缆车可供游客上下山,请设计一个控制缆车正常运行的逻辑电路。

要求:缆车A 和B在同一时刻只能允许一上一下的行驶,并且必须同时把缆车的门关好后才能行使。

设输入为A、B、C,输出为Y。

(设缆车上行为“1”,门关上为“1”,允许行驶为“1”)(1) 列真值表;(2)写出逻辑函数式;(3)用基本门画出实现上述逻辑功能的逻辑电路图。

解:(1)列真值表:(3)逻辑电路图:)()(____________BACBABACCBABCAF⊕=+=+=2、某同学参加三类课程考试,规定如下:文化课程(A)及格得2分,不及格得0分;专业理论课程(B)及格得3分,不及格得0分;专业技能课程(C)及格得5分,不及格得0分。

若总分大于6分则可顺利过关(Y),试根据上述内容完成:(1)列出真值表;(2)写出逻辑函数表达式,并化简成最简式;(3)用与非门画出实现上述功能的逻辑电路。

(3)逻辑电路图(2)逻辑函数表达式BCACABCBABCCBABCCBAABCBCAABCCBABCAF+=+=+=+=++=++=)()(__________________ABFAFBCAFBC3、中等职业学校规定机电专业的学生,至少取得钳工(A)、车工(B)、电工(C)中级技能证书的任意两种,才允许毕业(Y )。

试根据上述要求:(1)列出真值表;(2)写出逻辑表达式,并化成最简的与非—与非形式;(3)用与非门画出完成上述功能的逻辑电路。

(3)逻辑电路: (2)逻辑表达式:最简的与非—与非形式:ABC C AB C B A BC A F +++=_____________________________________________________________________________________________________________AB BC AC AB BC AC AB BC AC AB BC AC F ••=•+=++=++=4、用基本逻辑门电路设计一个一位二进制全加器,输入变量有:A 为被加数,B 为加数,C 为较低位的进位,输出函数为本位和S 及向较高位的进位H 。

