四川省乐山市沙湾区2018届初中毕业数学调研考试试卷及参考答案
四川省乐山市沙湾区九年级调研考试数学试题

沙湾区初中毕业调研考试数 学试题分为选择题和非选择题两部分,共6页, 选择题答案填涂在机读卡上,非选择题写在答题卡上. 满分150分,考试时间120分钟.第一部分 (选择题 共30分)一、单项选择题:本大题共10小题,每小题3分,共30分. 1. 下列四个运算,结果最小的是A. ()12-+-B. ()12--C. ()12⨯-D. ()12÷- 2.分式方程113=-x 的解为 A.2=x B. 4=x C. 0=x D. 无解3. 已知⊙O 1的半径是cm 2,⊙O 2的半径是cm 3,若这两圆相交,则它们的圆心距d 的取值范围在数轴上表示为4. 将左图的ABC Rt ∆绕直角边AC 旋转一周,所得几何体的主视图是5. 下列说法,错误的是A .为了解一种灯泡的使用寿命,宜采用普查的方法B .众数在一组数据中若存在,可以不唯一C .方差反映了一组数据与其平均数的偏离程度D .对于简单随机样本,可以用样本的方差去估计总体的方差C B DCB A ADCB 53A 536.如图,将一块含︒30的三角板叠放在直尺上.若︒=∠401, 则=∠2A. ︒45B. ︒50C. ︒60D. ︒707. 如图,在ABC ∆中,︒=∠90C ,3=BC ,D 、E 分别在AB 、AC 上,将ADE ∆沿DE 翻折后,点A 落在点A '处,若A '为CE 的中点,则折痕=DEA.21B. 3C. 2D. 18.已知二次函数)0(21≠++=a c bx ax y 与一次函数)0(2≠+=k b kx y 的图象交于)5,1(-A 和)2,4(B ,则能使21y y >成立的x 的取值范围是 A .1-<x B.4>xC.41<<-xD. 1-<x 或4>x9.如图,已知O ⊙的半径为5,锐角ABC ∆内接于O ⊙,AC BD ⊥于点D ,8=AB , 则=∠CBD tan A .34 B .54 C .53 D .4310.在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为)0,1(,点D 的坐标为)2,0(;延长CB 交x 轴于点1A ,作正方形C C B A 111;延长11B C 交x 轴于点2A ,作正方形1222C C B A …;按这样的 规律进行下去,第2013个正方形的面积为 A .2013)23(5 B .2014)23(5C .4026)23(5 D .4028)23(5Dxy ABoDOBAC 12第二部分 (非选择题 共120分)二、填空题:本大题共6个小题,每小题3分,共18分 11. 计算:=-•-22)2()(a a .12.圆锥的侧面展开的面积是212cm π,母线长为cm 4,则圆锥的高为 ________ cm . 13. 如图,在菱形ABCD 中,AB DE ⊥,3cos 5A =, 2=BE ,则=∠DBE tan .14. 设1x 、2x 是方程0342=-+x x 的两个根,2)35(22221=+-+a x x x ,则=a .15.如图,在平面直角坐标系中,已知点A 、B 、C 在双曲线xy 6=上,x BD ⊥轴于D , y CE ⊥轴于E , 点F 在x 轴上,且AF AO =, 则图中阴影部分的面 积之和为 .16. 如图,ABC ∆的外接⊙O 的半径为R ,高为AD ,BAC ∠的平分线交⊙O 、BC 于E 、P ,EF 切⊙O 交AC 的延长线 于F .下列结论:AD R AB AC ·2·=;②EF ∥BC ; ③CP EF AC CF ··=;④SinFSinBBP CP =. 请你把正确结论的番号都写上 .(填错一个 该题得0分)三、本大题共3小题,每小题9分,共27分17.先化简,再求值:24)44122(22+-÷++--+-a a a a a a a a ,其中a 满足0122=-+a a . 18.有三张卡片(背面完全相同)分别写有32、2-、3,把它们背面朝上洗匀后,小明从中抽取一张,记下这个数后放回洗匀,小白又从中抽出一张.(1)小明抽取的卡片为32的概率是 ;两人抽取的卡片都为3的概率是 . (2)小刚为他们俩设计了一个游戏规则:若两人抽取的卡片上两数之积是有理数,则小明获胜,否则小白获胜.你认为这个游戏规则对谁有利?请说明理由.CD P C D O B19. 如图, 在ABC ∆中, D 是BC 边上的一点, E 是AD 的中点, 过A 点作BC 的平行线交CE 的延长线于点F , 且BD AF =, 连接BF . (1) 求证: D 是BC 的中点;(2) 若AC AB =, 试判断四边形AFBD 的形状, 并证明你的结论.四、本大题共3小题,每小题10分,共30分20.某货运码头,有稻谷和棉花共2680吨,其中稻谷比棉花多380吨.(1)求稻谷和棉花各是多少吨?(2)现安排甲、乙两种不同型号的集装箱共50个,将这批稻谷和棉花运往外地.已知稻谷35吨和棉花15吨可装满一个甲型集装箱;稻谷25吨和棉花35吨可装满一个乙型集装箱.在50个集装箱全部使用的情况下,如何安排甲、乙两种集装箱的个数,有哪几种方案?21.如图,某地区对某种药品的需求量1y (万件)、供应量2y (万件)与价格x (元/件)分别近似满足下列函数关系式:701+-=x y ,3822-=x y . 需求量为0时,即停止供应. 当21y y =时,该药品的价格称为稳定价格,需求量称为稳定需求量. (1)求该药品的稳定价格与稳定需求量;(2)价格在什么范围内,该药品的需求量低于供应量? (3)由于该地区突发疫情,政府部门决定对药品供应方 提供价格补贴来提高供货价格,以利提高供应量.根据 调查统计,需将稳定需求量增加6万件,政府应对每件 药品提供多少元补贴,才能使供应量等于需求量.22.如图,在航线L 的两侧分别有观测点A 和B ,点A 到航线L 的距离为km 2,点B位于点A 北偏东︒60方向且与A 相距km 5处. 现有一艘轮船正沿该航线自西向东航行,在C 点观测到点A 位于南偏东︒54方向,航行10分钟后,在D 点观测到点B 位于北偏东︒70方向.(1)求观测点B 到航线L 的距离; (2)该轮船航线的速度(结果精确到1.0) 参考数据:73.13=,81.054sin =︒,F EA x(元/件)(万件)oLABC59.054cos =︒,38.154tan =︒,94.070sin =︒,34.070cos =︒,75.270tan =︒. 五、本大题共2小题,每小题10分,共20分,其中23选作题23. 选做题:从甲乙两题中选作一题,如果两题都做,只以甲题计分 题甲:已知矩形两邻边的长a 、b 是方程0141)1(22=+++-k x k x 的两根. (1)求k 的取值范围;(2)当矩形的对角线长为5时,求k 的值; (3)当k 为何值时,矩形变为正方形?题乙:如图,AB 是O ⊙直径,BC OD ⊥于点F ,交O ⊙于点E ,且ODB AEC ∠=∠.(1)判断直线BD 和O ⊙的位置关系,并给出证明; (2)当10=AB ,8=BC 时,求DFB ∆的面积.24.在ABC ∆中,2==BC AC ,︒=∠90C ,将一块等腰直角三角板的直角顶点放在斜边AB 的中点P 处,将三角板绕点P 旋转,三角板的两直角边分别交射线AC 、CB 于D 、E 两点. 如图①、②、③是旋转三角板得到的图形中的三种情况,试探究:(1)三角板绕点P 旋转,观察线段PD 和PE 之间有什么数量关系?并结合图②加以证明;(2)三角板绕点P 旋转,PBE ∆是否能成为等腰三角形?若能,写出所有PBE ∆为等腰三角形时CE 的长(直接写出答案即可);若不能,请说明理由; (3)如图4,若将三角板的直角顶点放在斜边AB 上的F 处,且3:1:=FB AF ,和前面一样操作,试问线段FD 和FE 之间有什么数量关系?并结合图④证明你的结论.E ODF CA图4图3图2图1ADPAPAPA BC ED DDFE六、本大题共2小题,第25题12分,第26题13分,共计25分25.已知矩形ABCD 和点P ,当点P 在图1中的位置时,求证:PCD PAC PBC S S S ∆∆∆+=证明:过点P 作BC EF ⊥交AD 、BC 于E 、F 两点,∵ABCD PAD PBC S EF BC PE PF BC PE AD PF BC S S 矩形21·21)(21·21·21==+=+=+∆∆ 又∵ABCD PAD PCD PAC S S S S 矩形21=++∆∆∆∴PAD PCD PAC PAD PBC S S S S S ∆∆∆∆∆++=+,∴PCD PAC PBC S S S ∆∆∆+=请你参考上述信息,当点P 分别在图2、图3中的位置时,请你分别写出PBC S ∆、PAC S ∆、PCD S ∆ 之间的数量关系?,并选择其中一种情况给予证明.26. 如图,二次函数c bx x y ++-=241的图像过点()()4,4,0,4--B A ,与y 轴交于点C .(1)证明:CAO BAO ∠=∠(其中O 是原点);(2)在抛物线的对称轴上求一点P ,使||BP CP +的值最小;(3)若E 是线段AB 上的一个动点(不与A 、B 重合),过E 作y 轴的平行线,分别交此二次函数图像及x 轴于F 、D 两点 . 请问 是否存在这样的点E ,使DF DE 2=. 若存在, 请求出点E 的坐标;若不存在,说明理由.xy F CAoE B D 图3图2图1DDDPPCE沙湾区初中毕业调研考试数学答题卡第二部分非选择题二三四五六总分总分人11. 12.13. 14.15. 16.请在各题的答题区域内作答,超出黑色矩形边框限17.(9分)18.(9分)BL24.(10分)图4图3图2图1ADPA P A P AC B B C BCEBCDE D E DFE25.(12分)DDD A P PA BACE 26.(13分) xyFC Ao ED初中毕业调研考试数学参考答案及评分意见一、(10×3/=30)1A 2B 3B 4D 5A 6D 7D 8D 9D 10C二、(6×3/=18) 11)44a - 12)7 13)2 14)8 15)12 16)①②③④三、(3×9/=27) 17)解:…1/a (a+2)(6分)…=1(9分)18)解:1/3,1/9(4分),对小明有利(6分),9/4,9/5==无有P P (9分)19)(1)证明略(4分),(2)AFBD 是矩形(1分),理由略(9分) 四、(3×10/=30) 20)(1)…棉花1150吨,稻谷1530吨(4/),(2)…3028≤≤x (8/),三种方案略(10分)21)(1)…解方程组得,稳定价格为36元,稳定需求量34万件(4/),(2)7036<<x (6/),(3)当稳定需求量为40时,由40382=-x ,39=x ,由4070=+-x ,30=x ,应补贴39-30=9元(10分)22)解:作L BE ⊥于E ,(1)BE :2=2BE (5-2BE )得,BE=1/2(4分)(2)085.760tan 5.060tan 254tan 2=︒+︒+︒=CE ,375.170tan 5.0=︒=DECD=7.085-1.375=5.71,速度=5.71×6=34.3(10分)五、 (2×10/=20) 23)题甲:(1)由03242≥-=-k ac b 得2/3≥k (3分),(2)3222-=+k b a由2)5(32=-k 得4=k (7分),(3)由03242=-=-k ac b 得2/3=k (10分)题乙:(1)BD 是切线(1分),证明略(5分),(2)…S=32/3 (10分)24)(1)PD=PE (1分)证明略(3分),(2)PBE ∆能成为等腰三角形,此时CE 的长为0,1,22+(6分),(3)…DFEF 3=(7分)证明略(10分)六、(12/+13/) 25)解:图2结论:PCD PAC PBC S S S ∆∆∆+=,图3结论:PCD PAC PBC S S S ∆∆∆-=(6分),证明略(12分)26)(1)…解析式为221412++-=x x y (2分)…5.0tan tan =∠=∠CAO BAO …(4分) (2)C 点关于对称轴)1(=x 对称的点为)2,2(C '(6分),P 点为BC /与1=x 的交点,…P 的坐标为(1,1)(8分);(3)AB :221-=x y ,设)221,(-x x E )44(<<-x , 则)22141,(2++-x x x F ,x x DE 212|221|-=-=,|22141|2++-=x x DF当4212122++=-x x x ,11-=x ,42=x (舍去),所以)25,1(--E 当4212122---=-x x x ,31-=x ,42=x (舍去),所以)27,3(--E (13分)#。
乐山市沙湾区2018年初中毕业数学调研试卷含答案

A. 6
B.
2 C.
2
D.
3
10. 如图,正方形 ABCD 中,点 P 、 F 分别是边 BC 、 AB 的中点,
连接 AP 、 DF 交于点 E ,则下列结论错误的是
A
D
A. AP DF
B.
AP DF
C. CE CD
D.
CE EP EF
E F
B
P
C
九年级数学第 2 页(共 6 页)
第Ⅱ卷 (非选择题 共 120 分)
D
C
F P
A
E
B
A
B
成本(元 /件) 50
35
利润(元 /件) 20
15
(2)如果服装厂每天至少投入成本 26400 元,那么每天至少获利多少元?
22. 如图,在矩形 ABCD 中, AB 2 3 ,以 B 为圆心,
FA
B
BC 为半径的圆弧交 AD 于点 E ,交 BA 的延长线于
点 F , ECB 60 ,求图中阴影部分的面积 .
E
D
C
九年级数学第 4 页(共 6 页)
五、本大题共 2 小题,每小题 10 分,共 20 分 .
23. 如图,点 D 在⊙ O 的直径 AB 的延长线上, CD 切⊙ O 于
点 C , AE CD 于点 E .
(1) 求证: AC 平分 DAE ;
A
(2) 若 AB 6 , BD 2 ,求 CE 的长 .
F 分别是边 BC 、 CD 中点,则 AEF 周长等于
A. 2 3 B. 3 3 C. 4 3 D. 3
A
B
E
C
D
F
A
B
乐山市2018年初中学业水平考试数学参考答案

乐山市2018年初中学业水平考试数学试题参考答案一、选择题:1.B 2.A 3.D 4.B 5.D 6.C 7.C 8.C 9.B 10.D二、填空题:11.3 12.-1 13.-6 14.22.5 15.2π 16.(1)1 (2)10092017 三、17.解:原式=122122221224=-+=-+⨯. 18.解:解不等式2423-<-x x 得0>x ; 解不等式x x 21732-<,得6<x ; ∴不等式组的解集为60<<x . 19.证明:在△ABC 与△ABD 中,∵∠3=∠4,∠3+∠ABC =∠4+∠ABD ,∴∠ABC =∠ABD .又∵∠1=∠2,AB =AB ,∴△ABC ≌△ABD ,∴BC =BD .四、20.解:原式=)8(8)12(14322m m m m m -÷++---=22212142222-+=--+--m m m m m m=)1(22-+m m .∵m 是方程022=-+x x 的根,∴022=-+m m ,∴22=+m m∴原式=2×(2-1)=2.21.解:(2)3=m ,2=n ;(3)①75=x ,70=y ;②20;③设男生用A 表示,女生用B 表示甲班两名学生用A1,B1表示,乙班三名学生用A2,A3,B2表示.树状图如图1所示:A2A3B2B2A3A2B1A1乙甲从中可以看出,一共有6种等可能的结果,投到1男1女菜有三种情况,∴P (抽到1男1女)=21.22.解:(1)设线段AB 的解析式为b x k y +=1(01≠k ),∵线段AB 过点(0,10),(2,14)代入得⎩⎨⎧=+=142101b k b ,解得⎩⎨⎧==1021b k , ∴AB 的解析式为102+=x y (50<≤x )∵B 在线段AB 上当5=x 时,20=y ,∴线段BC 的解析式为:20=y (105<≤x )设双曲线CD 解析式为:xk y 2=(02≠k ) ∵C (10,20),∴2002=k ,∴双曲线CD 的解析式为:x y 200=(2410≤≤x ), ∴⎪⎪⎩⎪⎪⎨⎧≤≤=<≤<≤+=)2410(200)105(20)50(102x x y x x x y(2)由(1)恒温系统设定恒温为20°C(3)把10=y 代入xy 200=中,解得:20=x ,∴20-10=10 答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.23.(1)证明:由题意可得:△=m m m m m 2010251)5(4)51(22+-+=-⨯--=0)15(1102522≥+=++m m m故无论m 为任何非零实数,此方程总有两个实数根;(2)解:05)51(2=--+x m mx ,0)1)(5(=+-mx x , 解得:mx 11=,52=x , 由621=-x x ,得651=--m ,解得1=m 或111-=m ; (3)解:由(2)得:当0>m 时,1=m ,此时抛物线为542--=x x y ,其对称轴为:2=x ,由题意知,P 、Q 关于2=x 对称,∴22=++n a a ,即n a -=42,∴n n a 8422+-=n n n 8)4(22+--=16. 24.(1)证明:∵PA 、PB 是⊙O 的切线,A 、B 是切点,∴PA =PB ,且PO 平分∠BPA ,∴PO ⊥AB .∵BC 是直径,∴∠CAB =90°,∴AC ⊥AB ,∴AC ∥PO .(2)解:连结OA 、DF ,如图,∵PA 、PB 是⊙O 的切线,A 、B 是切点,∴∠OAQ =∠PBQ =90°.在Rt △OAQ 中,OA =OC =3,∴OQ =5,由222OQ OA QA =+,得QA =4.在Rt △PBQ 中,PA =PB ,QB =OQ +OB =8,由222PQ PB QB =+,得222)4(8+=+PB PB ,解得PB =6,∴PA =PB =6,∵OP ⊥AB ,∴BF =AF =21AB . 又∵D 为PB 的中点,∴DF ∥AP ,DF =21PA =3, ∴△DFE ∽△QEA ,∴34==QF AQ FE AE , 设AE =4t ,FE =3t ,则AF =AE +FE =7t ,∴BE =BF +FE =AF +FE =7t +3t =10t , ∴52104==t t BE AE . 另解:(2)同上,得PA =PB =6,PD =BD =3,过A 作PB 的平行线交DQ 于M ,则QP AQ PD AM =,代入数据:1043=AM ,解得AM =56, 又EB AE BD AM =,∴523156=⨯=EB AE . 25.解:(1)如图1,过点A 作AF ∥CB ,过点B 作BF ∥AD 相交于F ,连接EF , ∴∠FBE =∠APE ,∠FAC =∠C =90°,四边形ADBF 是平行四边形,∴BD =AF ,BF =AD ,∵AC =BD ,CD =AE ,∴AF =AC ,∵∠FAC =∠C =90°,∴△FAE ≌△ACD ,∴EF =AD =BF ,∠FEA =∠ADC ,∵∠ADC +∠CAD =90°,∴∠FEA +∠CAD =90°=∠EHD .∵AD ∥BF ,∴∠EFB =90°,∵EF =BF ,∴∠FBE =45°,∴∠APE =45°,答案:45°.(2)(1)中的结论不成立,理由如下:如图2,过点A 作AF ∥CB ,过点B 作BF ∥AD 相交于F ,连接EF ,∴∠FBE =∠APE ,∠FAC =∠C =90°,∴四边形ADBF 是平行四边形,∴BD =AF ,BF =AD ,∴AC =3BD ,CD =3AE ,∴3==AE CD BD AC , ∵BD =AF , ∴3==AECD AF AC ,∵∠FAC =∠C =90°, ∴△FAE ∽△ACD , ∴3===EFBF EF AD AF AC ,∠FEA =∠ADC , ∵∠ADC +∠CAD =90°,∴∠FEA +∠CAD =90°=∠EMD , ∵AD ∥BF ,∴∠EFB =90°,在Rt △EFB 中,tan ∠FBE =33=BF EF , ∴∠FBE =30°,∴∠APE =30°.(3)(2)中结论成立,如图3,作EH ∥CD ,DH ∥BE ,EH 、DH 相交于H ,连接AH , ∴∠APE =∠ADH ,∠HEC =∠C =90°,四边形EBDH 是平行四边形,∴BE =DH ,EH =BD ,∵AC =3 BD ,CD =3AE , ∴3==AECD BD AC , ∵∠HEA =∠C =90°,△ACD ∽△HEA , ∴3==EHAC AH AD ,∠ADC =∠HAE , ∵∠CAD +∠ADC =90°,∠HAE +∠CAD =90°, ∴∠HAD =90,在Rt △DAH 中,tan ∠ADH =33=AD AH , ∴∠ADH =30°,∴∠APE =30°.26.解:(1)∵OA =1,OB =4,∴A (1,0),B (-4,0)设抛物线的解析式为)1)(4(-+=x x a y ,∵点C (0,34-)在抛物线上, ∴)1(434-⨯⨯=-a ,解得31=a ∴抛物线的解析式为3431)1)(4(312-+=-+=x x x x y .(2)存在t ,使得△ADC 与△PQA 相似.理由:①在Rt △AOC 与△PQA 中,OA =1,OC =34,则tan ∠ACO =43=OC OA , ∵tan ∠OAD =43=OC OA , ∴∠OAD =∠ACO∵直线l 的解析式为)1(43-=x y , ∴D (0,43-),∵点C (0,34-), ∴CD =3443-=127,由222OA OC AC +=,得AC =35 在△AQP 中,AP =AB -PB =5-2t ,AQ =t由∠PAQ=∠ACD ,要使△ADC 与△PQA 相似,只需AC CD AQ AP =或CDAC AQ AP =, 则有3512725=-t t 或1273525=-tt ,解得471001=t ,34352=t , ∵1t <2.5,2t <2.5,∴存在t ,使得△ADC 与△PQA 相似;②存在t ,使得△APQ 与△CAQ 的面积之和最大理由:作PF ⊥AQ 于点F ,CN ⊥AQ 于N在△APF 中,PF =AP·sin ∠PAF =)25(53t -,在△AOD 中,由222OA OD AD +=,得45=AD , 在△ADC 中,由S △ADC =21AD·CN =21CD·OA ,∴CN =157451127=⨯=⋅AD OA CD ∴S △ADC +S △AQC =21AQ (PF +CN ) =)1154)(4334(2153)25(21+--+⨯-t t t =t t 1526532+-,可得当913=t 时,△APQ 与△CAQ 的面积之和最大.。