《组合逻辑电路》公开课教案

《组合逻辑电路》公开课教案第一章:组合逻辑电路概述1.1 教学目标让学生了解组合逻辑电路的定义和特点使学生掌握组合逻辑电路的基本构成要素培养学生理解组合逻辑电路在数字电路中的应用1.2 教学内容组合逻辑电路的概念组合逻辑电路的特点组合逻辑电路的基本构成要素组合逻辑电路的应用1.3 教学方法采用讲授法,讲解组合逻辑电路的基本概念和特点采用案例分析法,分析组合逻辑电路的应用实例采用互动讨论法,引导学生探讨组合逻辑电路的构成要素1.4 教学准备教案、PPT、教学设备组合逻辑电路的相关案例资料1.5 教学过程1.5.1 导入利用生活中的实例引入组合逻辑电路的概念1.5.2 讲解讲解组合逻辑电路的定义和特点讲解组合逻辑电路的基本构成要素1.5.3 案例分析分析组合逻辑电路的应用实例1.5.4 互动讨论引导学生探讨组合逻辑电路的构成要素第二章:组合逻辑电路的设计方法2.1 教学目标让学生掌握组合逻辑电路的设计方法培养学生运用设计方法解决实际问题的能力2.2 教学内容组合逻辑电路的设计方法组合逻辑电路设计实例2.3 教学方法采用讲授法,讲解组合逻辑电路的设计方法采用案例分析法,分析组合逻辑电路设计实例采用互动讨论法,引导学生探讨设计方法的应用2.4 教学准备教案、PPT、教学设备组合逻辑电路设计的相关案例资料2.5 教学过程2.5.1 导入复习组合逻辑电路的概念,引出设计方法的话题2.5.2 讲解讲解组合逻辑电路的设计方法2.5.3 案例分析分析组合逻辑电路设计实例2.5.4 互动讨论引导学生探讨设计方法的应用第三章:组合逻辑电路的仿真与测试3.1 教学目标让学生掌握组合逻辑电路的仿真与测试方法培养学生运用仿真与测试方法诊断和优化电路的能力3.2 教学内容组合逻辑电路的仿真方法组合逻辑电路的测试方法组合逻辑电路仿真与测试实例3.3 教学方法采用讲授法,讲解组合逻辑电路的仿真与测试方法采用案例分析法,分析组合逻辑电路仿真与测试实例采用互动讨论法,引导学生探讨仿真与测试方法的应用3.4 教学准备教案、PPT、教学设备组合逻辑电路仿真与测试的相关案例资料3.5 教学过程3.5.1 导入复习组合逻辑电路的设计方法,引出仿真与测试的话题3.5.2 讲解讲解组合逻辑电路的仿真方法讲解组合逻辑电路的测试方法3.5.3 案例分析分析组合逻辑电路仿真与测试实例3.5.4 互动讨论引导学生探讨仿真与测试方法的应用第四章:组合逻辑电路的应用实例4.1 教学目标让学生了解组合逻辑电路在实际应用中的典型实例培养学生运用组合逻辑电路解决实际问题的能力4.2 教学内容组合逻辑电路的应用实例4.3 教学方法采用讲授法,讲解组合逻辑电路的应用实例采用案例分析法,分析组合逻辑电路应用实例采用互动讨论法,引导学生探讨应用实例的设计与实现4.4 教学准备教案、PPT、教学设备组合逻辑电路应用实例的相关资料4.5 教学过程4.5.1 导入复习组合逻辑电路的仿真与测试,引出应用实例的话题4.5.2 讲解讲解组合逻辑电路的应用实例4.5第五章:组合逻辑电路的综合设计实例5.1 教学目标让学生掌握组合逻辑电路的综合设计方法培养学生运用综合设计方法解决实际问题的能力5.2 教学内容组合逻辑电路的综合设计方法组合逻辑电路综合设计实例5.3 教学方法采用讲授法,讲解组合逻辑电路的综合设计方法采用案例分析法,分析组合逻辑电路综合设计实例采用互动讨论法,引导学生探讨综合设计方法的应用5.4 教学准备教案、PPT、教学设备组合逻辑电路综合设计的相关案例资料5.5 教学过程5.5.1 导入复习组合逻辑电路的应用实例,引出综合设计的话题5.5.2 讲解讲解组合逻辑电路的综合设计方法5.5.3 案例分析分析组合逻辑电路综合设计实例5.5.4 互动讨论引导学生探讨综合设计方法的应用第六章:组合逻辑电路的优化6.1 教学目标让学生了解组合逻辑电路的优化方法培养学生运用优化方法提高电路性能的能力6.2 教学内容组合逻辑电路的优化方法组合逻辑电路优化实例6.3 教学方法采用讲授法,讲解组合逻辑电路的优化方法采用案例分析法,分析组合逻辑电路优化实例采用互动讨论法,引导学生探讨优化方法的应用6.4 教学准备教案、PPT、教学设备组合逻辑电路优化的相关案例资料6.5 教学过程6.5.1 导入复习组合逻辑电路的综合设计,引出优化的话题6.5.2 讲解讲解组合逻辑电路的优化方法6.5.3 案例分析分析组合逻辑电路优化实例6.5.4 互动讨论引导学生探讨优化方法的应用第七章:组合逻辑电路的troubleshooting 与维护7.1 教学目标让学生掌握组合逻辑电路的troubleshooting 与维护方法培养学生运用troubleshooting 与维护方法解决实际问题的能力7.2 教学内容组合逻辑电路的troubleshooting 方法组合逻辑电路的维护方法组合逻辑电路troubleshooting 与维护实例7.3 教学方法采用讲授法,讲解组合逻辑电路的troubleshooting 与维护方法采用案例分析法,分析组合逻辑电路troubleshooting 与维护实例采用互动讨论法,引导学生探讨troubleshooting 与维护方法的应用7.4 教学准备教案、PPT、教学设备组合逻辑电路troubleshooting 与维护的相关案例资料7.5 教学过程7.5.1 导入复习组合逻辑电路的优化,引出troubleshooting 与维护的话题7.5.2 讲解讲解组合逻辑电路的troubleshooting 方法讲解组合逻辑电路的维护方法7.5.3 案例分析分析组合逻辑电路troubleshooting 与维护实例7.5.4 互动讨论引导学生探讨troubleshooting 与维护方法的应用第八章:组合逻辑电路在现代电路中的应用8.1 教学目标让学生了解组合逻辑电路在现代电路中的应用领域培养学生运用组合逻辑电路解决现代电路问题的能力8.2 教学内容组合逻辑电路在现代电路中的应用领域组合逻辑电路在现代电路中的应用实例8.3 教学方法采用讲授法,讲解组合逻辑电路在现代电路中的应用领域采用案例分析法,分析组合逻辑电路在现代电路中的应用实例采用互动讨论法,引导学生探讨组合逻辑电路在现代电路中的应用8.4 教学准备教案、PPT、教学设备组合逻辑电路在现代电路中的应用领域的相关资料8.5 教学过程8.5.1 导入复习组合逻辑电路的troubleshooting 与维护,引出现代电路应用重点和难点解析1. 教学内容的选取与编排:确保教学内容既能够覆盖组合逻辑电路的基础知识,又能够结合实例深入讲解,使学生能够理解并应用所学知识。

《数字电子技术》详细目录

《数字电子技术》目录第1章数制与编码1.1 数字电路基础知识1.1.1 模拟信号与数字信号1.1.2 数字电路的特点1.2 数制1.2.1 十进制数1.2.2 二进制数1.2.3 八进制数1.2.4 十六进制数1.3 数制转换1.3.1 二进制数与八进制数的相互转换1.3.2 二进制数与十六进制数的相互转换1.3.3 十进制数与任意进制数的相互转换1.4 二进制编码1.4.1 加权二进制码1.4.2 不加权的二进制码1.4.3 字母数字码1.4.4 补码1.5带符号二进制数的加减运算1.5.1 加法运算1.5.2 减法运算第2章逻辑门2.1 基本逻辑门2.1.1 与门2.1.2 或门2.1.3 非门2.2 复合逻辑门2.2.1 与非门2.2.2 或非门2.2.3 异或门2.2.4 同或门2.3 其它逻辑门2.3.1 集电极开路逻辑门2.3.2 集电极开路逻辑门的应用2.3.3 三态逻辑门2.4 集成电路逻辑门2.4.1 概述2.4.2 TTL集成电路逻辑门2.4.3 CMOS集成电路逻辑门2.4.4 集成逻辑门的性能参数2.4.5 TTL与CMOS集成电路的接口*第3章逻辑代数基础3.1 概述3.1.1 逻辑函数的基本概念3.1.2 逻辑函数的表示方法3.2 逻辑代数的运算规则3.2.1 逻辑代数的基本定律3.2.2 逻辑代数的基本公式3.2.3 摩根定理3.2.4 逻辑代数的规则3.3 逻辑函数的代数化简法3.3.1 并项化简法3.3.2 吸收化简法3.3.3 配项化简法3.3.4 消去冗余项法3.4 逻辑函数的标准形式3.4.1 最小项与最大项3.4.2 标准与或表达式3.4.3 标准或与表达式3.4.4 两种标准形式的相互转换3.4.5 逻辑函数表达式与真值表的相互转换3.5 逻辑函数的卡诺图化简法3.5.1 卡诺图3.5.2 与或表达式的卡诺图表示3.5.3 与或表达式的卡诺图化简3.5.4 或与表达式的卡诺图化简3.5.5 含无关项逻辑函数的卡诺图化简3.5.6 多输出逻辑函数的化简*第4章组合逻辑电路4.1 组合逻辑电路的分析4.1.1 组合逻辑电路的定义4.1.2 组合逻辑电路的分析步骤4.1.3 组合逻辑电路的分析举例4.2 组合逻辑电路的设计4.2.1 组合逻辑电路的一般设计步骤4.2.2 组合逻辑电路的设计举例4.3 编码器4.3.1 编码器的概念4.3.2 二进制编码器4.3.3 二-十进制编码器4.3.4 编码器应用举例4.4 译码器4.4.1 译码器的概念4.4.2 二进制译码器4.4.3 二-十进制译码器4.4.4 用译码器实现逻辑函数4.4.5 显示译码器4.4.6 译码器应用举例4.5 数据选择器与数据分配器4.5.1 数据选择器4.5.2 用数据选择器实现逻辑函数4.5.3 数据分配器4.5.4 数据选择器应用举例4.6 加法器4.6.1 半加器4.6.2 全加器4.6.3 多位加法器4.6.4 加法器应用举例4.6.5 加法器构成减法运算电路*4.7 比较器4.7.1 1位数值比较器4.7.2 集成数值比较器4.7.3 集成数值比较器应用举例4.8 码组转换电路4.8.1 BCD码之间的相互转换4.8.2 BCD码与二进制码之间的相互转换4.8.3 格雷码与二进制码之间的相互转换4.9 组合逻辑电路的竞争与冒险4.9.1 冒险现象的识别4.9.2 消除冒险现象的方法第5章触发器5.1 RS触发器5.1.1 基本RS触发器5.1.2 钟控RS触发器5.1.3 RS触发器应用举例5.2 D触发器5.2.1 电平触发D触发器5.2.2 边沿D触发器5.3 JK触发器5.3.1 主从JK触发器5.3.2 边沿JK触发器5.4 不同类型触发器的相互转换5.4.1 概述5.4.2 D触发器转换为JK、T和T'触发器5.4.3 JK触发器转换为D触发器第6章寄存器与计数器6.1 寄存器与移位寄存器6.1.1 寄存器6.1.2 移位寄存器6.1.3移位寄存器应用举例6.2 异步N进制计数器6.2.1 异步n位二进制计数器6.2.2 异步非二进制计数器6.3 同步N进制计数器6.3.1 同步n位二进制计数器6.3.2 同步非二进制计数器6.4 集成计数器6.4.1 集成同步二进制计数器6.4.2 