2018年四川省乐山市中考数学试卷(含答案解析版)

2018年四川省乐山市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项符合题目要求1.(3.00分)(2018•乐山)﹣2的相反数是()A.﹣2 B.2 C.D.﹣2.(3.00分)(2018•乐山)如图是由长方体和圆柱组成的几何体,它的俯视图是()A.B.C.D.3.(3.00分)(2018•乐山)方程组﹣4的解是()A.B.C.D.4.(3.00分)(2018•乐山)如图,∥∥,若4,则与的关系是()A.4 B.3 C.D.25.(3.00分)(2018•乐山)下列调查中,适宜采用普查方式的是()A.调查全国中学生心理健康现状B.调查一片试验田里五种大麦的穗长情况C.要查冷饮市场上冰淇淋的质量情况D.调查你所在班级的每一个同学所穿鞋子的尺码情况6.(3.00分)(2018•乐山)估计+1的值,应在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间7.(3.00分)(2018•乐山)《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(1寸),锯道长1尺(1尺=10寸)”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算:圆形木材的直径是()A.13寸B.20寸C.26寸D.28寸8.(3.00分)(2018•乐山)已知实数a、b满足2,,则a﹣()A.1 B.﹣C.±1 D.±9.(3.00分)(2018•乐山)如图,曲线C2是双曲线C1:(x>0)绕原点O逆时针旋转45°得到的图形,P是曲线C2上任意一点,点A在直线l:上,且,则△的面积等于()A.B.6 C.3 D.1210.(3.00分)(2018•乐山)二次函数2+(a﹣2)3的图象与一次函数(1≤x≤2)的图象有且仅有一个交点,则实数a的取值范围是()A.3±2 B.﹣1≤a<2C.3或﹣≤a<2 D.3﹣2或﹣1≤a<﹣二、填空题:本大题共6小题,每小题3分,共18分11.(3.00分)(2018•乐山)计算:|﹣3 .12.(3.00分)(2018•乐山)化简+的结果是13.(3.00分)(2018•乐山)如图,在数轴上,点A表示的数为﹣1,点B 表示的数为4,C是点B关于点A的对称点,则点C表示的数为.14.(3.00分)(2018•乐山)如图,四边形是正方形,延长到点E,使,连结,则∠的度数是度.15.(3.00分)(2018•乐山)如图,△的顶点O在坐标原点,边在x轴上,2,1,把△绕点A按顺时针方向旋转到△O′′,使得点O′的坐标是(1,),则在旋转过程中线段扫过部分(阴影部分)的面积为.16.(3.00分)(2018•乐山)已知直线l1:(k﹣1)1和直线l2:2,其中k为不小于2的自然数.(1)当2时,直线l1、l2与x轴围成的三角形的面积S2= ;(2)当2、3、4,……,2018时,设直线l1、l2与x轴围成的三角形的面积分别为S2,S3,S4,……,S2018,则S234+……2018= .三、简答题:本大题共3小题,每小题9分,共27分17.(9.00分)(2018•乐山)计算:445°+(π﹣2018)0﹣18.(9.00分)(2018•乐山)解不等式组:19.(9.00分)(2018•乐山)如图,已知∠1=∠2,∠3=∠4,求证:.四、本大题共3小题,每小题10分,共30分20.(10.00分)(2018•乐山)先化简,再求值:(21)(2m﹣1)﹣(m ﹣1)2+(2m)3÷(﹣8m),其中m是方程x2﹣2=0的根21.(10.00分)(2018•乐山)某校八年级甲、乙两班各有学生50人,为了了解这两个班学生身体素质情况,进行了抽样调查,过程如下,请补充完整.(1)收集数据从甲、乙两个班各随机抽取10名学生进行身体素质测试,测试成绩(百分制)如下:甲班65 75 75 80 60 50 75 90 85 65乙班90 55 80 70 55 70 95 80 65 70(2)整理描述数据按如下分数段整理、描述这两组样本数据:在表中:,.(3)分析数据①两组样本数据的平均数、中位数、众数如表所示:在表中:,.②若规定测试成绩在80分(含80分)以上的叙述身体素质为优秀,请估计乙班50名学生中身体素质为优秀的学生有人.③现从甲班指定的2名学生(1男1女),乙班指定的3名学生(2男1女)中分别抽取1名学生去参加上级部门组织的身体素质测试,用树状图和列表法求抽到的2名同学是1男1女的概率.22.(10.00分)(2018•乐山)某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段、表示恒温系统开启阶段,双曲线的一部分表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?五、本大题共2小题,每小题10分,共20分23.(10.00分)(2018•乐山)已知关于x的一元二次方程2+(1﹣5m)x ﹣5=0(m≠0).(1)求证:无论m为任何非零实数,此方程总有两个实数根;(2)若抛物线2+(1﹣5m)x﹣5=0与x轴交于A(x1,0)、B(x2,0)两点,且1﹣x26,求m的值;(3)若m>0,点P(a,b)与Q(,b)在(2)中的抛物线上(点P、Q不重合),求代数式4a2﹣n2+8n的值.24.(10.00分)(2018•乐山)如图,P是⊙O外的一点,、是⊙O的两条切线,A、B是切点,交于点F,延长交⊙O于点C,交的延长交于点Q,连结.(1)求证:∥;(2)设D为的中点,交于点E,若⊙O的半径为3,2,求的值.六、本大题共2小题,第25题12分,第26题13分,共25分25.(12.00分)(2018•乐山)已知△中,∠90°,点D、E分别在、边上,连结、交于点P,设,,k为常数,试探究∠的度数:(1)如图1,若1,则∠的度数为;(2)如图2,若,试问(1)中的结论是否成立?若成立,请说明理由;若不成立,求出∠的度数.(3)如图3,若,且D、E分别在、的延长线上,(2)中的结论是否成立,请说明理由.26.(13.00分)(2018•乐山)如图,在平面直角坐标系中,抛物线2交x 轴于A、B两点,交y轴于点C(0,﹣),1,4,直线l过点A,交y轴于点D,交抛物线于点E,且满足∠.(1)求抛物线的解析式;(2)动点P从点B出发,沿x轴正方形以每秒2个单位长度的速度向点A 运动,动点Q从点A出发,沿射线以每秒1个单位长度的速度向点E运动,当点P运动到点A时,点Q也停止运动,设运动时间为t秒.①在P、Q的运动过程中,是否存在某一时刻t,使得△与△相似,若存在,求出t的值;若不存在,请说明理由.②在P、Q的运动过程中,是否存在某一时刻t,使得△与△的面积之和最大?若存在,求出t的值;若不存在,请说明理由.2018年四川省乐山市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项符合题目要求1.(3.00分)(2018•乐山)﹣2的相反数是()A.﹣2 B.2 C.D.﹣【考点】14:相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣2的相反数是2.故选:B.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.(3.00分)(2018•乐山)如图是由长方体和圆柱组成的几何体,它的俯视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【专题】55F:投影与视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看外面是正方形,里面是没有圆心的圆,故选:A.【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.3.(3.00分)(2018•乐山)方程组﹣4的解是()A.B.C.D.【考点】98:解二元一次方程组.【专题】521:一次方程(组)及应用.【分析】先把原方程组化为,进而利用代入消元法得到方程组的解为.【解答】解:由题可得,,消去x,可得2(4﹣y)=3y,解得2,把2代入23y,可得3,∴方程组的解为.故选:D.【点评】本题主要考查了解二元一次方程组,用代入法解二元一次方程组的一般步骤:从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数用含另一个未知数的代数式表示出来.将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程.解这个一元一次方程,求出x(或y)的值.4.(3.00分)(2018•乐山)如图,∥∥,若4,则与的关系是()A.4 B.3 C.D.2【考点】S4:平行线分线段成比例.【专题】55:几何图形.【分析】根据平行线分线段成比例定理即可得到答案.【解答】解:∵∥∥,4,∴.故选:B.【点评】此题主要考查平行线分线段成比例定理的理解及运用.根据平行线分线段成比例定理解答是解题的关键.5.(3.00分)(2018•乐山)下列调查中,适宜采用普查方式的是()A.调查全国中学生心理健康现状B.调查一片试验田里五种大麦的穗长情况C.要查冷饮市场上冰淇淋的质量情况D.调查你所在班级的每一个同学所穿鞋子的尺码情况【考点】V2:全面调查与抽样调查.【专题】1 :常规题型.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:A、了解全国中学生心理健康现状调查范围广,适合抽样调查,故A错误;B、了解一片试验田里五种大麦的穗长情况调查范围广,适合抽样调查,故B错误;C、了解冷饮市场上冰淇淋的质量情况调查范围广,适合抽样调查,故C错误;D、调查你所在班级的每一个同学所穿鞋子的尺码情况,适合全面调查,故D正确;故选:D.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大.6.(3.00分)(2018•乐山)估计+1的值,应在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间【考点】2B:估算无理数的大小.【分析】根据≈2.236,可得答案.【解答】解:∵≈2.236,∴+1≈3.236,故选:C.【点评】本题考查了估算无理数的大小,利用≈2.236是解题关键.7.(3.00分)(2018•乐山)《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(1寸),锯道长1尺(1尺=10寸)”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算:圆形木材的直径是()A.13寸B.20寸C.26寸D.28寸【考点】M3:垂径定理的应用.【专题】559:圆的有关概念及性质.【分析】设⊙O的半径为r.在△中,5,﹣1,,则有r2=52+(r﹣1)2,解方程即可;【解答】解:设⊙O的半径为r.在△中,5,﹣1,,则有r2=52+(r﹣1)2,解得13,∴⊙O的直径为26寸,故选:C.【点评】本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.8.(3.00分)(2018•乐山)已知实数a、b满足2,,则a﹣()A.1 B.﹣C.±1 D.±【考点】4C:完全平方公式.【专题】11 :计算题.【分析】利用完全平方公式解答即可.【解答】解:∵2,,∴()2=42+22,∴a22=,∴(a﹣b)22﹣22=1,∴a﹣±1,故选:C.【点评】本题考查了完全平方公式的运用,熟记公式结构是解题的关键.9.(3.00分)(2018•乐山)如图,曲线C2是双曲线C1:(x>0)绕原点O逆时针旋转45°得到的图形,P是曲线C2上任意一点,点A在直线l:上,且,则△的面积等于()A.B.6 C.3 D.12【考点】F8:一次函数图象上点的坐标特征;G5:反比例函数系数k的几何意义;G6:反比例函数图象上点的坐标特征.【专题】534:反比例函数及其应用;558:平移、旋转与对称.【分析】将双曲线逆时针旋转使得l与y轴重合,等腰三角形△的底边在y 轴上,应用反比例函数比例系数k的性质解答问题.【解答】解:如图,将C2及直线绕点O逆时针旋转45°,则得到双曲线C3,直线l与y轴重合.双曲线C3,的解析式为﹣过点P作⊥y轴于点B∵∴B为中点.∴S△△由反比例函数比例系数k的性质,S△3∴△的面积是6故选:B.【点评】本题为反比例函数综合题,考查了反比例函数的轴对称性以及反比例函数比例系数k的几何意义.10.(3.00分)(2018•乐山)二次函数2+(a﹣2)3的图象与一次函数(1≤x≤2)的图象有且仅有一个交点,则实数a的取值范围是()A.3±2 B.﹣1≤a<2C.3或﹣≤a<2 D.3﹣2或﹣1≤a<﹣【考点】F8:一次函数图象上点的坐标特征;H4:二次函数图象与系数的关系;H5:二次函数图象上点的坐标特征.【专题】15 :综合题.【分析】根据二次函数的图象性质即可求出答案.【解答】解:由题意可知:方程x2+(a﹣2)3在1≤x≤2上只有一个解,即x2+(a﹣3)3=0在1≤x≤2上只有一个解,当△=0时,即(a﹣3)2﹣12=03±2当3+2时,此时﹣,不满足题意,当3﹣2时,此时,满足题意,当△>0时,令2+(a﹣3)3,令1,1,令2,21(1)(21)≤0解得:﹣1≤a≤,当﹣1时,此时1或3,满足题意;当﹣时,此时2或,不满足题意,综上所述,3﹣2或﹣1≤a<,故选:D.【点评】本题考查二次函数的综合问题,解题的关键是将问题转化为x2+(a ﹣3)3=0在1≤x≤2上只有一个解,根据二次函数的性质即可求出答案,本题属于中等题型.二、填空题:本大题共6小题,每小题3分,共18分11.(3.00分)(2018•乐山)计算:|﹣3 3 .【考点】15:绝对值.【分析】根据负数的绝对值等于这个数的相反数,即可得出答案.【解答】解:|﹣33.故答案为:3.【点评】此题主要考查了绝对值的性质,正确记忆绝对值的性质是解决问题的关键.12.(3.00分)(2018•乐山)化简+的结果是﹣1【考点】6B:分式的加减法.【专题】1 :常规题型.【分析】直接利用分式加减运算法则计算得出答案.【解答】解:+=﹣==﹣1.故答案为:﹣1.【点评】此题主要考查了分式的加减运算,正确掌握运算法则是解题关键.13.(3.00分)(2018•乐山)如图,在数轴上,点A表示的数为﹣1,点B 表示的数为4,C是点B关于点A的对称点,则点C表示的数为﹣6 .【考点】13:数轴.【专题】511:实数.【分析】先根据已知条件可以确定线段的长度,然后根据点B、点C关于点A对称,设设点C所表示的数为x,列出方程即可解决.【解答】解:设点C所表示的数为x,∵数轴上A、B两点表示的数分别为﹣1和4,点B关于点A的对称点是点C,∴4﹣(﹣1),﹣1﹣x,根据题意,∴4﹣(﹣1)=﹣1﹣x,解得﹣6.故答案为:﹣6.【点评】本题主要考查实数与数轴的对应关系和轴对称的性质,熟练掌握对称性质是解本题的关键.14.(3.00分)(2018•乐山)如图,四边形是正方形,延长到点E,使,连结,则∠的度数是22.5 度.【考点】K7:三角形内角和定理;:等腰三角形的性质;:正方形的性质.【专题】11 :计算题.【分析】根据正方形的性质,易知∠∠45°;等腰△中,根据三角形内角和定理可求得∠的度数,进而可由∠∠﹣∠得出∠的度数.【解答】解:∵四边形是正方形,∴∠∠45°;△中,,则:∠∠(180°﹣∠)=67.5°;∴∠∠﹣∠22.5°.故答案为22.5.【点评】此题主要考查的是正方形、等腰三角形的性质及三角形内角和定理.15.(3.00分)(2018•乐山)如图,△的顶点O在坐标原点,边在x轴上,2,1,把△绕点A按顺时针方向旋转到△O′′,使得点O′的坐标是(1,),则在旋转过程中线段扫过部分(阴影部分)的面积为.【考点】:扇形面积的计算;R7:坐标与图形变化﹣旋转.【专题】1 :常规题型.【分析】过O′作O′M⊥于M,解直角三角形求出旋转角的度数,根据图形得出阴影部分的面积扇形′△O′′﹣S△﹣S扇形′扇形′﹣S扇形′,分别求出即可.【解答】解:过O′作O′M⊥于M,则∠O′90°,∵点O′的坐标是(1,),∴O′,1,∵2,∴2﹣1=1,∴∠O′,∴∠O′60°,即旋转角为60°,∴∠′=∠′=60°,∵把△绕点A按顺时针方向旋转到△O′′,∴S△△O′′,∴阴影部分的面积扇形′△O′′﹣S△﹣S扇形′扇形′﹣S扇形′=﹣=,故答案为:.【点评】本题考查了解直角三角形,旋转的性质、扇形的面积计算等知识点,能把求不规则图形的面积转化成求出规则图形的面积是解此题的关键.16.(3.00分)(2018•乐山)已知直线l1:(k﹣1)1和直线l2:2,其中k为不小于2的自然数.(1)当2时,直线l1、l2与x轴围成的三角形的面积S2= 1 ;(2)当2、3、4,……,2018时,设直线l1、l2与x轴围成的三角形的面积分别为S2,S3,S4,……,S2018,则S234+……2018= .【考点】38:规律型:图形的变化类;F8:一次函数图象上点的坐标特征.【专题】533:一次函数及其应用.【分析】利用一次函数图象上点的坐标特征可求出两直线与x轴的交点坐标,进而可得出两点间的距离,联立两直线解析式成方程组,通过解方程组可求出两直线的交点坐标.(1)代入2,可得出d的值,利用三角形的面积公式可求出S2的值;(2)分别代入2、3、4、…、2018求出S2、S3、S4、…、S2018值,将其相加即可得出结论.【解答】解:当0时,有(k﹣1)1=0,解得:﹣1﹣,∴直线l1与x轴的交点坐标为(﹣1﹣,0),同理,可得出:直线l2与x轴的交点坐标为(﹣1﹣,0),∴两直线与x轴交点间的距离﹣1﹣﹣(﹣1﹣)=﹣.联立直线l1、l2成方程组,得:,解得:,∴直线l1、l2的交点坐标为(﹣1,﹣2).(1)当2时,﹣=1,∴S2=×|﹣21.故答案为:1.(2)当3时,S3=﹣;当4时,S4=﹣;…;S2018=﹣,∴S234+……2018=﹣+﹣+﹣+…+﹣,=﹣,=2﹣,=.故答案为:.【点评】本题考查了一次函数图象上点的坐标特征以及规律型中图形的变化类,利用一次函数图象上点的坐标特征求出两直线与x轴交点间的距离是解题的关键.三、简答题:本大题共3小题,每小题9分,共27分17.(9.00分)(2018•乐山)计算:445°+(π﹣2018)0﹣【考点】2C:实数的运算;6E:零指数幂;T5:特殊角的三角函数值.【专题】11 :计算题;511:实数.【分析】原式利用特殊角的三角函数值,零指数幂法则,以及算术平方根定义计算即可求出值.【解答】解:原式=4×+1﹣2=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键18.(9.00分)(2018•乐山)解不等式组:【考点】:解一元一次不等式组.【专题】1 :常规题型.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:,∵解不等式①得:x>0,解不等式②得:x<6,∴不等式组的解集为0<x<6.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.19.(9.00分)(2018•乐山)如图,已知∠1=∠2,∠3=∠4,求证:.【考点】:全等三角形的判定与性质.【专题】552:三角形.【分析】由∠3=∠4可以得出∠∠,再利用就可以得出△≌△,就可以得出结论.【解答】证明:∵∠∠3=180°∠∠4=180°,且∠3=∠4,∴∠∠在△和△中,,∴△≌△(),∴.【点评】本题考查了等角的补角相等的性质的运用,全等三角形的判定与性质的运用,解答时证明三角形全等是关键.四、本大题共3小题,每小题10分,共30分20.(10.00分)(2018•乐山)先化简,再求值:(21)(2m﹣1)﹣(m ﹣1)2+(2m)3÷(﹣8m),其中m是方程x2﹣2=0的根【考点】4J:整式的混合运算—化简求值;A3:一元二次方程的解.【专题】11 :计算题;512:整式.【分析】先利用平方差公式和完全平方公式及单项式的除法化简原式,再由方程的解的定义得出m22,代入计算可得.【解答】解:原式=4m2﹣1﹣(m2﹣21)+8m3÷(﹣8m)=4m2﹣1﹣m2+2m﹣1﹣m2=2m2+2m﹣2=2(m2﹣1),∵m是方程x2﹣2=0的根,∴m2﹣2=0,即m22,则原式=2×(2﹣1)=2.【点评】本题主要考查整式的化简求值,解题的关键是掌握平方差公式和完全平方公式、整式的混合运算顺序和运算法则、方程的解的定义.21.(10.00分)(2018•乐山)某校八年级甲、乙两班各有学生50人,为了了解这两个班学生身体素质情况,进行了抽样调查,过程如下,请补充完整.(1)收集数据从甲、乙两个班各随机抽取10名学生进行身体素质测试,测试成绩(百分制)如下:甲班65 75 75 80 60 50 75 90 85 65乙班90 55 80 70 55 70 95 80 65 70(2)整理描述数据按如下分数段整理、描述这两组样本数据:在表中: 3 , 2 .(3)分析数据①两组样本数据的平均数、中位数、众数如表所示:在表中:75 ,70 .②若规定测试成绩在80分(含80分)以上的叙述身体素质为优秀,请估计乙班50名学生中身体素质为优秀的学生有20 人.③现从甲班指定的2名学生(1男1女),乙班指定的3名学生(2男1女)中分别抽取1名学生去参加上级部门组织的身体素质测试,用树状图和列表法求抽到的2名同学是1男1女的概率.【考点】V5:用样本估计总体;V7:频数(率)分布表;W4:中位数;W5:众数;X6:列表法与树状图法.【专题】1 :常规题型;54:统计与概率.【分析】(2)由收集的数据即可得;(3)①根据众数和中位数的定义求解可得;②用总人数乘以乙班样本中优秀人数所占比例可得;③列表得出所有等可能结果,利用概率公式求解可得.【解答】解:(2)由收集的数据得知3、2,故答案为:3、2;(3)①甲班成绩为:50、60、65、65、75、75、75、80、85、90,∴甲班成绩的中位数75,乙班成绩70分出现次数最多,所以的众数70,故答案为:75、70;②估计乙班50名学生中身体素质为优秀的学生有50×=20人;③列表如下:由表可知,共有6种等可能结果,其中抽到的2名同学是1男1女的有3种结果,所以抽到的2名同学是1男1女的概率为=.【点评】本题考查了众数、中位数以及概率公式的应用,掌握众数、中位数以及用样本估计总体是解题的关键.22.(10.00分)(2018•乐山)某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段、表示恒温系统开启阶段,双曲线的一部分表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?【考点】:反比例函数的应用.【专题】533:一次函数及其应用;534:反比例函数及其应用.【分析】(1)应用待定系数法分段求函数解析式;(2)观察图象可得;(3)代入临界值10即可.【解答】解:(1)设线段解析式为1(k≠0)∵线段过点(0,10),(2,14)代入得解得∴解析式为:210(0≤x<5)∵B在线段上当5时,20∴B坐标为(5,20)∴线段的解析式为:20(5≤x<10)设双曲线解析式为:(k2≠0)∵C(10,20)∴k2=200∴双曲线解析式为:(10≤x≤24)∴y关于x的函数解析式为:(2)由(1)恒温系统设定恒温为20°C(3)把10代入中,解得,20∴20﹣10=10答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.【点评】本题为实际应用背景的函数综合题,考查求得一次函数、反比例函数和常函数关系式.解答时应注意临界点的应用.五、本大题共2小题,每小题10分,共20分23.(10.00分)(2018•乐山)已知关于x的一元二次方程2+(1﹣5m)x ﹣5=0(m≠0).(1)求证:无论m为任何非零实数,此方程总有两个实数根;(2)若抛物线2+(1﹣5m)x﹣5=0与x轴交于A(x1,0)、B(x2,0)两点,且1﹣x26,求m的值;(3)若m>0,点P(a,b)与Q(,b)在(2)中的抛物线上(点P、Q不重合),求代数式4a2﹣n2+8n的值.【考点】A1:一元二次方程的定义;:根的判别式;H5:二次函数图象上点的坐标特征;:抛物线与x轴的交点.【专题】1 :常规题型.【分析】(1)直接利用△2﹣4,进而利用偶次方的性质得出答案;(2)首先解方程,进而由1﹣x26,求出答案;(3)利用(2)中所求得出m的值,进而利用二次函数对称轴得出答案.【解答】(1)证明:由题意可得:△=(1﹣5m)2﹣4m×(﹣5)=1+25m2﹣2020m=25m2+1>0,故无论m为任何非零实数,此方程总有两个实数根;(2)解:2+(1﹣5m)x﹣5=0,解得:x1=﹣,x2=5,由1﹣x26,得|﹣﹣56,解得:1或﹣;(3)解:由(2)得,当m>0时,1,此时抛物线为2﹣4x﹣5,其对称轴为:2,由题已知,P,Q关于2对称,∴=2,即24﹣n,∴4a2﹣n2+8(4﹣n)2﹣n2+816.【点评】此题主要考查了抛物线与x轴的交点以及根的判别式,正确得出方程的根是解题关键.24.(10.00分)(2018•乐山)如图,P是⊙O外的一点,、是⊙O的两条切线,A、B是切点,交于点F,延长交⊙O于点C,交的延长交于点Q,连结.(1)求证:∥;(2)设D为的中点,交于点E,若⊙O的半径为3,2,求的值.【考点】M5:圆周角定理;:切线的性质;S9:相似三角形的判定与性质.【专题】1 :常规题型.【分析】(1)根据切线长定理得出,且平分∠,利用等腰三角形三线合一的性质得出⊥.根据圆周角定理得出⊥,进而得到∥;(2)连结、.先用勾股定理计算出4,再计算出6,利用切线长定理可得到F点为的中点,易得为△的中位线,则3,∥,利用∥得到△∽△,所以,设4t,3t,则7t,于是7310t,最后计算.【解答】(1)证明:∵、是⊙O的两条切线,A、B是切点,∴,且平分∠,∴⊥.∵是直径,∴∠90°,∴⊥,∴∥;(2)解:连结、,如图,∵、是⊙O的两条切线,A、B是切点,∴∠∠90°.在△中,3,∴5.由222,得4.在△中,,8,由222,得822=(4)2,解得6,∴6,∵⊥,∴.。
四川省乐山市2018年中考数学试题(解析版)

2018年四川省乐山市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项符合题目要求1. ﹣2的相反数是()A. ﹣2B. 2C.D. ﹣【答案】B【解析】解:﹣2的相反数是2.故选B.2. 如图是由长方体和圆柱组成的几何体,它的俯视图是()A. B. C. D.【答案】A【解析】分析:根据从上边看得到的图形是俯视图,可得答案.详解:从上边看外面是正方形,里面是没有圆心的圆,故选:A.点睛:本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.3. 方程组==x+y﹣4的解是()A. B. C. D.【答案】D【解析】把A、B、C、D四个选项中的x、y的值分别代入两个方程检验可知,能够同时满足方程:y=1-x 和3x+2y=5的是,∴方程y=1-x与3x+2y=5的公共解是.故选B.4. 如图,DE∥FG∥BC,若DB=4FB,则EG与GC的关系是()学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...A. EG=4GCB. EG=3GCC. EG=GCD. EG=2GC【答案】B【解析】分析:根据平行线分线段成比例定理即可得到答案.详解:∵DE∥FG∥BC,DB=4FB,∴=3.故选:B.点睛:此题主要考查平行线分线段成比例定理的理解及运用.根据平行线分线段成比例定理解答是解题的关键.5. 下列调查中,适宜采用普查方式的是()A. 调查全国中学生心理健康现状B. 调查一片试验田里五种大麦的穗长情况C. 要查冷饮市场上冰淇淋的质量情况D. 调查你所在班级的每一个同学所穿鞋子的尺码情况【答案】D【解析】分析:根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.详解:A、了解全国中学生心理健康现状调查范围广,适合抽样调查,故A错误;B、了解一片试验田里五种大麦的穗长情况调查范围广,适合抽样调查,故B错误;C、了解冷饮市场上冰淇淋的质量情况调查范围广,适合抽样调查,故C错误;D、调查你所在班级的每一个同学所穿鞋子的尺码情况,适合全面调查,故D正确;故选:D.点睛:本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大.6. 估计+1的值,应在()A. 1和2之间B. 2和3之间C. 3和4之间D. 4和5之间【答案】C【解析】∵,∴,故选:C.7. 《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算:圆形木材的直径AC是()A. 13寸B. 20寸C. 26寸D. 28寸【答案】C【解析】分析:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r-1,OA=r,则有r2=52+(r-1)2,解方程即可.详解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r-1,OA=r,则有r2=52+(r-1)2,解得r=13,∴⊙O的直径为26寸,故选:C.点睛:本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题8. 已知实数a、b满足a+b=2,ab=,则a﹣b=()A. 1B. ﹣C. ±1D. ±【答案】C【解析】分析:利用完全平方公式解答即可.详解:∵a+b=2,ab=,∴(a+b)2=4=a2+2ab+b2,∴a2+b2=,∴(a-b)2=a2-2ab+b2=1,∴a-b=±1,故选:C.点睛:本题考查了完全平方公式的运用,熟记公式结构是解题的关键.9. 如图,曲线C2是双曲线C1:y=(x>0)绕原点O逆时针旋转45°得到的图形,P是曲线C2上任意一点,点A在直线l:y=x上,且PA=PO,则△POA的面积等于()A. B. 6 C. 3 D. 12【答案】B【解析】【详解】分析:将双曲线逆时针旋转使得l与y轴重合,等腰三角形△PAO的底边在y轴上,应用反比例函数比例系数k的性质解答问题.详解:如图,将C2及直线y=x绕点O逆时针旋转45°,则得到双曲线C3,直线l与y轴重合.双曲线C3,的解析式为y=-,过点P作PB⊥y轴于点B,∵PA=PO,∴B为OA中点.∴S△PAB=S△POB,由反比例函数比例系数k的性质,S△POB=3,∴△POA的面积是6.故选:B.点睛:本题为反比例函数综合题,考查了反比例函数的轴对称性以及反比例函数比例系数k的几何意义.10. 二次函数y=x2+(a﹣2)x+3的图象与一次函数y=x(1≤x≤2)的图象有且仅有一个交点,则实数a的取值范围是()A. a=3±2B. ﹣1≤a<2C. a=3或﹣≤a<2D. a=3﹣2或﹣1≤a<﹣【答案】D【解析】分析:根据二次函数的图象性质即可求出答案.详解:由题意可知:方程x2+(a-2)x+3=x在1≤x≤2上只有一个解,即x2+(a-3)x+3=0在1≤x≤2上只有一个解,当△=0时,即(a-3)2-12=0,a=3±2,当a=3+2时,此时x=-,不满足题意,当a=3-2时,此时x=,满足题意,当△>0时,令y=x2+(a-3)x+3,令x=1,y=a+1,令x=2,y=2a+1(a+1)(2a+1)≤0解得:-1≤a≤−,当a=-1时,此时x=1或3,满足题意;当a=-时,此时x=2或x=,不满足题意,综上所述,a=3-2或-1≤a<−.故选:D.点睛:本题考查二次函数的综合问题,解题的关键是将问题转化为x2+(a-3)x+3=0在1≤x≤2上只有一个解,根据二次函数的性质即可求出答案二、填空题11. 计算:|﹣3|=______.【答案】3【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.详解:|-3|=3.故答案为:3.点睛:此题主要考查了绝对值的性质,正确记忆绝对值的性质是解决问题的关键.12. 化简的结果是______【答案】﹣1【解析】分析:直接利用分式加减运算法则计算得出答案.详解:==.故答案为:-1.点睛:此题主要考查了分式的加减运算,正确掌握运算法则是解题关键.13. 如图,在数轴上,点A表示的数为﹣1,点B表示的数为4,C是点B关于点A的对称点,则点C表示的数为______.【答案】﹣6【解析】分析:先根据已知条件可以确定线段AB的长度,然后根据点B、点C关于点A对称,设设点C 所表示的数为x,列出方程即可解决.详解:设点C所表示的数为x,∵数轴上A、B两点表示的数分别为-1和4,点B关于点A的对称点是点C,∴AB=4-(-1),AC=-1-x,根据题意AB=AC,∴4-(-1)=-1-x,解得x=-6.故答案为:-6.点睛:本题主要考查实数与数轴的对应关系和轴对称的性质,熟练掌握对称性质是解本题的关键.14. 如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,连结CE,则∠BCE的度数是______度.【答案】22.5【解析】试题分析:根据正方形的性质,易知∠CAE=∠ACB=45°;等腰△CAE中,根据三角形内角和定理可求得∠ACE的度数,进而可由∠BCE=∠ACE﹣∠ACB得出∠BCE的度数.解:∵四边形ABCD是正方形,∴∠CAB=∠BCA=45°;△ACE中,AC=AE,则:∠ACE=∠AEC=(180°﹣∠CAE)=67.5°;∴∠BCE=∠ACE﹣∠ACB=22.5°.故答案为22.5.考点:等腰三角形的性质;三角形内角和定理;正方形的性质.15. 如图,△OAC的顶点O在坐标原点,OA边在x轴上,OA=2,AC=1,把△OAC绕点A按顺时针方向旋转到△O′AC′,使得点O′的坐标是(1,),则在旋转过程中线段OC扫过部分(阴影部分)的面积为______.【答案】【解析】分析:过O′作O′M⊥OA于M,解直角三角形求出旋转角的度数,根据图形得出阴影部分的面积S=S扇形OAO′+S△O′AC′-S△OAC-S扇形CAC′=S扇形OAO′-S扇形CAC′,分别求出即可.详解:过O′作O′M⊥OA于M,则∠O′MA=90°,∵点O′的坐标是(1,),∴O′M=,OM=1,∵AO=2,∴AM=2-1=1,∴tan∠O′AM=,∴∠O′AM=60°,即旋转角为60°,∴∠CAC′=∠OAO′=60°,∵把△OAC绕点A按顺时针方向旋转到△O′AC′,∴S△OAC=S△O′AC′,∴阴影部分的面积S=S扇形OAO′+S△O′AC′-S△OAC-S扇形CAC′=S扇形OAO′-S扇形CAC′==,故答案为:.点睛:本题考查了解直角三角形,旋转的性质、扇形的面积计算等知识点,能把求不规则图形的面积转化成求出规则图形的面积是解此题的关键.16. 已知直线l1:y=(k﹣1)x+k+1和直线l2:y=kx+k+2,其中k为不小于2的自然数.(1)当k=2时,直线l1、l2与x轴围成的三角形的面积S2=______;(2)当k=2、3、4,……,2018时,设直线l1、l2与x轴围成的三角形的面积分别为S2,S3,S4,……,S2018,则S2+S3+S4+……+S2018=______.【答案】(1). 1(2).【解析】分析:利用一次函数图象上点的坐标特征可求出两直线与x轴的交点坐标,进而可得出两点间的距离,联立两直线解析式成方程组,通过解方程组可求出两直线的交点坐标.(1)代入k=2,可得出d的值,利用三角形的面积公式可求出S2的值;(2)分别代入k=2、3、4、…、2018求出S2、S3、S4、…、S2018值,将其相加即可得出结论.详解:当y=0时,有(k-1)x+k+1=0,解得:x=-1-,∴直线l1与x轴的交点坐标为(-1-,0),同理,可得出:直线l2与x轴的交点坐标为(-1-,0),∴两直线与x轴交点间的距离d=-1--(-1-)=-.联立直线l1、l2成方程组,得:,解得:,∴直线l1、l2的交点坐标为(-1,-2).(1)当k=2时,d=-=1,∴S2=×|-2|d=1.故答案为:1.(2)当k=3时,S3=;当k=4时,S4=;…;S2018=,∴S2+S3+S4+……+S2018=,=,=2-,=.故答案为:.点睛:本题考查了一次函数图象上点的坐标特征以及规律型中图形的变化类,利用一次函数图象上点的坐标特征求出两直线与x轴交点间的距离是解题的关键.三、简答题:本大题共3小题,每小题9分,共27分17. 计算:4cos45°+(π﹣2018)0﹣【答案】1【解析】分析:原式利用特殊角的三角函数值,零指数幂法则,以及算术平方根定义计算即可求出值.详解:原式=4×+1-2=1.点睛:此题考查了实数的运算,熟练掌握运算法则是解本题的关键18. 解不等式组:【答案】不等式组的解集为0<x<6.【解析】分析:先求出每个不等式的解集,再求出不等式组的解集即可.详解:∵,解不等式①得:x>0,解不等式②得:x<6,∴不等式组的解集为0<x<6.点睛:本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.19. 如图,已知∠1=∠2,∠3=∠4,求证:BC=BD.【答案】证明见解析.【解析】分析:由∠3=∠4可以得出∠ABD=∠ABC,再利用ASA就可以得出△ADB≌△ACB,就可以得出结论.详解:证明:∵∠ABD+∠3=180°∠ABC+∠4=180°,且∠3=∠4,∴∠ABD=∠ABC在△ADB和△ACB中,,∴△ADB≌△ACB(ASA),∴BD=CD.点睛:本题考查了等角的补角相等的性质的运用,全等三角形的判定与性质的运用,解答时证明三角形全等是关键.20. 先化简,再求值:(2m+1)(2m﹣1)﹣(m﹣1)2+(2m)3÷(﹣8m),其中m是方程x2+x﹣2=0的根【答案】原式==2(m2+m﹣1).=2.【解析】分析:先利用平方差公式和完全平方公式及单项式的除法化简原式,再由方程的解的定义得出m2+m=2,代入计算可得.详解:原式=4m2-1-(m2-2m+1)+8m3÷(-8m)=4m2-1-m2+2m-1-m2=2m2+2m-2=2(m2+m-1),∵m是方程x2+x-2=0的根,∴m2+m-2=0,即m2+m=2,则原式=2×(2-1)=2.点睛:本题主要考查整式的化简求值,解题的关键是掌握平方差公式和完全平方公式、整式的混合运算顺序和运算法则、方程的解的定义.21. 某校八年级甲、乙两班各有学生50人,为了了解这两个班学生身体素质情况,进行了抽样调查,过程如下,请补充完整.(1)收集数据从甲、乙两个班各随机抽取10名学生进行身体素质测试,测试成绩(百分制)如下:甲班65 75 75 80 60 50 75 90 85 65乙班90 55 80 70 55 70 95 80 65 70(2)整理描述数据按如下分数段整理、描述这两组样本数据:在表中:m= ,n= .(3)分析数据①两组样本数据的平均数、中位数、众数如表所示:在表中:x= ,y= .②若规定测试成绩在80分(含80分)以上的叙述身体素质为优秀,请估计乙班50名学生中身体素质为优秀的学生有人.③现从甲班指定的2名学生(1男1女),乙班指定的3名学生(2男1女)中分别抽取1名学生去参加上级部门组织的身体素质测试,用树状图和列表法求抽到的2名同学是1男1女的概率.【答案】(2)3、2;(3)①75、70;②20;③抽到的2名同学是1男1女的概率为.