集成同步非二进制计数器6.4.3 集成异步二进制计数器6.4.4 集成异步非二进制计数器6.4.5 集成计数器的扩展6.4.6 集成计数器应用举例第7章时序逻辑电路的分析与设计7.1 概述7.1.1 时序逻辑电路的定义7.1.2 时序逻辑电路的结构7.1.3 时序逻辑电路的分类7.2 时序逻辑电路的分析7.2.1时序逻辑电路的分析步骤7.2.2 同步时序逻辑电路分析举例7.2.3 异步时序逻辑电路分析举例7.3 同步时序逻辑电路的设计7.3.1 同步时序逻辑电路的基本设计步骤7.3.2 同步时序逻辑电路设计举例第8章存储器与可编程器件8.1 存储器概述8.1.1 存储器的分类8.1.2 存储器的相关概念8.1.3 存储器的性能指标8.2 RAM8.2.1 RAM分类与结构8.2.2 SRAM8.2.3 DRAM8.3 ROM8.3.1 ROM分类与结构8.3.2 掩膜ROM8.3.3 可编程ROM8.3.4 可编程ROM的应用8.4 快闪存储器(Flash Memory)8.4.1 快闪存储器的电路结构8.4.2 闪存与其它存储器的比较8.5 存储器的扩展8.5.1 存储器的位扩展法8.5.2 存储器的字扩展法8.6 可编程阵列逻辑8.6.1 PAL的电路结构8.6.2 PAL器件举例8.6.3 PAL器件的应用8.7 通用阵列逻辑8.7.1 GAL的性能特点8.7.2 GAL的电路结构8.7.3 OLMC8.7.4 GAL器件的编程与开发8.8 CPLD、FPGA和在系统编程技术8.8.1 数字可编程器件的发展概况8.8.2数字可编程器件的编程语言8.8.3数字可编程器件的应用实例第9章D/A转换器和A/D转换器9.1 概述9.2 D/A转换器9.2.1 D/A转换器的电路结构9.2.2 二进制权电阻网络D/A转换器9.2.3 倒T型电阻网络D/A转换器9.2.4 D/A转换器的主要技术参数9.2.5 集成D/A转换器及应用举例9.3 A/D转换器9.3.1 A/D转换的一般步骤9.3.2 A/D转换器的种类9.3.3 A/D转换器的主要技术参数9.3.4 集成A/D转换器及应用举例第10章脉冲波形的产生与整形电路10.1 概述10.2 多谐振荡器10.2.1 门电路构成的多谐振荡器10.2.2 采用石英晶体的多谐振荡器10.3 单稳态触发器10.3.1 门电路构成的单稳态触发器10.3.2 集成单稳态触发器10.3.3 单稳态触发器的应用10.4 施密特触发器10.4.1 概述10.4.2 施密特触发器的应用10.5 555定时器及其应用10.5.1 电路组成及工作原理10.5.2 555定时器构成施密特触发器10.5.3 555定时器构成单稳态触发器10.5.4 555定时器构成多谐振荡器第11章数字集成电路简介11.1 TTL门电路11.1.1 TTL与非门电路11.1.2 TTL或非门电路11.1.3 TTL与或非门电路11.1.4 集电极开路门电路与三态门电路11.1.5 肖特基TTL与非门电路11.2 CMOS门电路11.2.1 概述11.2.2 CMOS非门电路11.2.3 CMOS与非门电路11.2.4 CMOS或非门电路11.2.5 CMOS门电路的构成规则11.3 数字集成电路的使用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第11章 组合逻辑电路
第11章 组合逻辑电路
11.1 组合逻辑电路的分析和设计 11.2 加法器 11.3 编码器 11.4 译码器和数字显示电路
11.5 数据分配器和数据选择器
第11章 组合逻辑电路
第11章 组合逻辑电路
组合逻辑电路的一般结构: X1 X2 Xn 组合 Y1 Y2 Ym
输出信号Yi是输入信号Xj的函数,表示为 Yi=f (X1,X2,…,Xn), i=1,2, …,m
Y1 Y0
1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0
第11章 组合逻辑电路
74147集成优先编码器 (10/4线):
UCC NCY 3 I 3 I 2 I1 I 9 Y0
16 15 14 13 12 11 10
低电平 有效
9 8
74147
1 2 3 4 5 6 7