【解析】分析:(2)由收集的数据即可得;(3)①根据众数和中位数的定义求解可得;②用总人数乘以乙班样本中优秀人数所占比例可得;③列表得出所有等可能结果,利用概率公式求解可得.详解:(2)由收集的数据得知m=3、n=2,故答案为:3、2;(3)①甲班成绩为:50、60、65、65、75、75、75、80、85、90,∴甲班成绩的中位数x==75,乙班成绩70分出现次数最多,所以的众数y=70,故答案为:75、70;②估计乙班50名学生中身体素质为优秀的学生有50×=20人;③列表如下:由表可知,共有6种等可能结果,其中抽到的2名同学是1男1女的有3种结果,所以抽到的2名同学是1男1女的概率为.点睛:本题考查了众数、中位数以及概率公式的应用,掌握众数、中位数以及用样本估计总体是解题的关键.22. 某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?【答案】(1)y关于x的函数解析式为;(2)恒温系统设定恒温为20°C;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.【解析】分析:(1)应用待定系数法分段求函数解析式;(2)观察图象可得;(3)代入临界值y=10即可.详解:(1)设线段AB解析式为y=k1x+b(k≠0)∵线段AB过点(0,10),(2,14)代入得解得∴AB解析式为:y=2x+10(0≤x<5)∵B在线段AB上当x=5时,y=20∴B坐标为(5,20)∴线段BC的解析式为:y=20(5≤x<10)设双曲线CD解析式为:y=(k2≠0)∵C(10,20)∴k2=200∴双曲线CD解析式为:y=(10≤x≤24)∴y关于x的函数解析式为:(2)由(1)恒温系统设定恒温为20°C(3)把y=10代入y=中,解得,x=20∴20-10=10答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.点睛:本题为实际应用背景的函数综合题,考查求得一次函数、反比例函数和常函数关系式.解答时应注意临界点的应用.23. 已知关于x的一元二次方程mx2+(1﹣5m)x﹣5=0(m≠0).(1)求证:无论m为任何非零实数,此方程总有两个实数根;(2)若抛物线y=mx2+(1﹣5m)x﹣5与x轴交于A(x1,0)、B(x2,0)两点,且|x1﹣x2|=6,求m的值;(3)若m>0,点P(a,b)与Q(a+n,b)在(2)中的抛物线上(点P、Q不重合),求代数式4a2﹣n2+8n的值.【答案】(1)证明见解析;(2)m=1或m=﹣;(3)4a2﹣n2+8n=16.【解析】分析:(1)直接利用△=b2-4ac,进而利用偶次方的性质得出答案;(2)首先解方程,进而由|x1-x2|=6,求出答案;(3)利用(2)中所求得出m的值,进而利用二次函数对称轴得出答案.详解:(1)证明:由题意可得:△=(1-5m)2-4m×(-5)=1+25m2-20m+20m=25m2+1>0,故无论m为任何非零实数,此方程总有两个实数根;(2)解:mx2+(1-5m)x-5=0,解得:x1=-,x2=5,由|x1-x2|=6,得|--5|=6,解得:m=1或m=-;(3)解:由(2)得,当m>0时,m=1,此时抛物线为y=x2-4x-5,其对称轴为:x=2,由题已知,P,Q关于x=2对称,∴=2,即2a=4-n,∴4a2-n2+8n=(4-n)2-n2+8n=16.点睛:此题主要考查了抛物线与x轴的交点以及根的判别式,正确得出方程的根是解题关键.24. 如图,P是⊙O外的一点,PA、PB是⊙O的两条切线,A、B是切点,PO交AB于点F,延长BO交⊙O于点C,交PA的延长交于点Q,连结AC.(1)求证:AC∥PO;(2)设D为PB的中点,QD交AB于点E,若⊙O的半径为3,CQ=2,求的值.【答案】(1)证明见解析;(2).【解析】分析:(1)根据切线长定理得出PA=PB,且PO平分∠BPA,利用等腰三角形三线合一的性质得出PO⊥AB.根据圆周角定理得出AC⊥AB,进而得到AC∥PO;(2)连结OA、DF.先用勾股定理计算出AQ=4,再计算出PA=PB=6,利用切线长定理可得到F 点为AB的中点,易得DF为△BAP的中位线,则DF=PA=3,DF∥PA,利用DF∥AQ得到△DFE∽△QEA,所以,设AE=4t,FE=3t,则AF=AE+FE=7t,于是BE=BF+FE=AF+FE=7t+3t=10t,最后计算.详解:(1)证明:∵PA、PB是⊙O的两条切线,A、B是切点,∴PA=PB,且PO平分∠BPA,∴PO⊥AB.∵BC是直径,∴∠CAB=90°,∴AC⊥AB,∴AC∥PO;(2)连结OA、DF,如图,∵PA、PB是⊙O的两条切线,A、B是切点,∴∠OAQ=∠PBQ=90°.在Rt△OAQ中,OA=OC=3,∴OQ=5.由QA2+OA2=OQ2,得QA=4.在Rt△PBQ中,PA=PB,QB=OQ+OB=8,由QB2+PB2=PQ2,得82+PB2=(PB+4)2,解得PB=6,∴PA=PB=6.∵OP⊥AB,∴BF=AF=AB.又∵D为PB的中点,∴DF∥AP,DF=PA=3,∴△DFE∽△QEA,∴设AE=4t,FE=3t,则AF=AE+FE=7t,∴BE=BF+FE=AF+FE=7t+3t=10t,∴.点睛:本题考查了切线的判定与性质:圆的切线垂直于经过切点的半径;经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了勾股定理和相似三角形的判定与性质.25. 已知Rt△ABC中,∠ACB=90°,点D、E分别在BC、AC边上,连结BE、AD交于点P,设AC=kBD,CD=kAE,k为常数,试探究∠APE的度数:(1)如图1,若k=1,则∠APE的度数为;(2)如图2,若k=,试问(1)中的结论是否成立?若成立,请说明理由;若不成立,求出∠APE 的度数.(3)如图3,若k=,且D、E分别在CB、CA的延长线上,(2)中的结论是否成立,请说明理由.【答案】(1)45°;(2)(1)中结论不成立,理由见解析;(3)(2)中结论成立,理由见解析. 【解析】(1)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△FAE≌△ACD,分析:得出EF=AD=BF,再判断出∠EFB=90°,即可得出结论;(2)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△FAE∽△ACD,再判断出∠EFB=90°,即可得出结论;(3)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△ACD∽△HEA,再判断出∠EFB=90°,即可得出结论;详解:(1)如图1,过点A作AF∥CB,过点B作BF∥AD相交于F,连接EF,∴∠FBE=∠APE,∠FAC=∠C=90°,四边形ADBF是平行四边形,∴BD=AF,BF=AD.∵AC=BD,CD=AE,∴AF=AC.∵∠FAC=∠C=90°,∴△FAE≌△ACD,∴EF=AD=BF,∠FEA=∠ADC.∵∠ADC+∠CAD=90°,∴∠FEA+∠CAD=90°=∠EHD.∵AD∥BF,∴∠EFB=90°.∵EF=BF,∴∠FBE=45°,∴∠APE=45°.(2)(1)中结论不成立,理由如下:如图2,过点A作AF∥CB,过点B作BF∥AD相交于F,连接EF,∴∠FBE=∠APE,∠FAC=∠C=90°,四边形ADBF是平行四边形,∴BD=AF,BF=AD.∵AC=BD,CD=AE,∴.∵BD=AF,∴.∵∠FAC=∠C=90°,∴△FAE∽△ACD,∴,∠FEA=∠ADC.∵∠ADC+∠CAD=90°,∴∠FEA+∠CAD=90°=∠EMD.∵AD∥BF,∴∠EFB=90°.在Rt△EFB中,tan∠FBE=,∴∠FBE=30°,∴∠APE=30°,(3)(2)中结论成立,如图3,作EH∥CD,DH∥BE,EH,DH相交于H,连接AH,∴∠APE=∠ADH,∠HEC=∠C=90°,四边形EBDH是平行四边形,∴BE=DH,EH=BD.∵AC=BD,CD=AE,∴.∵∠HEA=∠C=90°,∴△ACD∽△HEA,∴,∠ADC=∠HAE.∵∠CAD+∠ADC=90°,∴∠HAE+∠CAD=90°,∴∠HAD=90°.在Rt△DAH中,tan∠ADH=,∴∠ADH=30°,∴∠APE=30°.点睛:此题是三角形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的判定和性质,构造全等三角形和相似三角形的判定和性质.26. 如图,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C(0,﹣),OA=1,OB=4,直线l过点A,交y轴于点D,交抛物线于点E,且满足tan∠OAD=.(1)求抛物线的解析式;(2)动点P从点B出发,沿x轴正方形以每秒2个单位长度的速度向点A运动,动点Q从点A出发,沿射线AE以每秒1个单位长度的速度向点E运动,当点P运动到点A时,点Q也停止运动,设运动时间为t秒.①在P、Q的运动过程中,是否存在某一时刻t,使得△ADC与△PQA相似,若存在,求出t的值;若不存在,请说明理由.②在P、Q的运动过程中,是否存在某一时刻t,使得△APQ与△CAQ的面积之和最大?若存在,求出t的值;若不存在,请说明理由.【答案】(1)抛物线的解析式为y=;(2)①存在t=或t=,使得△ADC与△PQA相似;②当t=时,△APQ与△CAQ的面积之和最大.【解析】分析:(1)应用待定系数法求解析式(2)①分别用t表示△ADC、△PQA各边,应用分类讨论相似三角形比例式,求t值;②分别用t表示△APQ与△CAQ的面积之和,讨论最大值.详解:(1)∵OA=1,OB=4,∴A(1,0),B(﹣4,0),设抛物线的解析式为y=a(x+4)(x﹣1),∵点C(0,﹣)在抛物线上,∴﹣,解得a=.∴抛物线的解析式为y=.(2)存在t,使得△ADC与△PQA相似.理由:①在Rt△AOC中,OA=1,OC=,则tan∠ACO=,∵tan∠OAD=,∴∠OAD=∠ACO,∵直线l的解析式为y=,∴D(0,﹣),∵点C(0,﹣),∴CD=,由AC2=OC2+OA2,得AC=,在△AQP中,AP=AB﹣PB=5﹣2t,AQ=t,由∠PAQ=∠ACD,要使△ADC与△PQA相似,只需或,则有或,解得t1=,t2=,∵t1<2.5,t2<2.5,∴存在t=或t=,使得△ADC与△PQA相似;②存在t,使得△APQ与△CAQ的面积之和最大,理由:作PF⊥AQ于点F,CN⊥AQ于N,在△APF中,PF=AP•sin∠PAF=,在△AOD中,由AD2=OD2+OA2,得AD=,在△ADC中,由S△ADC=,∴CN=,∴S△AQP+S△AQC=,∴当t=时,△APQ与△CAQ的面积之和最大.点睛:本题为代数、几何综合题,考查待定系数法、相似三角形判定、二次函数最值,应用了分类讨论和数形结合思想.。
2018年四川省乐山市中考数学试卷(含答案解析版)

2018年四川省乐山市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项符合题目要求1.(3.00分)(2018•乐山)﹣2的相反数是( ) A .﹣2 B .2C .12D .﹣122.(3.00分)(2018•乐山)如图是由长方体和圆柱组成的几何体,它的俯视图是( )A .B .C .D .3.(3.00分)(2018•乐山)方程组x 3=y2=x +y ﹣4的解是( )A .{x =−3y =−2B .{x =6y =4C .{x =2y =3D .{x =3y =24.(3.00分)(2018•乐山)如图,DE ∥FG ∥BC ,若DB=4FB ,则EG 与GC 的关系是( )A .EG=4GCB .EG=3GC C .EG=52GC D .EG=2GC5.(3.00分)(2018•乐山)下列调查中,适宜采用普查方式的是( )A .调查全国中学生心理健康现状B .调查一片试验田里五种大麦的穗长情况C .要查冷饮市场上冰淇淋的质量情况D .调查你所在班级的每一个同学所穿鞋子的尺码情况6.(3.00分)(2018•乐山)估计√5+1的值,应在( ) A .1和2之间 B .2和3之间 C .3和4之间 D .4和5之间7.(3.00分)(2018•乐山)《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算:圆形木材的直径AC 是( )A .13寸B .20寸C .26寸D .28寸8.(3.00分)(2018•乐山)已知实数a 、b 满足a +b=2,ab=34,则a ﹣b=( )A .1B .﹣52C .±1D .±529.(3.00分)(2018•乐山)如图,曲线C 2是双曲线C 1:y=6x(x >0)绕原点O逆时针旋转45°得到的图形,P 是曲线C 2上任意一点,点A 在直线l :y=x 上,且PA=PO ,则△POA 的面积等于( )A .√6B .6C .3D .1210.(3.00分)(2018•乐山)二次函数y=x 2+(a ﹣2)x +3的图象与一次函数y=x (1≤x ≤2)的图象有且仅有一个交点,则实数a 的取值范围是( ) A .a=3±2√3B .﹣1≤a <2C.a=3+2√3或﹣12≤a<2D.a=3﹣2√3或﹣1≤a<﹣12二、填空题:本大题共6小题,每小题3分,共18分11.(3.00分)(2018•乐山)计算:|﹣3|=.12.(3.00分)(2018•乐山)化简ab−a+ba−b的结果是13.(3.00分)(2018•乐山)如图,在数轴上,点A表示的数为﹣1,点B表示的数为4,C是点B关于点A的对称点,则点C表示的数为.14.(3.00分)(2018•乐山)如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,连结CE,则∠BCE的度数是度.15.(3.00分)(2018•乐山)如图,△OAC的顶点O在坐标原点,OA边在x轴上,OA=2,AC=1,把△OAC绕点A按顺时针方向旋转到△O′AC′,使得点O′的坐标是(1,√3),则在旋转过程中线段OC扫过部分(阴影部分)的面积为.16.(3.00分)(2018•乐山)已知直线l1:y=(k﹣1)x+k+1和直线l2:y=kx+k+2,其中k为不小于2的自然数.(1)当k=2时,直线l1、l2与x轴围成的三角形的面积S2=;(2)当k=2、3、4,……,2018时,设直线l1、l2与x轴围成的三角形的面积分别为S2,S3,S4,……,S2018,则S2+S3+S4+……+S2018=.三、简答题:本大题共3小题,每小题9分,共27分17.(9.00分)(2018•乐山)计算:4cos45°+(π﹣2018)0﹣√8 18.(9.00分)(2018•乐山)解不等式组:{3x −2<4x −223x <7−12x 19.(9.00分)(2018•乐山)如图,已知∠1=∠2,∠3=∠4,求证:BC=BD .四、本大题共3小题,每小题10分,共30分20.(10.00分)(2018•乐山)先化简,再求值:(2m +1)(2m ﹣1)﹣(m ﹣1)2+(2m )3÷(﹣8m ),其中m 是方程x 2+x ﹣2=0的根21.(10.00分)(2018•乐山)某校八年级甲、乙两班各有学生50人,为了了解这两个班学生身体素质情况,进行了抽样调查,过程如下,请补充完整. (1)收集数据从甲、乙两个班各随机抽取10名学生进行身体素质测试,测试成绩(百分制)如下:甲班65 75 75 80 60 50 75 90 85 65 乙班90 55 80 70 55 70 95 80 65 70 (2)整理描述数据按如下分数段整理、描述这两组样本数据: 成绩x 人数 班级 50≤x <6060≤x <7070≤x <8080≤x <9090≤x <100甲班 1 3 3 2 1 乙班21m2n在表中:m= ,n= . (3)分析数据①两组样本数据的平均数、中位数、众数如表所示: 班级平均数中位数众数甲班72x75乙班7270y在表中:x=,y=.②若规定测试成绩在80分(含80分)以上的叙述身体素质为优秀,请估计乙班50名学生中身体素质为优秀的学生有人.③现从甲班指定的2名学生(1男1女),乙班指定的3名学生(2男1女)中分别抽取1名学生去参加上级部门组织的身体素质测试,用树状图和列表法求抽到的2名同学是1男1女的概率.22.(10.00分)(2018•乐山)某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?五、本大题共2小题,每小题10分,共20分23.(10.00分)(2018•乐山)已知关于x的一元二次方程mx2+(1﹣5m)x﹣5=0(m≠0).(1)求证:无论m为任何非零实数,此方程总有两个实数根;(2)若抛物线y=mx2+(1﹣5m)x﹣5=0与x轴交于A(x1,0)、B(x2,0)两点,且|x1﹣x2|=6,求m的值;(3)若m>0,点P(a,b)与Q(a+n,b)在(2)中的抛物线上(点P、Q不重合),求代数式4a2﹣n2+8n的值.24.(10.00分)(2018•乐山)如图,P是⊙O外的一点,PA、PB是⊙O的两条切线,A、B是切点,PO交AB于点F,延长BO交⊙O于点C,交PA的延长交于点Q,连结AC.(1)求证:AC∥PO;(2)设D为PB的中点,QD交AB于点E,若⊙O的半径为3,CQ=2,求AEBE的值.六、本大题共2小题,第25题12分,第26题13分,共25分25.(12.00分)(2018•乐山)已知Rt△ABC中,∠ACB=90°,点D、E分别在BC、AC边上,连结BE、AD交于点P,设AC=kBD,CD=kAE,k为常数,试探究∠APE 的度数:(1)如图1,若k=1,则∠APE的度数为;(2)如图2,若k=√3,试问(1)中的结论是否成立?若成立,请说明理由;若不成立,求出∠APE的度数.(3)如图3,若k=√3,且D、E分别在CB、CA的延长线上,(2)中的结论是否成立,请说明理由.26.(13.00分)(2018•乐山)如图,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C(0,﹣43),OA=1,OB=4,直线l过点A,交y 轴于点D ,交抛物线于点E ,且满足tan ∠OAD=34.(1)求抛物线的解析式;(2)动点P 从点B 出发,沿x 轴正方形以每秒2个单位长度的速度向点A 运动,动点Q 从点A 出发,沿射线AE 以每秒1个单位长度的速度向点E 运动,当点P 运动到点A 时,点Q 也停止运动,设运动时间为t 秒.①在P 、Q 的运动过程中,是否存在某一时刻t ,使得△ADC 与△PQA 相似,若存在,求出t 的值;若不存在,请说明理由.②在P 、Q 的运动过程中,是否存在某一时刻t ,使得△APQ 与△CAQ 的面积之和最大?若存在,求出t 的值;若不存在,请说明理由.2018年四川省乐山市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项符合题目要求1.(3.00分)(2018•乐山)﹣2的相反数是()A.﹣2B.2C.12D.﹣12【考点】14:相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣2的相反数是2.故选:B.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.(3.00分)(2018•乐山)如图是由长方体和圆柱组成的几何体,它的俯视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【专题】55F:投影与视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看外面是正方形,里面是没有圆心的圆,故选:A.【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.3.(3.00分)(2018•乐山)方程组x 3=y2=x +y ﹣4的解是( )A .{x =−3y =−2B .{x =6y =4C .{x =2y =3D .{x =3y =2【考点】98:解二元一次方程组. 【专题】521:一次方程(组)及应用.【分析】先把原方程组化为{2x =3yx +12y =4,进而利用代入消元法得到方程组的解为{x =3y =2.【解答】解:由题可得,{2x =3yx +12y =4, 消去x ,可得2(4﹣12y )=3y ,解得y=2,把y=2代入2x=3y ,可得 x=3,∴方程组的解为{x =3y =2. 故选:D .【点评】本题主要考查了解二元一次方程组,用代入法解二元一次方程组的一般步骤:从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数用含另一个未知数的代数式表示出来.将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程.解这个一元一次方程,求出x (或y )的值.4.(3.00分)(2018•乐山)如图,DE ∥FG ∥BC ,若DB=4FB ,则EG 与GC 的关系是( )A .EG=4GCB .EG=3GC C .EG=52GC D .EG=2GC【考点】S4:平行线分线段成比例. 【专题】55:几何图形.【分析】根据平行线分线段成比例定理即可得到答案. 【解答】解:∵DE ∥FG ∥BC ,DB=4FB ,∴EG GC =DF FB =31=3. 故选:B .【点评】此题主要考查平行线分线段成比例定理的理解及运用.根据平行线分线段成比例定理解答是解题的关键.5.(3.00分)(2018•乐山)下列调查中,适宜采用普查方式的是( ) A .调查全国中学生心理健康现状B .调查一片试验田里五种大麦的穗长情况C .要查冷饮市场上冰淇淋的质量情况D .调查你所在班级的每一个同学所穿鞋子的尺码情况 【考点】V2:全面调查与抽样调查. 【专题】1 :常规题型.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:A 、了解全国中学生心理健康现状调查范围广,适合抽样调查,故A 错误;B 、了解一片试验田里五种大麦的穗长情况调查范围广,适合抽样调查,故B 错误;C 、了解冷饮市场上冰淇淋的质量情况调查范围广,适合抽样调查,故C 错误;D 、调查你所在班级的每一个同学所穿鞋子的尺码情况,适合全面调查,故D 正确; 故选:D .【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大.6.(3.00分)(2018•乐山)估计√5+1的值,应在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间【考点】2B:估算无理数的大小.【分析】根据√5≈2.236,可得答案.【解答】解:∵√5≈2.236,∴√5+1≈3.236,故选:C.【点评】本题考查了估算无理数的大小,利用√5≈2.236是解题关键.7.(3.00分)(2018•乐山)《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算:圆形木材的直径AC是()A.13寸B.20寸C.26寸D.28寸【考点】M3:垂径定理的应用.【专题】559:圆的有关概念及性质.【分析】设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解方程即可;【解答】解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r 2=52+(r ﹣1)2,解得r=13,∴⊙O 的直径为26寸,故选:C .【点评】本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.8.(3.00分)(2018•乐山)已知实数a 、b 满足a +b=2,ab=34,则a ﹣b=( ) A .1 B .﹣52 C .±1 D .±52【考点】4C :完全平方公式.【专题】11 :计算题.【分析】利用完全平方公式解答即可.【解答】解:∵a +b=2,ab=34, ∴(a +b )2=4=a 2+2ab +b 2,∴a 2+b 2=52, ∴(a ﹣b )2=a 2﹣2ab +b 2=1,∴a ﹣b=±1,故选:C .【点评】本题考查了完全平方公式的运用,熟记公式结构是解题的关键.9.(3.00分)(2018•乐山)如图,曲线C 2是双曲线C 1:y=6x(x >0)绕原点O 逆时针旋转45°得到的图形,P 是曲线C 2上任意一点,点A 在直线l :y=x 上,且PA=PO ,则△POA 的面积等于( )A .√6B .6C .3D .12【考点】F8:一次函数图象上点的坐标特征;G5:反比例函数系数k 的几何意义;G6:反比例函数图象上点的坐标特征.【专题】534:反比例函数及其应用;558:平移、旋转与对称.【分析】将双曲线逆时针旋转使得l 与y 轴重合,等腰三角形△PAO 的底边在y 轴上,应用反比例函数比例系数k 的性质解答问题.【解答】解:如图,将C 2及直线y=x 绕点O 逆时针旋转45°,则得到双曲线C 3,直线l 与y 轴重合.双曲线C 3,的解析式为y=﹣6x过点P 作PB ⊥y 轴于点B∵PA=PB∴B 为OA 中点.∴S △PAB =S △POB由反比例函数比例系数k 的性质,S △POB =3∴△POA 的面积是6故选:B .【点评】本题为反比例函数综合题,考查了反比例函数的轴对称性以及反比例函数比例系数k 的几何意义.10.(3.00分)(2018•乐山)二次函数y=x 2+(a ﹣2)x +3的图象与一次函数y=x(1≤x≤2)的图象有且仅有一个交点,则实数a的取值范围是()A.a=3±2√3B.﹣1≤a<2C.a=3+2√3或﹣12≤a<2D.a=3﹣2√3或﹣1≤a<﹣12【考点】F8:一次函数图象上点的坐标特征;H4:二次函数图象与系数的关系;H5:二次函数图象上点的坐标特征.【专题】15 :综合题.【分析】根据二次函数的图象性质即可求出答案.【解答】解:由题意可知:方程x2+(a﹣2)x+3=x在1≤x≤2上只有一个解,即x2+(a﹣3)x+3=0在1≤x≤2上只有一个解,当△=0时,即(a﹣3)2﹣12=0a=3±2√3当a=3+2√3时,此时x=﹣√3,不满足题意,当a=3﹣2√3时,此时x=√3,满足题意,当△>0时,令y=x2+(a﹣3)x+3,令x=1,y=a+1,令x=2,y=2a+1(a+1)(2a+1)≤0解得:﹣1≤a≤−1 2,当a=﹣1时,此时x=1或3,满足题意;当a=﹣12时,此时x=2或x=32,不满足题意,综上所述,a=3﹣2√3或﹣1≤a<−1 2,故选:D.【点评】本题考查二次函数的综合问题,解题的关键是将问题转化为x2+(a﹣3)x+3=0在1≤x≤2上只有一个解,根据二次函数的性质即可求出答案,本题属于中等题型.二、填空题:本大题共6小题,每小题3分,共18分11.(3.00分)(2018•乐山)计算:|﹣3|=3.【考点】15:绝对值.【分析】根据负数的绝对值等于这个数的相反数,即可得出答案.【解答】解:|﹣3|=3.故答案为:3.【点评】此题主要考查了绝对值的性质,正确记忆绝对值的性质是解决问题的关键.12.(3.00分)(2018•乐山)化简ab−a+ba−b的结果是﹣1【考点】6B:分式的加减法.【专题】1 :常规题型.【分析】直接利用分式加减运算法则计算得出答案.【解答】解:ab−a+ba−b=ab−a﹣bb−a=a−b b−a=﹣1.故答案为:﹣1.【点评】此题主要考查了分式的加减运算,正确掌握运算法则是解题关键.13.(3.00分)(2018•乐山)如图,在数轴上,点A表示的数为﹣1,点B表示的数为4,C是点B关于点A的对称点,则点C表示的数为﹣6.【考点】13:数轴.【专题】511:实数.【分析】先根据已知条件可以确定线段AB的长度,然后根据点B、点C关于点A对称,设设点C所表示的数为x,列出方程即可解决.【解答】解:设点C所表示的数为x,∵数轴上A、B两点表示的数分别为﹣1和4,点B关于点A的对称点是点C,∴AB=4﹣(﹣1),AC=﹣1﹣x,根据题意AB=AC,∴4﹣(﹣1)=﹣1﹣x,解得x=﹣6.故答案为:﹣6.【点评】本题主要考查实数与数轴的对应关系和轴对称的性质,熟练掌握对称性质是解本题的关键.14.(3.00分)(2018•乐山)如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,连结CE,则∠BCE的度数是22.5度.【考点】K7:三角形内角和定理;KH:等腰三角形的性质;LE:正方形的性质.【专题】11 :计算题.【分析】根据正方形的性质,易知∠CAE=∠ACB=45°;等腰△CAE中,根据三角形内角和定理可求得∠ACE的度数,进而可由∠BCE=∠ACE﹣∠ACB得出∠BCE 的度数.【解答】解:∵四边形ABCD是正方形,∴∠CAB=∠BCA=45°;△ACE中,AC=AE,则:∠ACE=∠AEC=12(180°﹣∠CAE)=67.5°;∴∠BCE=∠ACE﹣∠ACB=22.5°.故答案为22.5.【点评】此题主要考查的是正方形、等腰三角形的性质及三角形内角和定理.15.(3.00分)(2018•乐山)如图,△OAC 的顶点O 在坐标原点,OA 边在x 轴上,OA=2,AC=1,把△OAC 绕点A 按顺时针方向旋转到△O′AC′,使得点O′的坐标是(1,√3),则在旋转过程中线段OC 扫过部分(阴影部分)的面积为 π2 .【考点】MO :扇形面积的计算;R7:坐标与图形变化﹣旋转.【专题】1 :常规题型.【分析】过O′作O′M ⊥OA 于M ,解直角三角形求出旋转角的度数,根据图形得出阴影部分的面积S=S扇形OAO′+S △O′AC′﹣S △OAC ﹣S 扇形CAC′=S 扇形OAO′﹣S 扇形CAC′,分别求出即可. 【解答】解:过O′作O′M ⊥OA 于M ,则∠O′MA=90°,∵点O′的坐标是(1,√3),∴O′M=√3,OM=1,∵AO=2,∴AM=2﹣1=1,∴tan ∠O′AM=√31=√3, ∴∠O′AM=60°, 即旋转角为60°,∴∠CAC′=∠OAO′=60°,∵把△OAC 绕点A 按顺时针方向旋转到△O′AC′,∴S △OAC =S △O′AC′,∴阴影部分的面积S=S 扇形OAO′+S △O′AC′﹣S △OAC ﹣S 扇形CAC′=S 扇形OAO′﹣S 扇形CAC′=60π×22360﹣60π×12360=π2, 故答案为:π2. 【点评】本题考查了解直角三角形,旋转的性质、扇形的面积计算等知识点,能把求不规则图形的面积转化成求出规则图形的面积是解此题的关键.16.(3.00分)(2018•乐山)已知直线l 1:y=(k ﹣1)x +k +1和直线l 2:y=kx +k +2,其中k 为不小于2的自然数.(1)当k=2时,直线l 1、l 2与x 轴围成的三角形的面积S 2= 1 ;(2)当k=2、3、4,……,2018时,设直线l 1、l 2与x 轴围成的三角形的面积分别为S 2,S 3,S 4,……,S 2018,则S 2+S 3+S 4+……+S 2018= 20171009. 【考点】38:规律型:图形的变化类;F8:一次函数图象上点的坐标特征.【专题】533:一次函数及其应用.【分析】利用一次函数图象上点的坐标特征可求出两直线与x 轴的交点坐标,进而可得出两点间的距离,联立两直线解析式成方程组,通过解方程组可求出两直线的交点坐标.(1)代入k=2,可得出d 的值,利用三角形的面积公式可求出S 2的值;(2)分别代入k=2、3、4、…、2018求出S 2、S 3、S 4、…、S 2018值,将其相加即可得出结论.【解答】解:当y=0时,有(k ﹣1)x +k +1=0,解得:x=﹣1﹣2k−1, ∴直线l 1与x 轴的交点坐标为(﹣1﹣2k−1,0), 同理,可得出:直线l 2与x 轴的交点坐标为(﹣1﹣2k,0), ∴两直线与x 轴交点间的距离d=﹣1﹣2k ﹣(﹣1﹣2k−1)=2k−1﹣2k. 联立直线l 1、l 2成方程组,得:{y =(k −1)x +k +1y =kx +k +2,解得:{x =−1y =−2,∴直线l 1、l 2的交点坐标为(﹣1,﹣2).(1)当k=2时,d=2k−1﹣2k=1, ∴S 2=12×|﹣2|d=1. 故答案为:1.(2)当k=3时,S 3=22﹣23;当k=4时,S 4=23﹣24;…;S 2018=22017﹣22018, ∴S 2+S 3+S 4+……+S 2018=21﹣22+22﹣23+23﹣24+…+22017﹣22018, =21﹣22018, =2﹣11009, =20171009. 故答案为:20171009. 【点评】本题考查了一次函数图象上点的坐标特征以及规律型中图形的变化类,利用一次函数图象上点的坐标特征求出两直线与x 轴交点间的距离是解题的关键.三、简答题:本大题共3小题,每小题9分,共27分17.(9.00分)(2018•乐山)计算:4cos45°+(π﹣2018)0﹣√8【考点】2C :实数的运算;6E :零指数幂;T5:特殊角的三角函数值.【专题】11 :计算题;511:实数.【分析】原式利用特殊角的三角函数值,零指数幂法则,以及算术平方根定义计算即可求出值.【解答】解:原式=4×√22+1﹣2√2=1. 【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键18.(9.00分)(2018•乐山)解不等式组:{3x −2<4x −223x <7−12x 【考点】CB :解一元一次不等式组.【专题】1 :常规题型.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:{3x −2<4x −2①23x <7−12x②, ∵解不等式①得:x >0,解不等式②得:x <6,∴不等式组的解集为0<x <6.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.19.(9.00分)(2018•乐山)如图,已知∠1=∠2,∠3=∠4,求证:BC=BD .【考点】KD :全等三角形的判定与性质.【专题】552:三角形.【分析】由∠3=∠4可以得出∠ABD=∠ABC ,再利用ASA 就可以得出△ADB ≌△ACB ,就可以得出结论.【解答】证明:∵∠ABD +∠3=180°∠ABC +∠4=180°,且∠3=∠4,∴∠ABD=∠ABC在△ADB 和△ACB 中,{∠1=∠2AB =AB ∠ABD =∠ABC,∴△ADB ≌△ACB (ASA ),∴BD=CD .【点评】本题考查了等角的补角相等的性质的运用,全等三角形的判定与性质的运用,解答时证明三角形全等是关键.四、本大题共3小题,每小题10分,共30分20.(10.00分)(2018•乐山)先化简,再求值:(2m+1)(2m﹣1)﹣(m﹣1)2+(2m)3÷(﹣8m),其中m是方程x2+x﹣2=0的根【考点】4J:整式的混合运算—化简求值;A3:一元二次方程的解.【专题】11 :计算题;512:整式.【分析】先利用平方差公式和完全平方公式及单项式的除法化简原式,再由方程的解的定义得出m2+m=2,代入计算可得.【解答】解:原式=4m2﹣1﹣(m2﹣2m+1)+8m3÷(﹣8m)=4m2﹣1﹣m2+2m﹣1﹣m2=2m2+2m﹣2=2(m2+m﹣1),∵m是方程x2+x﹣2=0的根,∴m2+m﹣2=0,即m2+m=2,则原式=2×(2﹣1)=2.【点评】本题主要考查整式的化简求值,解题的关键是掌握平方差公式和完全平方公式、整式的混合运算顺序和运算法则、方程的解的定义.21.(10.00分)(2018•乐山)某校八年级甲、乙两班各有学生50人,为了了解这两个班学生身体素质情况,进行了抽样调查,过程如下,请补充完整.(1)收集数据从甲、乙两个班各随机抽取10名学生进行身体素质测试,测试成绩(百分制)如下:甲班65 75 75 80 60 50 75 90 85 65乙班90 55 80 70 55 70 95 80 65 70(2)整理描述数据按如下分数段整理、描述这两组样本数据:成绩x 人数班级50≤x<6060≤x<7070≤x<8080≤x<9090≤x<100甲班13321乙班21m2n在表中:m=3,n=2.(3)分析数据①两组样本数据的平均数、中位数、众数如表所示:班级平均数中位数众数甲班72x75乙班7270y在表中:x=75,y=70.②若规定测试成绩在80分(含80分)以上的叙述身体素质为优秀,请估计乙班50名学生中身体素质为优秀的学生有20人.③现从甲班指定的2名学生(1男1女),乙班指定的3名学生(2男1女)中分别抽取1名学生去参加上级部门组织的身体素质测试,用树状图和列表法求抽到的2名同学是1男1女的概率.【考点】V5:用样本估计总体;V7:频数(率)分布表;W4:中位数;W5:众数;X6:列表法与树状图法.【专题】1 :常规题型;54:统计与概率.【分析】(2)由收集的数据即可得;(3)①根据众数和中位数的定义求解可得;②用总人数乘以乙班样本中优秀人数所占比例可得;③列表得出所有等可能结果,利用概率公式求解可得.【解答】解:(2)由收集的数据得知m=3、n=2,故答案为:3、2;(3)①甲班成绩为:50、60、65、65、75、75、75、80、85、90,∴甲班成绩的中位数x=75+752=75,乙班成绩70分出现次数最多,所以的众数y=70,故答案为:75、70;②估计乙班50名学生中身体素质为优秀的学生有50×410=20人;③列表如下:男 女 男 男、男 女、男 男 男、男 女、男 女男、女女、女由表可知,共有6种等可能结果,其中抽到的2名同学是1男1女的有3种结果,所以抽到的2名同学是1男1女的概率为36=12.【点评】本题考查了众数、中位数以及概率公式的应用,掌握众数、中位数以及用样本估计总体是解题的关键.22.(10.00分)(2018•乐山)某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x (h )之间的函数关系,其中线段AB 、BC 表示恒温系统开启阶段,双曲线的一部分CD 表示恒温系统关闭阶段. 请根据图中信息解答下列问题:(1)求这天的温度y 与时间x (0≤x ≤24)的函数关系式; (2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?【考点】GA :反比例函数的应用.【专题】533:一次函数及其应用;534:反比例函数及其应用. 【分析】(1)应用待定系数法分段求函数解析式; (2)观察图象可得; (3)代入临界值y=10即可.【解答】解:(1)设线段AB 解析式为y=k 1x +b (k ≠0) ∵线段AB 过点(0,10),(2,14)代入得{b =102k 1+b =14解得{k 1=2b =10∴AB 解析式为:y=2x +10(0≤x <5) ∵B 在线段AB 上当x=5时,y=20 ∴B 坐标为(5,20)∴线段BC 的解析式为:y=20(5≤x <10) 设双曲线CD 解析式为:y=k 2x(k 2≠0)∵C (10,20) ∴k2=200∴双曲线CD 解析式为:y=200x (10≤x ≤24) ∴y 关于x 的函数解析式为:y={2x +10(0≤x <5)20(5≤x <10)200x (10≤x ≤24)(2)由(1)恒温系统设定恒温为20°C(3)把y=10代入y=200x中,解得,x=20∴20﹣10=10答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.【点评】本题为实际应用背景的函数综合题,考查求得一次函数、反比例函数和常函数关系式.解答时应注意临界点的应用.五、本大题共2小题,每小题10分,共20分23.(10.00分)(2018•乐山)已知关于x 的一元二次方程mx 2+(1﹣5m )x ﹣5=0(m ≠0).(1)求证:无论m 为任何非零实数,此方程总有两个实数根;(2)若抛物线y=mx 2+(1﹣5m )x ﹣5=0与x 轴交于A (x 1,0)、B (x 2,0)两点,且|x 1﹣x 2|=6,求m 的值;(3)若m >0,点P (a ,b )与Q (a +n ,b )在(2)中的抛物线上(点P 、Q 不重合),求代数式4a 2﹣n 2+8n 的值.【考点】A1:一元二次方程的定义;AA :根的判别式;H5:二次函数图象上点的坐标特征;HA :抛物线与x 轴的交点. 【专题】1 :常规题型.【分析】(1)直接利用△=b 2﹣4ac ,进而利用偶次方的性质得出答案; (2)首先解方程,进而由|x 1﹣x 2|=6,求出答案;(3)利用(2)中所求得出m 的值,进而利用二次函数对称轴得出答案. 【解答】(1)证明:由题意可得: △=(1﹣5m )2﹣4m ×(﹣5) =1+25m 2﹣20m +20m =25m 2+1>0,故无论m 为任何非零实数,此方程总有两个实数根;(2)解:mx 2+(1﹣5m )x ﹣5=0,解得:x 1=﹣1m,x 2=5,由|x 1﹣x 2|=6, 得|﹣1m﹣5|=6,解得:m=1或m=﹣111;(3)解:由(2)得,当m >0时,m=1, 此时抛物线为y=x 2﹣4x ﹣5,其对称轴为:x=2, 由题已知,P ,Q 关于x=2对称,∴a+a+n 2=2,即2a=4﹣n ,∴4a 2﹣n 2+8n=(4﹣n )2﹣n 2+8n=16.【点评】此题主要考查了抛物线与x 轴的交点以及根的判别式,正确得出方程的根是解题关键.24.(10.00分)(2018•乐山)如图,P 是⊙O 外的一点,PA 、PB 是⊙O 的两条切线,A、B是切点,PO交AB于点F,延长BO交⊙O于点C,交PA的延长交于点Q,连结AC.