Si
=1
=1 &
Ci-1
Si
全加器符号
&
&
Ci
11.2.2 全加器
第11章 组合逻辑电路
A B
Si Ai Bi Ci 1 Ci ( Ai Bi )Ci 1 Ai Bi

CO
S C
半加器符号
Ci-1 Ai Bi

CO
Ai Bi

CO
Ai Bi C i 1 ( Ai Bi )Ci 1
11.2.3 多位数加法器
例1
第11章 组合逻辑电路
计算1101+1101
1 1
A3 B3
1 1
A2 B2
0
0
1 1
A0 B0
A1 B1
C3

CO CI
C2

CO CI
C1

CO CI
C0

CO CI
1
S3
1
S2
0
S1
1
S0
1 0 1 结果为1101+1101=11010
0
第11章 组合逻辑电路
I 4 I 5 I 6 I 7 I 8 Y2 Y1 GND
74147引脚图 74148集成优先编码器 (8/3线)
第11章 组合逻辑电路
Hale Waihona Puke 例1. 编码电路如图(a),当输入D6 、D7和D8为图(b)的波 形时,试画出74147编码器的输出波形。
5V
1
I1 I2 I3 I4
Y0 Y1 Y2 Y3
D6 D7 D8 Y0
AB A B AB A B
第11章 组合逻辑电路
例1:分析下面逻辑电路的功能
Y AB A B
(2) 由逻辑式列出真值表
A 0 0 1 1 B 0 1 0 1 Y 1 0
(3) 分析逻辑功能
当输入A、B相同时输出为 “1‖;否则,输出为“0‖。 ―同或”门 Y AB AB A⊙B A B
第11章 组合逻辑电路
例1:分析下面逻辑电路的功能 Y2 AY1 A AB & Y2 A G2 Y & Y1 ≥1 G1 G4 Y3 & B G3 Y3 BY1 B AB
Y1 AB
解: (1) 由逻辑图写出逻辑式,并化简。
Y Y2 Y3 A AB B AB AB ( A B )
1
0 0 0 0
0
D6 D7 D8
I 5 74147 I6 I7 I8 I9
Y1
Y2 Y3
5V
1 图(a)
第11章 组合逻辑电路
11.4 译码器和数字显示电路 译码是编码的逆过程, 是将二进制代码译成一个 特定的输出信号。 11. 4. 1 二进制译码器
二 进 制 代 码
I0 I1
I2 I3 1 1
≥1 0
I2 = I3 = 1, I1= I0= 0时,
Y1
&
Y1Y0 = ? Y1Y0 = 00 当所有的输入都为1时,
0
1 0
≥1 0
1
0
&0
Y 0 Y1Y0 = ?
Y1Y0 = 00 无法输出有效编码!
结论:编码器不能同时输入两个以上的有效编码信号
第11章 组合逻辑电路
A 0 0 1 1 真值表 B C 0 0 1 0 0 0 1 1
由逻辑式可画出逻辑图
S 0 1 1 0
A B
=1
S
C
&
由真值表写逻辑式:
S AB AB A B
C AB
A B

CO
S C
半加器符号
11.2.2 全加器
第11章 组合逻辑电路
对两个一位二进制数及来自低位的“进位”进行相加,产 生本位“和”和向高位“进位”的逻辑电路称为“全加 器”。 全加器真值表 S ABC ABC ABC ABC
1
Si Ci
( Ai Bi )C i 1 Ai Bi
Ai Bi
全加器逻辑图(b)
11.2.3 多位数加法器
第11章 组合逻辑电路
多位二进制数相加,可用并行相加、串行进位。
A3
CO CI
B3
A2