(1)求证:AC∥PO;(2)设D为PB的中点,QD交AB于点E,若⊙O的半径为3,CQ=2,求AEBE的值.【考点】M5:圆周角定理;MC:切线的性质;S9:相似三角形的判定与性质.【专题】1 :常规题型.【分析】(1)根据切线长定理得出PA=PB,且PO平分∠BPA,利用等腰三角形三线合一的性质得出PO⊥AB.根据圆周角定理得出AC⊥AB,进而得到AC∥PO;(2)连结OA、DF.先用勾股定理计算出AQ=4,再计算出PA=PB=6,利用切线长定理可得到F点为AB的中点,易得DF为△BAP的中位线,则DF=12PA=3,DF∥PA,利用DF∥AQ得到△DFE∽△QEA,所以AEFE=AQDF=43,设AE=4t,FE=3t,则AF=AE+FE=7t,于是BE=BF+FE=AF+FE=7t+3t=10t,最后计算AE BE.【解答】(1)证明:∵PA、PB是⊙O的两条切线,A、B是切点,∴PA=PB,且PO平分∠BPA,∴PO⊥AB.∵BC是直径,∴∠CAB=90°,∴AC⊥AB,∴AC∥PO;(2)解:连结OA、DF,如图,∵PA、PB是⊙O的两条切线,A、B是切点,∴∠OAQ=∠PBQ=90°.在Rt △OAQ 中,OA=OC=3,∴OQ=5. 由QA 2+OA 2=OQ 2,得QA=4.在Rt △PBQ 中,PA=PB ,QB=OQ +OB=8, 由QB 2+PB 2=PQ 2,得82+PB 2=(PB +4)2, 解得PB=6, ∴PA=PB=6, ∵OP ⊥AB ,∴BF=AF=12AB .又∵D 为PB 的中点,∴DF ∥AP ,DF=12PA=3,∴△DFE ∽△QEA ,∴AE FE =AQ DF =43, 设AE=4t ,FE=3t ,则AF=AE +FE=7t , ∴BE=BF +FE=AF +FE=7t +3t=10t ,∴AE BE =4t 10t =25.【点评】本题考查了切线的判定与性质:圆的切线垂直于经过切点的半径;经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了勾股定理和相似三角形的判定与性质.六、本大题共2小题,第25题12分,第26题13分,共25分25.(12.00分)(2018•乐山)已知Rt △ABC 中,∠ACB=90°,点D 、E 分别在BC 、AC 边上,连结BE 、AD 交于点P ,设AC=kBD ,CD=kAE ,k 为常数,试探究∠APE的度数:(1)如图1,若k=1,则∠APE的度数为45°;(2)如图2,若k=√3,试问(1)中的结论是否成立?若成立,请说明理由;若不成立,求出∠APE的度数.(3)如图3,若k=√3,且D、E分别在CB、CA的延长线上,(2)中的结论是否成立,请说明理由.【考点】KY:三角形综合题.【专题】15 :综合题.【分析】(1)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△FAE≌△ACD,得出EF=AD=BF,再判断出∠EFB=90°,即可得出结论;(2)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△FAE∽△ACD,再判断出∠EFB=90°,即可得出结论;(3)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△ACD∽△HEA,再判断出∠EFB=90°,即可得出结论;【解答】解:(1)如图1,过点A作AF∥CB,过点B作BF∥AD相交于F,连接EF,∴∠FBE=∠APE,∠FAC=∠C=90°,四边形ADBF是平行四边形,∴BD=AF,BF=AD,∵AC=BD,CD=AE,∴AF=AC,∵∠FAC=∠C=90°,∴△FAE≌△ACD,∴EF=AD=BF,∠FEA=∠ADC,。
2018年四川省乐山市市中区中考数学调考试卷
2018年四川省乐山市市中区中考数学调考试卷一、选择题:本大题共10题,每题3分,共30分.在每题给出的四个选项中,只有一个选项是符合题目要求的.1.﹣3的倒数是(B)A.B.﹣C.3D.﹣3解:﹣3的倒数是﹣,2.在国家“一带一路”战略下,我国与欧洲开通了互利互惠的中欧班列.行程最长,途经城市和国家最多的一趟专列全程长13000km,将13000用科学记数法表示应为(B)A.0.13×105B.1.3×104C.1.3×105D.13×103解:将13000用科学记数法表示为:1.3×104.3.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是(D)A.B.C.D.解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.4.如图,BD∥AC,BE平分∠ABD,交AC于点E.若∠A=40°,则∠1的度数为(B)A.80°B.70°C.60°D.40°解:∵BD∥AC,∠A=40°,∴∠ABD=140°,又∵BE平分∠ABD,∴∠1=∠ABD=70°,5.数据3、6、7、1、7、2、9的中位数和众数分别是(C)A.1和7B.1和9C.6和7D.6和9解:将数据重新排列为1、2、3、6、7、7、9,则这组数据的中位数为6、众数为7,6.共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x,则所列方程正确的为(A)A.1000(1+x)2=1000+440B.1000(1+x)2=440C.440(1+x)2=1000D.1000(1+2x)=1000+440解:由题意可得,1000(1+x)2=1000+440,7.如图,AB为⊙O的直径,C、D为⊙O上的点,若AC=CD=DB,则cos∠CAD=(D)A.B.C.D.解:连接OC,OD,∵AB为⊙O的直径,C、D为⊙O上的点,若AC=CD=DB,∴∠DOB=∠DOC=∠COA=60°,∴∠DAC=30°,∴cos∠CAD=,8.若m,n是一元二次方程x2﹣2x﹣1=0的两个不同实数根,则代数式m2﹣m+n的值是(B)A.﹣1B.3C.﹣3D.1解:∵m是一元二次方程x2﹣2x﹣1=0的根,∴m2﹣2m﹣1=0,∴m2﹣2m=1,∴m2﹣m+n=m2﹣2m+m+n=1+m+n,∵m、n是一元二次方程x2﹣2x﹣1=0的两个根,∴m+n=2,∴m2﹣m+n=1+2=3.9.如图是二次函数y=ax2+bx+c的图象,有下列结论:①ac<0;②a+b<0;③4ac>b2;④4a+2b+c<0.其中正确的个数是(C)A.1个B.2个 C.3个D.4个解:①如图所示,抛物线开口方向向上,则a>0,抛物线与y轴交于负半轴,则c<0,故ac<0,故①正确;②如图所示,抛物线的对称轴为x=﹣=1,则b+2a=0.∴b+a+a=0,∴b+a=﹣a,∴a>0,∴﹣a<0,∴b+a<0故②正确;③如图所示,抛物线与x轴有两个不同的交点,则b2﹣4ac>0,即4ac<b2;故③错误;④∵b+2a=0,∴4a+2b+c=c<0故④正确;综上所述,正确的结论有3个.10.如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM,ON上滑动,下列结论:①若C,O两点关于AB对称,则OA=;②C,O两点距离的最大值为4;③若AB平分CO,则AB⊥CO;④斜边AB的中点D运动路径的长为π.其中正确的是(D)A.①②B.①②③C.①③④D.①②④解:在Rt△ABC中,∵BC=2,∠BAC=30°,∴AB=4,AC==2 ,①若C、O两点关于AB对称,如图1,∴AB是OC的垂直平分线,则OA=AC=2 ;所以①正确;②如图1,取AB的中点为E,连接OE、CE,∵∠AOB=∠ACB=90°,∴OE=CE=AB=2,∵OC≤OE+OC,∴当O、C、E共线时,OC的值最大,最大值为4;所以②正确;③如图2,当∠ABO=30°时,∠OBC=∠AOB=∠ACB=90°,∴四边形AOBC是矩形,∴AB与OC互相平分,但AB与OC的夹角为60°、120°,不垂直,所以③不正确;④如图3,斜边AB的中点D运动路径是:以O为圆心,以2为半径的圆周的,则:=π,所以④正确;综上所述,本题正确的有:①②④;二、填空题:(本大题共6题.每题3分,共18分)11.计算:|﹣5|= 5 .解:|﹣5|=5.12.函数中自变量x的取值范围是x≠2;函数中自变量x的取值范围是x≥3.解:根据分式的意义得2﹣x≠0,解得x≠2;根据二次根式的意义得2x﹣6≥0,解得x≥3.13.如果小球在图所示的地面上自由滚动,并随机停留在某块方砖上,每块方砖大小、质地完全一致,那么它最终停留在黑色区域的概率是.解:∵由图可知,黑色方砖4块,共有16块方砖,∴黑色方砖在整个区域中所占的比值=,∴它停在黑色区域的概率是;14.如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△P AB=S矩形ABCD,则点P到A、B两点距离之和P A+PB的最小值为.解:设△ABP中AB边上的高是h.∵S△P AB=S矩形ABCD,∴AB•h=AB•AD,∴h=AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE===,即P A+PB的最小值为.15.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是25尺.解:如图,一条直角边(即枯木的高)长20尺,另一条直角边长5×3=15(尺),因此葛藤长为=25(尺).16.如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=(k≠0)的图象恰好经过点A′,B,则k的值为.解:∵四边形ABCO是矩形,AB=1,∴设B(m,1),∴OA=BC=m,∵四边形OA′B′D与四边形OABD关于直线OD对称,∴OA′=OA=m,∠A′OD=∠AOD=30°,∴∠A′OA=60°,过A′作A′E⊥OA于E,∴OE=m,A′E=m,∴A′(m,m),∵反比例函数y=(k≠0)的图象恰好经过点A′,B,∴m•m=m,∴m=,∴k=.三、(本大题共3题.每题9分,共27分)17.计算:(﹣4)×(﹣)+2﹣1﹣(π﹣1)0+.解:原式=2+﹣1+6=7.18.解方程组:.解:,①×2+②得:9x=﹣45,解得:x=﹣5,把x=﹣5代入①得:y=,则原方程组的解是:.19.先化简,再求值:(﹣)÷,其中a=2sin60°﹣tan45°.解:原式=[﹣]•(a﹣1)=•(a﹣1)=当a=2sin60°﹣tan45°=2×﹣1=﹣1时,原式==.四、(本大题共3题.每题10分,共30分)20.随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2017年“五•一”长假期间旅游情况统计图,根据以下信息解答下列问题:(1)2017年“五•一”期间,该市周边景点共接待游客50万人,扇形统计图中A景点所对应的圆心角的度数是108°,并补全条形统计图.(2)根据近几年到该市旅游人数增长趋势,预计2018年“五•一”节将有80万游客选择该市旅游,请估计有多少万人会选择去E景点旅游?(3)甲、乙两个旅行团在A、B、D三个景点中,同时选择去同一景点的概率是多少?请用画树状图或列表法加以说明,并列举所有等可能的结果.解:(1)该市周边景点共接待游客数为:15÷30%=50(万人),A景点所对应的圆心角的度数是:30%×360°=108°,B景点接待游客数为:50×24%=12(万人),补全条形统计图如下:(2)∵E景点接待游客数所占的百分比为:×100%=12%,∴2018年“五•一”节选择去E景点旅游的人数约为:80×12%=9.6(万人);(3)画树状图可得:∵共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,∴同时选择去同一个景点的概率==.21.如图,一座钢结构桥梁的框架是△ABC,水平横梁BC长18米,中柱AD高6米,其中D是BC的中点,且AD⊥BC.(1)求sin B的值;(2)现需要加装支架DE、EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F,求支架DE的长.解:(1)在Rt△ABD中,∵BD=DC=9m,AD=6m,∴AB===3m,∴sin B===.(2)∵EF∥AD,BE=2AE,∴===,∴==,∴EF=4m,BF=6m,∴DF=3m,在Rt△DEF中,DE===5m.22.如图,一次函数y=k1x+b(k1≠0)与反比例函数y=(k2≠0)的图象交于点A(﹣1,2),B(m,﹣1).(1)求这两个函数的表达式;(2)在x轴上是否存在点P(n,0)(n>0),使△ABP为等腰三角形?若存在,求n的值;若不存在,说明理由.解:(1)把A(﹣1,2)代入y=,得到k2=﹣2,∴反比例函数的解析式为y=﹣.∵B(m,﹣1)在Y=﹣上,∴m=2,由题意,解得,∴一次函数的解析式为y=﹣x+1.(2)∵A(﹣1,2),B(2,﹣1),∴AB=3,①当PA=PB时,(n+1)2+4=(n﹣2)2+1,∴n=0,∵n>0,∴n=0不合题意舍弃.②当AP=AB时,22+(n+1)2=(3)2,∵n>0,∴n=﹣1+.③当BP=BA时,12+(n﹣2)2=(3)2,∵n>0,∴n=2+.综上所述,n=﹣1+或2+.五、(本大题共2题.每题10分,共20分)23.如图,⊙O是△ABC的外接圆,BC为⊙O的直径,点E为△ABC的内心,连接AE并延长交⊙O于D点,连接BD并延长至F,使得BD=DF,连接CF、BE.(1)求证:DB=DE;(2)求证:直线CF为⊙O的切线;(3)若CF=4,求图中阴影部分的面积.(1)证明:∵E是△ABC的内心,∴∠BAE=∠CAE,∠EBA=∠EBC.∵∠BED=∠BAE+∠EBA,∠DBE=∠EBC+∠DBC,∠DBC=∠EAC,∴∠DBE=∠DEB.(2)连接CD.∵DA平分∠BAC,∴∠DAB=∠DAC.∴BD=CD.∵BD=DF,∴CD=DB=DF.∴∠BCF=90°.∴BC⊥CF,∴CF是⊙O的切线;(3)连接OD.∵O、D是BC、BF的中点,CF=4,∴OD=2,∵∠BCF=90°,∴∠BOD=90°,∴图中阴影部分的面积=扇形BOD的面积﹣△BOD的面积=.24.已知关于x的分式方程=2①和一元二次方程mx2﹣3mx+m﹣1=0②中,m为常数,方程①的根为非负数.(1)求m的取值范围;(2)若方程②有两个整数根x1、x2,且m为整数,求方程②的整数根.解:(1)∵关于x的分式方程的根为非负数,∴x≥0且x≠1.又∵,且,∴解得m≥﹣3且m≠﹣1.又∵方程mx2﹣3mx+m﹣1=0为一元二次方程,∴m≠0.综上可得:m≥﹣3且m≠﹣1,m≠0(2)∵一元二次方程mx2﹣3mx+m﹣1=0有两个整数根x1、x2,m为整数,∴x1+x2=3,,∴为整数,∴m=1或﹣1,又∵m≥﹣3且m≠﹣1,m≠0,∴m=1六、(本大题共2题.25题12分,26题13分,共25分)25.如图①,有两个形状完全相同的直角三角形ABC和EFG叠放在一起(点A与点E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜边上的中点.如图②,若整个△EFG从图①的位置出发,以1cm/s的速度沿射线AB方向平移,在△EFG 平移的同时,点P从△EFG的顶点G出发,以1cm/s的速度在直角边GF上向点F运动,当点P到达点F时,点P停止运动,△EFG也随之停止平移.设运动时间为x(s),FG 的延长线交AC于H,四边形OAHP的面积为y(cm2)(不考虑点P与G、F重合的情况).(1)当x为何值时,OP∥AC;(2)求y与x之间的函数关系式,并确定自变量x的取值范围;(3)是否存在某一时刻,使四边形OAHP面积与△ABC面积的比为13:24?若存在,求出x的值;若不存在,说明理由.(参考数据:1142=12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)解:(1)∵Rt△EFG∽Rt△ABC∴,∴FG==3cm∵当P为FG的中点时,OP∥EG,EG∥AC∴OP∥AC∴x==×3=1.5(s)∴当x为1.5s时,OP∥AC.(2)在Rt△EFG中,由勾股定理得EF=5cm∵EG∥AH∴△EFG∽△AFH∴∴AH=(x+5),FH=(x+5)过点O作OD⊥FP,垂足为D∵点O为EF中点∴OD=EG=2cm∵FP=3﹣x∴S四边形OAHP=S△AFH﹣S△OFP=•AH•FH﹣•OD•FP=•(x+5)•(x+5)﹣×2×(3﹣x)=x2+x+3(0<x<3).(3)假设存在某一时刻x,使得四边形OAHP面积与△ABC面积的比为13:24则S四边形OAHP=×S△ABC∴x2+x+3=××6×8∴6x2+85x﹣250=0解得x1=,x2=﹣(舍去)∵0<x<3∴当x=(s)时,四边形OAHP面积与△ABC面积的比为13:24.26.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C三点,已知点A(﹣3,0),B(0,3),C(1,0).(1)求此抛物线的解析式.(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.动点P在什么位置时,△PDE 的周长最大,求出此时P点的坐标.解:(1)∵抛物线y=ax2+bx+c经过点A(﹣3,0),B(0,3),C(1,0),∴,解得,∴抛物线的解析式为y=﹣x2﹣2x+3;(2)∵A(﹣3,0),B(0,3),∴OA=OB=3,∴△AOB是等腰直角三角形,∴∠BAO=45°.∵PF⊥x轴,∴∠AEF=90°﹣45°=45°,又∵PD⊥AB,∴△PDE是等腰直角三角形,∴PE越大,△PDE的周长越大.设直线AB的解析式为y=kx+b,则,解得,即直线AB的解析式为y=x+3.设P点的坐标为(x,﹣x2﹣2x+3),E点的坐标为(x,x+3),则PE=(﹣x2﹣2x+3)﹣(x+3)=﹣x2﹣3x=﹣(x+)2+,所以当x=﹣时,PE最大,△PDE的周长也最大.当x=﹣时,﹣x2﹣2x+3=﹣(﹣)2﹣2×(﹣)+3=,即点P坐标为(﹣,)时,△PDE的周长最大.声明:试题解析著作权属菁优网所有,。
2018年四川省乐山市中考数学试卷(含答案解析版)
2018年四川省乐山市中考数学试卷(含答案解析版)2018年四川省乐山市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项符合题目要求1.(3.00分)(2018•乐山)﹣2的相反数是( )A .﹣2B .2C .12D .﹣122.(3.00分)(2018•乐山)如图是由长方体和圆柱组成的几何体,它的俯视图是( )A .B .C .D .3.(3.00分)(2018•乐山)方程组x 3=y2=x+y ﹣4的解是( )A .{x =−3y =−2B .{x =6y =4 C .{x =2y =3 D .{x =3y =24.(3.00分)(2018•乐山)如图,DE ∥FG ∥BC ,若DB=4FB ,则EG 与GC 的关系是( )A .EG=4GCB .EG=3GC C .EG=52GC D .EG=2GC5.(3.00分)(2018•乐山)下列调查中,适宜采用普查方式的是( )A .调查全国中学生心理健康现状B .调查一片试验田里五种大麦的穗长情况C .要查冷饮市场上冰淇淋的质量情况D.调查你所在班级的每一个同学所穿鞋子的尺码情况6.(3.00分)(2018•乐山)估计√5+1的值,应在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间7.(3.00分)(2018•乐山)《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算:圆形木材的直径AC是()A.13寸B.20寸C.26寸D.28寸8.(3.00分)(2018•乐山)已知实数a、b满足a+b=2,ab=34,则a﹣b=()A.1 B.﹣52C.±1 D.±529.(3.00分)(2018•乐山)如图,曲线C2是双曲线C1:y=6x(x>0)绕原点O逆时针旋转45°得到的图形,P是曲线C2上任意一点,点A在直线l:y=x上,且PA=PO,则△POA的面积等于()A.√6B.6 C.3 D.1210.(3.00分)(2018•乐山)二次函数y=x2+(a﹣2)x+3的图象与一次函数y=x(1≤x ≤2)的图象有且仅有一个交点,则实数a 的取值范围是( )A .a=3±2√3 B .﹣1≤a <2C .a=3+2√3或﹣12≤a <2 D .a=3﹣2√3或﹣1≤a <﹣12二、填空题:本大题共6小题,每小题3分,共18分11.(3.00分)(2018•乐山)计算:|﹣3|= .12.(3.00分)(2018•乐山)化简ab−a +ba−b的结果是13.(3.00分)(2018•乐山)如图,在数轴上,点A 表示的数为﹣1,点B 表示的数为4,C 是点B 关于点A 的对称点,则点C 表示的数为 .14.(3.00分)(2018•乐山)如图,四边形ABCD 是正方形,延长AB 到点E ,使AE=AC ,连结CE ,则∠BCE 的度数是 度.15.(3.00分)(2018•乐山)如图,△OAC 的顶点O 在坐标原点,OA 边在x 轴上,OA=2,AC=1,把△OAC 绕点A 按顺时针方向旋转到△O′AC′,使得点O′的坐标是(1,√3),则在旋转过程中线段OC 扫过部分(阴影部分)的面积为 .16.(3.00分)(2018•乐山)已知直线l 1:y=(k ﹣1)x+k+1和直线l 2:y=kx+k+2,其中k 为不小于2的自然数.(1)当k=2时,直线l 1、l 2与x 轴围成的三角形的面积S 2= ;(2)当k=2、3、4,……,2018时,设直线l 1、l 2与x 轴围成的三角形的面积分别为S 2,S 3,S 4,……,S 2018,则S 2+S 3+S 4+……+S 2018= .三、简答题:本大题共3小题,每小题9分,共27分17.(9.00分)(2018•乐山)计算:4cos45°+(π﹣2018)0﹣√818.(9.00分)(2018•乐山)解不等式组:{3x −2<4x −223x <7−12x19.(9.00分)(2018•乐山)如图,已知∠1=∠2,∠3=∠4,求证:BC=BD .四、本大题共3小题,每小题10分,共30分20.(10.00分)(2018•乐山)先化简,再求值:(2m+1)(2m ﹣1)﹣(m ﹣1)2+(2m )3÷(﹣8m ),其中m 是方程x 2+x ﹣2=0的根21.(10.00分)(2018•乐山)某校八年级甲、乙两班各有学生50人,为了了解这两个班学生身体素质情况,进行了抽样调查,过程如下,请补充完整.(1)收集数据从甲、乙两个班各随机抽取10名学生进行身体素质测试,测试成绩(百分制)如下:甲班65 75 75 80 60 50 75 90 85 65乙班90 55 80 70 55 70 95 80 65 70 (2)整理描述数据按如下分数段整理、描述这两组样本数据:成绩x人数 班级 50≤x <6060≤x <7070≤x <8080≤x <9090≤x <100甲班13321乙班21m2n在表中:m= ,n= .(3)分析数据①两组样本数据的平均数、中位数、众数如表所示:班级平均数中位数众数甲班72x75乙班7270y在表中:x= ,y= .②若规定测试成绩在80分(含80分)以上的叙述身体素质为优秀,请估计乙班50名学生中身体素质为优秀的学生有人.③现从甲班指定的2名学生(1男1女),乙班指定的3名学生(2男1女)中分别抽取1名学生去参加上级部门组织的身体素质测试,用树状图和列表法求抽到的2名同学是1男1女的概率.22.(10.00分)(2018•乐山)某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?五、本大题共2小题,每小题10分,共20分23.(10.00分)(2018•乐山)已知关于x的一元二次方程mx2+(1﹣5m)x﹣5=0(m≠0).(1)求证:无论m为任何非零实数,此方程总有两个实数根;(2)若抛物线y=mx2+(1﹣5m)x﹣5=0与x轴交于A(x1,0)、B(x2,0)两点,且|x1﹣x2|=6,求m的值;(3)若m>0,点P(a,b)与Q(a+n,b)在(2)中的抛物线上(点P、Q不重合),求代数式4a2﹣n2+8n的值.24.(10.00分)(2018•乐山)如图,P是⊙O外的一点,PA、PB是⊙O的两条切线,A、B是切点,PO交AB于点F,延长BO交⊙O于点C,交PA的延长交于点Q,连结AC.(1)求证:AC∥PO;(2)设D为PB的中点,QD交AB于点E,若⊙O的半径为3,CQ=2,求AEBE的值.六、本大题共2小题,第25题12分,第26题13分,共25分25.(12.00分)(2018•乐山)已知Rt△ABC中,∠ACB=90°,点D、E分别在BC、AC边上,连结BE、AD交于点P,设AC=kBD,CD=kAE,k为常数,试探究∠APE的度数:(1)如图1,若k=1,则∠APE的度数为;(2)如图2,若k=√3,试问(1)中的结论是否成立?若成立,请说明理由;若不成立,求出∠APE的度数.(3)如图3,若k=√3,且D、E分别在CB、CA的延长线上,(2)中的结论是否成立,请说明理由.26.(13.00分)(2018•乐山)如图,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C(0,﹣43),OA=1,OB=4,直线l过点A,交y轴于点D,交抛物线于点E,且满足tan∠OAD=3 4.(1)求抛物线的解析式;(2)动点P从点B出发,沿x轴正方形以每秒2个单位长度的速度向点A运动,动点Q从点A出发,沿射线AE以每秒1个单位长度的速度向点E运动,当点P 运动到点A时,点Q也停止运动,设运动时间为t秒.①在P、Q的运动过程中,是否存在某一时刻t,使得△ADC与△PQA相似,若存在,求出t的值;若不存在,请说明理由.②在P、Q的运动过程中,是否存在某一时刻t,使得△APQ与△CAQ的面积之和最大?若存在,求出t的值;若不存在,请说明理由.2018年四川省乐山市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项符合题目要求1.(3.00分)(2018•乐山)﹣2的相反数是()A.﹣2 B.2 C.12D.﹣12【考点】14:相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣2的相反数是2.故选:B.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.(3.00分)(2018•乐山)如图是由长方体和圆柱组成的几何体,它的俯视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【专题】55F:投影与视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看外面是正方形,里面是没有圆心的圆,故选:A.【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.3.(3.00分)(2018•乐山)方程组x 3=y2=x+y ﹣4的解是( )A .{x =−3y =−2B .{x =6y =4 C .{x =2y =3 D .{x =3y =2【考点】98:解二元一次方程组.【专题】521:一次方程(组)及应用.【分析】先把原方程组化为{2x =3yx +12y =4,进而利用代入消元法得到方程组的解为{x =3y =2.【解答】解:由题可得,{2x =3yx +12y =4,消去x ,可得2(4﹣12y )=3y ,解得y=2,把y=2代入2x=3y ,可得x=3,∴方程组的解为{x =3y =2.故选:D .【点评】本题主要考查了解二元一次方程组,用代入法解二元一次方程组的一般步骤:从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数用含另一个未知数的代数式表示出来.将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程.解这个一元一次方程,求出x (或y )的值.4.(3.00分)(2018•乐山)如图,DE ∥FG ∥BC ,若DB=4FB ,则EG 与GC 的关系是( )A .EG=4GCB .EG=3GC C .EG=52GC D .EG=2GC【考点】S4:平行线分线段成比例.【专题】55:几何图形.【分析】根据平行线分线段成比例定理即可得到答案.【解答】解:∵DE ∥FG ∥BC ,DB=4FB ,∴EG GC =DF FB =31=3.故选:B .【点评】此题主要考查平行线分线段成比例定理的理解及运用.根据平行线分线段成比例定理解答是解题的关键.5.(3.00分)(2018•乐山)下列调查中,适宜采用普查方式的是( )A .调查全国中学生心理健康现状B .调查一片试验田里五种大麦的穗长情况C .要查冷饮市场上冰淇淋的质量情况D .调查你所在班级的每一个同学所穿鞋子的尺码情况【考点】V2:全面调查与抽样调查.【专题】1 :常规题型.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:A 、了解全国中学生心理健康现状调查范围广,适合抽样调查,故A 错误;B 、了解一片试验田里五种大麦的穗长情况调查范围广,适合抽样调查,故B 错误;C 、了解冷饮市场上冰淇淋的质量情况调查范围广,适合抽样调查,故C 错误;D、调查你所在班级的每一个同学所穿鞋子的尺码情况,适合全面调查,故D正确;故选:D.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大.6.(3.00分)(2018•乐山)估计√5+1的值,应在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间【考点】2B:估算无理数的大小.【分析】根据√5≈2.236,可得答案.【解答】解:∵√5≈2.236,∴√5+1≈3.236,故选:C.【点评】本题考查了估算无理数的大小,利用√5≈2.236是解题关键.7.(3.00分)(2018•乐山)《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算:圆形木材的直径AC是()A.13寸B.20寸C.26寸D.28寸【考点】M3:垂径定理的应用.【专题】559:圆的有关概念及性质.【分析】设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解方程即可;【解答】解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸,故选:C.【点评】本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.8.(3.00分)(2018•乐山)已知实数a、b满足a+b=2,ab=34,则a﹣b=()A.1 B.﹣52C.±1 D.±52【考点】4C:完全平方公式.【专题】11 :计算题.【分析】利用完全平方公式解答即可.【解答】解:∵a+b=2,ab=3 4,∴(a+b)2=4=a2+2ab+b2,∴a2+b2=5 2,∴(a﹣b)2=a2﹣2ab+b2=1,∴a﹣b=±1,故选:C.【点评】本题考查了完全平方公式的运用,熟记公式结构是解题的关键.9.(3.00分)(2018•乐山)如图,曲线C2是双曲线C1:y=6x(x>0)绕原点O逆时针旋转45°得到的图形,P是曲线C2上任意一点,点A在直线l:y=x上,且PA=PO,则△POA的面积等于()A.√6B.6 C.3 D.12【考点】F8:一次函数图象上点的坐标特征;G5:反比例函数系数k的几何意义;G6:反比例函数图象上点的坐标特征.【专题】534:反比例函数及其应用;558:平移、旋转与对称.【分析】将双曲线逆时针旋转使得l与y轴重合,等腰三角形△PAO的底边在y 轴上,应用反比例函数比例系数k的性质解答问题.【解答】解:如图,将C2及直线y=x绕点O逆时针旋转45°,则得到双曲线C3,直线l与y轴重合.双曲线C3,的解析式为y=﹣6x过点P作PB⊥y轴于点B ∵PA=PB∴B为OA中点.∴S△PAB =S△POB由反比例函数比例系数k的性质,S△POB=3∴△POA的面积是6故选:B.【点评】本题为反比例函数综合题,考查了反比例函数的轴对称性以及反比例函数比例系数k 的几何意义.10.(3.00分)(2018•乐山)二次函数y=x 2+(a ﹣2)x+3的图象与一次函数y=x (1≤x ≤2)的图象有且仅有一个交点,则实数a 的取值范围是( )A .a=3±2√3 B .﹣1≤a <2C .a=3+2√3或﹣12≤a <2D .a=3﹣2√3或﹣1≤a <﹣12【考点】F8:一次函数图象上点的坐标特征;H4:二次函数图象与系数的关系;H5:二次函数图象上点的坐标特征.【专题】15 :综合题.【分析】根据二次函数的图象性质即可求出答案.【解答】解:由题意可知:方程x 2+(a ﹣2)x+3=x 在1≤x ≤2上只有一个解,即x 2+(a ﹣3)x+3=0在1≤x ≤2上只有一个解,当△=0时,即(a ﹣3)2﹣12=0a=3±2√3 当a=3+2√3时,此时x=﹣√3,不满足题意, 当a=3﹣2√3时,此时x=√3,满足题意, 当△>0时,令y=x 2+(a ﹣3)x+3, 令x=1,y=a+1, 令x=2,y=2a+1 (a+1)(2a+1)≤0解得:﹣1≤a ≤−12,当a=﹣1时,此时x=1或3,满足题意;当a=﹣12时,此时x=2或x=32,不满足题意,综上所述,a=3﹣2√3或﹣1≤a<−12,故选:D.【点评】本题考查二次函数的综合问题,解题的关键是将问题转化为x2+(a﹣3)x+3=0在1≤x≤2上只有一个解,根据二次函数的性质即可求出答案,本题属于中等题型.二、填空题:本大题共6小题,每小题3分,共18分11.(3.00分)(2018•乐山)计算:|﹣3|= 3 .【考点】15:绝对值.【分析】根据负数的绝对值等于这个数的相反数,即可得出答案.【解答】解:|﹣3|=3.故答案为:3.【点评】此题主要考查了绝对值的性质,正确记忆绝对值的性质是解决问题的关键.12.(3.00分)(2018•乐山)化简ab−a+ba−b的结果是﹣1【考点】6B:分式的加减法.【专题】1 :常规题型.【分析】直接利用分式加减运算法则计算得出答案.【解答】解:ab−a+ba−b=ab−a﹣bb−a=a−b b−a=﹣1.故答案为:﹣1.【点评】此题主要考查了分式的加减运算,正确掌握运算法则是解题关键.13.(3.00分)(2018•乐山)如图,在数轴上,点A表示的数为﹣1,点B表示的数为4,C是点B关于点A的对称点,则点C表示的数为﹣6 .【考点】13:数轴.【专题】511:实数.【分析】先根据已知条件可以确定线段AB的长度,然后根据点B、点C关于点A对称,设设点C所表示的数为x,列出方程即可解决.【解答】解:设点C所表示的数为x,∵数轴上A、B两点表示的数分别为﹣1和4,点B关于点A的对称点是点C,∴AB=4﹣(﹣1),AC=﹣1﹣x,根据题意AB=AC,∴4﹣(﹣1)=﹣1﹣x,解得x=﹣6.故答案为:﹣6.【点评】本题主要考查实数与数轴的对应关系和轴对称的性质,熟练掌握对称性质是解本题的关键.14.(3.00分)(2018•乐山)如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,连结CE,则∠BCE的度数是22.5 度.【考点】K7:三角形内角和定理;KH:等腰三角形的性质;LE:正方形的性质.【专题】11 :计算题.【分析】根据正方形的性质,易知∠CAE=∠ACB=45°;等腰△CAE中,根据三角形内角和定理可求得∠ACE的度数,进而可由∠BCE=∠ACE﹣∠ACB得出∠BCE的度数.【解答】解:∵四边形ABCD是正方形,∴∠CAB=∠BCA=45°;△ACE中,AC=AE,则:∠ACE=∠AEC=12(180°﹣∠CAE)=67.5°;∴∠BCE=∠ACE﹣∠ACB=22.5°.故答案为22.5.【点评】此题主要考查的是正方形、等腰三角形的性质及三角形内角和定理.15.(3.00分)(2018•乐山)如图,△OAC的顶点O在坐标原点,OA边在x轴上,OA=2,AC=1,把△OAC绕点A按顺时针方向旋转到△O′AC′,使得点O′的坐标是(1,√3),则在旋转过程中线段OC扫过部分(阴影部分)的面积为π2.【考点】MO:扇形面积的计算;R7:坐标与图形变化﹣旋转.【专题】1 :常规题型.【分析】过O′作O′M⊥OA于M,解直角三角形求出旋转角的度数,根据图形得出阴影部分的面积S=S扇形OAO′+S△O′AC′﹣S△OAC﹣S扇形CAC′=S扇形OAO′﹣S扇形CAC′,分别求出即可.【解答】解:过O′作O′M⊥OA于M,则∠O′MA=90°,∵点O′的坐标是(1,√3),∴O′M=√3,OM=1,∵AO=2,∴AM=2﹣1=1,∴tan∠O′AM=√31=√3,∴∠O′AM=60°,即旋转角为60°,∴∠CAC′=∠OAO′=60°,∵把△OAC绕点A按顺时针方向旋转到△O′AC′,∴S△OAC =S△O′AC′,∴阴影部分的面积S=S扇形OAO′+S△O′AC′﹣S△OAC﹣S扇形CAC′=S扇形OAO′﹣S扇形CAC′=60π×22360﹣60π×12 360=π2,故答案为:π2.【点评】本题考查了解直角三角形,旋转的性质、扇形的面积计算等知识点,能把求不规则图形的面积转化成求出规则图形的面积是解此题的关键.16.(3.00分)(2018•乐山)已知直线l1:y=(k﹣1)x+k+1和直线l2:y=kx+k+2,其中k为不小于2的自然数.(1)当k=2时,直线l1、l2与x轴围成的三角形的面积S2= 1 ;(2)当k=2、3、4,……,2018时,设直线l1、l2与x轴围成的三角形的面积分别为S2,S3,S4,……,S2018,则S2+S3+S4+……+S2018=20171009.【考点】38:规律型:图形的变化类;F8:一次函数图象上点的坐标特征.【专题】533:一次函数及其应用.【分析】利用一次函数图象上点的坐标特征可求出两直线与x轴的交点坐标,进而可得出两点间的距离,联立两直线解析式成方程组,通过解方程组可求出两直线的交点坐标.(1)代入k=2,可得出d的值,利用三角形的面积公式可求出S2的值;(2)分别代入k=2、3、4、…、2018求出S2、S3、S4、…、S2018值,将其相加即可得出结论.【解答】解:当y=0时,有(k﹣1)x+k+1=0,解得:x=﹣1﹣2k−1,∴直线l1与x轴的交点坐标为(﹣1﹣2k−1,0),同理,可得出:直线l2与x轴的交点坐标为(﹣1﹣2k,0),∴两直线与x轴交点间的距离d=﹣1﹣2k﹣(﹣1﹣2k−1)=2k−1﹣2k.联立直线l1、l2成方程组,得:{y=(k−1)x+k+1 y=kx+k+2,解得:{x=−1y=−2,∴直线l1、l2的交点坐标为(﹣1,﹣2).(1)当k=2时,d=2k−1﹣2k=1,∴S2=12×|﹣2|d=1.故答案为:1.(2)当k=3时,S3=22﹣23;当k=4时,S4=23﹣24;…;S2018=22017﹣22018,∴S2+S3+S4+……+S2018=21﹣22+22﹣23+23﹣24+…+22017﹣22018,=21﹣22018,=2﹣1 1009,=2017 1009.故答案为:2017 1009.【点评】本题考查了一次函数图象上点的坐标特征以及规律型中图形的变化类,利用一次函数图象上点的坐标特征求出两直线与x轴交点间的距离是解题的关键.三、简答题:本大题共3小题,每小题9分,共27分17.(9.00分)(2018•乐山)计算:4cos45°+(π﹣2018)0﹣√8【考点】2C :实数的运算;6E :零指数幂;T5:特殊角的三角函数值.【专题】11 :计算题;511:实数.【分析】原式利用特殊角的三角函数值,零指数幂法则,以及算术平方根定义计算即可求出值.【解答】解:原式=4×√22+1﹣2√2=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键18.(9.00分)(2018•乐山)解不等式组:{3x −2<4x −223x <7−12x【考点】CB :解一元一次不等式组.【专题】1 :常规题型.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:{3x −2<4x −2①23x <7−12x②,∵解不等式①得:x >0,解不等式②得:x <6,∴不等式组的解集为0<x <6.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.19.(9.00分)(2018•乐山)如图,已知∠1=∠2,∠3=∠4,求证:BC=BD .【考点】KD :全等三角形的判定与性质.【专题】552:三角形.【分析】由∠3=∠4可以得出∠ABD=∠ABC ,再利用ASA 就可以得出△ADB ≌△ACB ,就可以得出结论.【解答】证明:∵∠ABD+∠3=180°∠ABC+∠4=180°,且∠3=∠4,∴∠ABD=∠ABC在△ADB 和△ACB 中, {∠1=∠2AB =AB∠ABD =∠ABC ,∴△ADB ≌△ACB (ASA ),∴BD=CD .【点评】本题考查了等角的补角相等的性质的运用,全等三角形的判定与性质的运用,解答时证明三角形全等是关键.四、本大题共3小题,每小题10分,共30分20.