B2
A1

B1
A0

B0
C3
C2
C1
C0
CO CI
CO CI
CO CI
S3
S2
S1
S0
串行进位 特点:结构简单, 运算速度慢。 T692型集成加法器就是串行加法器。
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 0 1 0 0 0 1 1 0 0 1 1 0 1 1 1
0 1 1 0 1 0 0 1
Ai Bi Ci 1
Ci Ai Bi Ci 1 Ai Bi Ci 1 Ai Bi Ci 1 Ai Bi Ci 1 C i (Ai Bi Ai Bi) Ai Bi 1
0 1
1
1 1 1 1 0
第11章 组合逻辑电路
11.1.2 组合逻辑电路的设计 组合逻辑电路的设计是分析的逆过程。
已知逻辑要求 确定 画逻辑图
设计组合逻辑电路的步骤: 已知逻辑要求列真值表写逻辑式化简或变换 画逻辑图
第11章 组合逻辑电路
例3.某工厂有三台电阻性设备,功率分别为40kW.30kW. 20kW,三台设备的投入是随机的。而自备电源的容量为 55kVA。试设计一个由与非门组成的电源过载报警电路。 解:设A.B.C分别为三台设备, 运转时为1; 停止时为0。输出为Y, 过载1, 正常为0。 (1) 列真值表
10个
4位
编码器
二 进 制 代 码
表示十进制数
第11章 组合逻辑电路
二-十进制优先编码器
当有两个或两个以上的信号同时输入编码电路,电路 只能对其中一个优先级别高的信号进行编码。 74147是一个典型的8421BCD码优先编码器,输入 信号的优先次序为I9—I1,输入信号I9 I1和输出信 号Y3 ~Y0均为低电平(0)有效。
(2) 写逻辑式并化简 a.取Y=1的项 b.对每一种组合,为“与”逻辑
A BC Y
0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 0 0
Y ABC ABC ABC
c.各种组合之间,为“或”逻 辑
0 0 0 0 1 ABC 1 ABC 1 ABC 1
0 0 1 1 1
11. 3 编码器(Encoder) 编码:将二进制数码0.1按一定规律编排,用来表示某种信 息含义的一串符号。 编码器:具有编码功能的逻辑电路。 11. 3. 1 二进制编码器 将输入信号编成二进制代码的电路。 高 低 电 平 信 号 N个
n位 编码器
2 n N
二 进 制 代 码
2n 种组合 2n 个信息
( Ai Bi )Ci 1 Ai Bi
( Ai Bi )C i 1 Ai Bi
第11章 组合逻辑电路
11.2.2 全加器
Si Ai Bi Ci -1
全加器逻辑图: Ai Bi
C i ( Ai Bi )C i -1 Ai Bi
Ai
Bi Ci-1 CI CO Ci
Y1 I 0 I 1 I 2 I 3 I 0 I 1 I 2 I 3 Y0 I 0 I 1 I 2 I 3 I 0 I 1 I 2 I 3
第11章 组合逻辑电路
1. 4/2线编码器
1
1 &0
Y1 I 0 I 1 I 2 I 3 I 0 I 1 I 2 I 3 Y0 I 0 I 1 I 2 I 3 I 0 I 1 I 2 I 3
两个特点: ①结构:信号单向传输,不存在反馈; ②功能:逻辑门电路组成,不含任何记忆元件。


逻辑电路
第11章 组合逻辑电路
11.1 组合逻辑电路的分析和设计
11.1.1 组合逻辑电路的分析
确定
已知逻辑电路
逻辑功能
分析组合逻辑电路的步骤: 已知逻辑图写逻辑式化简或变换列真值表 分析逻辑功能
第11章 组合逻辑电路
74147 优先编码器真值表 输入 (低电平有效) I9 1 0 1 1 1 1 1 1 1 1 I8 1 0 1 1 1 1 1 1 1 I7 1 0 1 1 1 1 1 1 I6 1 0 1 1 1 1 1 I5 1 0 1 1 1 1 I4 1 0 1 1 1 I3 1 0 1 1 输出(8421反码) Y2 1 1 1 0 0 0 0 1 1 1 I2 I1 Y 3 1 1 1 0 0 1 1 1 1 1 0 1 1 0 1
相关文档
最新文档