(10.00分)(2018•乐山)先化简,再求值:(2m+1)(2m ﹣1)﹣(m ﹣1)2+(2m )3÷(﹣8m ),其中m 是方程x 2+x ﹣2=0的根【考点】4J :整式的混合运算—化简求值;A3:一元二次方程的解.【专题】11 :计算题;512:整式.【分析】先利用平方差公式和完全平方公式及单项式的除法化简原式,再由方程的解的定义得出m 2+m=2,代入计算可得.【解答】解:原式=4m 2﹣1﹣(m 2﹣2m+1)+8m 3÷(﹣8m )=4m 2﹣1﹣m 2+2m ﹣1﹣m 2=2m 2+2m ﹣2=2(m 2+m ﹣1),∵m 是方程x 2+x ﹣2=0的根,∴m 2+m ﹣2=0,即m 2+m=2,则原式=2×(2﹣1)=2.【点评】本题主要考查整式的化简求值,解题的关键是掌握平方差公式和完全平方公式、整式的混合运算顺序和运算法则、方程的解的定义.21.(10.00分)(2018•乐山)某校八年级甲、乙两班各有学生50人,为了了解这两个班学生身体素质情况,进行了抽样调查,过程如下,请补充完整.(1)收集数据从甲、乙两个班各随机抽取10名学生进行身体素质测试,测试成绩(百分制)如下:甲班65 75 75 80 60 50 75 90 85 65乙班90 55 80 70 55 70 95 80 65 70(2)整理描述数据按如下分数段整理、描述这两组样本数据:成绩x 人数班级50≤x<6060≤x<7070≤x<8080≤x<9090≤x<100甲班13321乙班21m2n在表中:m= 3 ,n= 2 .(3)分析数据①两组样本数据的平均数、中位数、众数如表所示:班级平均数中位数众数甲班72x75乙班7270y在表中:x= 75 ,y= 70 .②若规定测试成绩在80分(含80分)以上的叙述身体素质为优秀,请估计乙班50名学生中身体素质为优秀的学生有20 人.③现从甲班指定的2名学生(1男1女),乙班指定的3名学生(2男1女)中分别抽取1名学生去参加上级部门组织的身体素质测试,用树状图和列表法求抽到的2名同学是1男1女的概率.【考点】V5:用样本估计总体;V7:频数(率)分布表;W4:中位数;W5:众数;X6:列表法与树状图法.【专题】1 :常规题型;54:统计与概率.【分析】(2)由收集的数据即可得;(3)①根据众数和中位数的定义求解可得;②用总人数乘以乙班样本中优秀人数所占比例可得;③列表得出所有等可能结果,利用概率公式求解可得.【解答】解:(2)由收集的数据得知m=3、n=2,故答案为:3、2;(3)①甲班成绩为:50、60、65、65、75、75、75、80、85、90,∴甲班成绩的中位数x=75+752=75,乙班成绩70分出现次数最多,所以的众数y=70,故答案为:75、70;②估计乙班50名学生中身体素质为优秀的学生有50×410=20人;③列表如下:男女男男、男女、男男男、男女、男女男、女女、女由表可知,共有6种等可能结果,其中抽到的2名同学是1男1女的有3种结果,所以抽到的2名同学是1男1女的概率为36=1 2.【点评】本题考查了众数、中位数以及概率公式的应用,掌握众数、中位数以及用样本估计总体是解题的关键.22.(10.00分)(2018•乐山)某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y 与时间x (0≤x ≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?【考点】GA :反比例函数的应用.【专题】533:一次函数及其应用;534:反比例函数及其应用.【分析】(1)应用待定系数法分段求函数解析式;(2)观察图象可得;(3)代入临界值y=10即可.【解答】解:(1)设线段AB 解析式为y=k 1x+b (k ≠0)∵线段AB 过点(0,10),(2,14)代入得{b =102k1+b =14解得{k 1=2b =10∴AB 解析式为:y=2x+10(0≤x <5) ∵B 在线段AB 上当x=5时,y=20∴B 坐标为(5,20)∴线段BC 的解析式为:y=20(5≤x <10)设双曲线CD 解析式为:y=k 2x(k 2≠0)∵C (10,20)∴k2=200∴双曲线CD 解析式为:y=200x(10≤x ≤24)∴y 关于x 的函数解析式为:y={2x +10(0≤x <5)20(5≤x <10)200x(10≤x ≤24)(2)由(1)恒温系统设定恒温为20°C(3)把y=10代入y=200x 中,解得,x=20 ∴20﹣10=10答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.【点评】本题为实际应用背景的函数综合题,考查求得一次函数、反比例函数和常函数关系式.解答时应注意临界点的应用.五、本大题共2小题,每小题10分,共20分23.(10.00分)(2018•乐山)已知关于x 的一元二次方程mx 2+(1﹣5m )x ﹣5=0(m ≠0).(1)求证:无论m 为任何非零实数,此方程总有两个实数根;(2)若抛物线y=mx 2+(1﹣5m )x ﹣5=0与x 轴交于A (x 1,0)、B (x 2,0)两点,且|x 1﹣x 2|=6,求m 的值;(3)若m >0,点P (a ,b )与Q (a+n ,b )在(2)中的抛物线上(点P 、Q 不重合),求代数式4a 2﹣n 2+8n 的值.【考点】A1:一元二次方程的定义;AA :根的判别式;H5:二次函数图象上点的坐标特征;HA :抛物线与x 轴的交点.【专题】1 :常规题型.【分析】(1)直接利用△=b 2﹣4ac ,进而利用偶次方的性质得出答案; (2)首先解方程,进而由|x 1﹣x 2|=6,求出答案;(3)利用(2)中所求得出m 的值,进而利用二次函数对称轴得出答案.【解答】(1)证明:由题意可得:△=(1﹣5m )2﹣4m ×(﹣5)=1+25m 2﹣20m+20m=25m 2+1>0,故无论m 为任何非零实数,此方程总有两个实数根;(2)解:mx 2+(1﹣5m )x ﹣5=0,解得:x 1=﹣1m ,x 2=5,由|x 1﹣x 2|=6,得|﹣1m﹣5|=6,解得:m=1或m=﹣111;(3)解:由(2)得,当m >0时,m=1,此时抛物线为y=x 2﹣4x ﹣5,其对称轴为:x=2,由题已知,P ,Q 关于x=2对称,∴a+a+n 2=2,即2a=4﹣n ,∴4a 2﹣n 2+8n=(4﹣n )2﹣n 2+8n=16.【点评】此题主要考查了抛物线与x 轴的交点以及根的判别式,正确得出方程的根是解题关键.24.(10.00分)(2018•乐山)如图,P 是⊙O 外的一点,PA 、PB 是⊙O 的两条切线,A 、B 是切点,PO 交AB 于点F ,延长BO 交⊙O 于点C ,交PA 的延长交于点Q ,连结AC .(1)求证:AC ∥PO ;(2)设D 为PB 的中点,QD 交AB 于点E ,若⊙O 的半径为3,CQ=2,求AE BE的值.【考点】M5:圆周角定理;MC :切线的性质;S9:相似三角形的判定与性质.【专题】1 :常规题型.【分析】(1)根据切线长定理得出PA=PB ,且PO 平分∠BPA ,利用等腰三角形三线合一的性质得出PO ⊥AB .根据圆周角定理得出AC ⊥AB ,进而得到AC ∥PO ;(2)连结OA 、DF .先用勾股定理计算出AQ=4,再计算出PA=PB=6,利用切线长定理可得到F 点为AB 的中点,易得DF 为△BAP 的中位线,则DF=12PA=3,DF ∥PA ,利用DF ∥AQ 得到△DFE ∽△QEA ,所以AE FE =AQ DF =43,设AE=4t ,FE=3t ,则AF=AE+FE=7t ,于是BE=BF+FE=AF+FE=7t+3t=10t ,最后计算AEBE.【解答】(1)证明:∵PA 、PB 是⊙O 的两条切线,A 、B 是切点, ∴PA=PB ,且PO 平分∠BPA , ∴PO ⊥AB . ∵BC 是直径, ∴∠CAB=90°, ∴AC ⊥AB , ∴AC ∥PO ;(2)解:连结OA 、DF ,如图,∵PA 、PB 是⊙O 的两条切线,A 、B 是切点,∴∠OAQ=∠PBQ=90°.在Rt △OAQ 中,OA=OC=3,∴OQ=5. 由QA 2+OA 2=OQ 2,得QA=4.在Rt △PBQ 中,PA=PB ,QB=OQ+OB=8,由QB 2+PB 2=PQ 2,得82+PB 2=(PB+4)2, 解得PB=6, ∴PA=PB=6, ∵OP ⊥AB ,∴BF=AF=12AB . 又∵D 为PB 的中点,∴DF ∥AP ,DF=12PA=3,∴△DFE ∽△QEA ,∴AE FE =AQ DF =43,设AE=4t ,FE=3t ,则AF=AE+FE=7t , ∴BE=BF+FE=AF+FE=7t+3t=10t ,∴AE BE =4t 10t =25.【点评】本题考查了切线的判定与性质:圆的切线垂直于经过切点的半径;经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了勾股定理和相似三角形的判定与性质.六、本大题共2小题,第25题12分,第26题13分,共25分25.(12.00分)(2018•乐山)已知Rt △ABC 中,∠ACB=90°,点D 、E 分别在BC 、AC 边上,连结BE 、AD 交于点P ,设AC=kBD ,CD=kAE ,k 为常数,试探究∠APE 的度数:(1)如图1,若k=1,则∠APE 的度数为 45° ;(2)如图2,若k=√3,试问(1)中的结论是否成立?若成立,请说明理由;若不成立,求出∠APE 的度数.(3)如图3,若k=√3,且D 、E 分别在CB 、CA 的延长线上,(2)中的结论是否成立,请说明理由.【考点】KY:三角形综合题.【专题】15 :综合题.【分析】(1)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△FAE≌△ACD,得出EF=AD=BF,再判断出∠EFB=90°,即可得出结论;(2)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△FAE∽△ACD,再判断出∠EFB=90°,即可得出结论;(3)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△ACD∽△HEA,再判断出∠EFB=90°,即可得出结论;【解答】解:(1)如图1,过点A作AF∥CB,过点B作BF∥AD相交于F,连接EF,∴∠FBE=∠APE,∠FAC=∠C=90°,四边形ADBF是平行四边形,∴BD=AF,BF=AD,∵AC=BD,CD=AE,∴AF=AC,∵∠FAC=∠C=90°,∴△FAE≌△ACD,∴EF=AD=BF,∠FEA=∠ADC,∵∠ADC+∠CAD=90°,∴∠FEA+∠CAD=90°=∠EHD,∵AD∥BF,∴∠EFB=90°,∵EF=BF,∴∠FBE=45°,。
2018年四川省乐山市中考数学试卷[附答案解析版]
2018年四川省乐山市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项符合题目要求1.(3.00分)(2018•乐山)﹣2的相反数是()A.﹣2 B.2 C.12D.﹣122.(3.00分)(2018•乐山)如图是由长方体和圆柱组成的几何体,它的俯视图是()A.B.C. D.3.(3.00分)(2018•乐山)方程组=2=x+y﹣4的解是()A.2B.C.2D.24.(3.00分)(2018•乐山)如图,DE∥FG∥BC,若DB=4FB,则EG与GC的关系是()A.EG=4GC B.EG=3GC C.EG=2GC D.EG=2GC5.(3.00分)(2018•乐山)下列调查中,适宜采用普查方式的是()A.调查全国中学生心理健康现状B.调查一片试验田里五种大麦的穗长情况C.要查冷饮市场上冰淇淋的质量情况D.调查你所在班级的每一个同学所穿鞋子的尺码情况6.(3.00分)(2018•乐山)估计+1的值,应在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间7.(3.00分)(2018•乐山)《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算:圆形木材的直径AC是()A.13寸B.20寸C.26寸D.28寸8.(3.00分)(2018•乐山)已知实数a、b满足a+b=2,ab=,则a﹣b=()A.1 B.﹣2C.±1 D.±29.(3.00分)(2018•乐山)如图,曲线C2是双曲线C1:y=(x>0)绕原点O 逆时针旋转 °得到的图形,P是曲线C2上任意一点,点A在直线l:y=x上,且PA=PO,则△POA的面积等于()A .B .6C .3D .1210.(3.00分)(2018•乐山)二次函数y=x 2+(a ﹣2)x+3的图象与一次函数y=x (1≤x ≤2)的图象有且仅有一个交点,则实数a 的取值范围是( ) A .a=3±2B .﹣1≤a <2C .a=3 2 或﹣12≤a <2D .a=3﹣2 或﹣1≤a <﹣12二、填空题:本大题共6小题,每小题3分,共18分 11.(3.00分)(2018•乐山)计算:|﹣3|= .12.(3.00分)(2018•乐山)化简 +的结果是13.(3.00分)(2018•乐山)如图,在数轴上,点A 表示的数为﹣1,点B 表示的数为4,C 是点B 关于点A 的对称点,则点C 表示的数为 .14.(3.00分)(2018•乐山)如图,四边形ABCD 是正方形,延长AB 到点E ,使AE=AC ,连结CE ,则∠BCE 的度数是 度.15.(3.00分)(2018•乐山)如图,△OAC 的顶点O 在坐标原点,OA 边在x 轴上,OA=2,AC=1,把△OAC绕点A按顺时针方向旋转到△O′AC′,使得点O′的坐标是(1,),则在旋转过程中线段OC扫过部分(阴影部分)的面积为.16.(3.00分)(2018•乐山)已知直线l1:y=(k﹣1)x+k+1和直线l2:y=kx+k+2,其中k为不小于2的自然数.(1)当k=2时,直线l1、l2与x轴围成的三角形的面积S2= ;(2)当k=2、3、4,……,2018时,设直线l1、l2与x轴围成的三角形的面积分别为S2,S3,S4,……,S2018,则S2+S3+S4+……+S2018= .三、简答题:本大题共3小题,每小题9分,共27分17.(9.00分)(2018•乐山)计算: cos °+(π﹣2018)0﹣818.(9.00分)(2018•乐山)解不等式组:2< 2 2<1219.(9.00分)(2018•乐山)如图,已知∠1=∠2,∠3=∠4,求证:BC=BD.四、本大题共3小题,每小题10分,共30分20.(10.00分)(2018•乐山)先化简,再求值:(2m+1)(2m﹣1)﹣(m﹣1)2+(2m)3÷(﹣8m),其中m是方程x2+x﹣2=0的根21.(10.00分)(2018•乐山)某校八年级甲、乙两班各有学生50人,为了了解这两个班学生身体素质情况,进行了抽样调查,过程如下,请补充完整.(1)收集数据从甲、乙两个班各随机抽取10名学生进行身体素质测试,测试成绩(百分制)如下:甲班65 75 75 80 60 50 75 90 85 65乙班90 55 80 70 55 70 95 80 65 70(2)整理描述数据按如下分数段整理、描述这两组样本数据:在表中:m= ,n= .(3)分析数据①两组样本数据的平均数、中位数、众数如表所示:在表中:x= ,y= .②若规定测试成绩在80分(含80分)以上的叙述身体素质为优秀,请估计乙班50名学生中身体素质为优秀的学生有人.③现从甲班指定的2名学生(1男1女),乙班指定的3名学生(2男1女)中分别抽取1名学生去参加上级部门组织的身体素质测试,用树状图和列表法求抽到的2名同学是1男1女的概率.22.(10.00分)(2018•乐山)某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?五、本大题共2小题,每小题10分,共20分23.(10.00分)(2018•乐山)已知关于x的一元二次方程mx2+(1﹣5m)x﹣5=0(m≠0).(1)求证:无论m为任何非零实数,此方程总有两个实数根;(2)若抛物线y=mx2+(1﹣5m)x﹣5=0与x轴交于A(x1,0)、B(x2,0)两点,且|x1﹣x2|=6,求m的值;(3)若m>0,点P(a,b)与Q(a+n,b)在(2)中的抛物线上(点P、Q 不重合),求代数式4a2﹣n2+8n的值.24.(10.00分)(2018•乐山)如图,P是⊙O外的一点,PA、PB是⊙O的两条切线,A、B是切点,PO交AB于点F,延长BO交⊙O于点C,交PA的延长交于点Q,连结AC.(1)求证:AC∥PO;(2)设D为PB的中点,QD交AB于点E,若⊙O的半径为3,CQ=2,求的值.六、本大题共2小题,第25题12分,第26题13分,共25分25.(12.00分)(2018•乐山)已知Rt△ABC中,∠ACB=90°,点D、E分别在BC、AC边上,连结BE、AD交于点P,设AC=kBD,CD=kAE,k为常数,试探究∠APE的度数:(1)如图1,若k=1,则∠APE的度数为;(2)如图2,若k=,试问(1)中的结论是否成立?若成立,请说明理由;若不成立,求出∠APE的度数.(3)如图3,若k=,且D、E分别在CB、CA的延长线上,(2)中的结论是否成立,请说明理由.26.(13.00分)(2018•乐山)如图,在平面直角坐标系中,抛物线y=ax2+bx+c 交x轴于A、B两点,交y轴于点C(0,﹣),OA=1,OB=4,直线l过点A,交y轴于点D,交抛物线于点E,且满足tan∠OAD=.(1)求抛物线的解析式;(2)动点P从点B出发,沿x轴正方形以每秒2个单位长度的速度向点A运动,动点Q从点A出发,沿射线AE以每秒1个单位长度的速度向点E运动,当点P运动到点A时,点Q也停止运动,设运动时间为t秒.①在P、Q的运动过程中,是否存在某一时刻t,使得△ADC与△PQA相似,若存在,求出t的值;若不存在,请说明理由.②在P、Q的运动过程中,是否存在某一时刻t,使得△APQ与△CAQ的面积之和最大?若存在,求出t的值;若不存在,请说明理由.2018年四川省乐山市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项符合题目要求1.(3.00分)(2018•乐山)﹣2的相反数是()A.﹣2 B.2 C.12D.﹣12【考点】14:相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣2的相反数是2.故选:B.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.(3.00分)(2018•乐山)如图是由长方体和圆柱组成的几何体,它的俯视图是()A.B.C. D.【考点】U2:简单组合体的三视图.【专题】55F:投影与视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看外面是正方形,里面是没有圆心的圆,故选:A .【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.3.(3.00分)(2018•乐山)方程组 = 2=x+y ﹣4的解是( ) A . 2 B . C . 2 D . 2【考点】98:解二元一次方程组.【专题】521:一次方程(组)及应用.【分析】先把原方程组化为 2 12,进而利用代入消元法得到方程组的解为 2. 【解答】解:由题可得, 2 12, 消去x ,可得2(4﹣12y )=3y , 解得y=2,把y=2代入2x=3y ,可得x=3,∴方程组的解为 2. 故选:D .【点评】本题主要考查了解二元一次方程组,用代入法解二元一次方程组的一般步骤:从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数用含另一个未知数的代数式表示出来.将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程.解这个一元一次方程,求出x(或y)的值.4.(3.00分)(2018•乐山)如图,DE∥FG∥BC,若DB=4FB,则EG与GC的关系是()GC D.EG=2GCA.EG=4GC B.EG=3GC C.EG=2【考点】S4:平行线分线段成比例.【专题】55:几何图形.【分析】根据平行线分线段成比例定理即可得到答案.【解答】解:∵DE∥FG∥BC,DB=4FB,.∴1故选:B.【点评】此题主要考查平行线分线段成比例定理的理解及运用.根据平行线分线段成比例定理解答是解题的关键.5.(3.00分)(2018•乐山)下列调查中,适宜采用普查方式的是()A.调查全国中学生心理健康现状B.调查一片试验田里五种大麦的穗长情况C.要查冷饮市场上冰淇淋的质量情况D.调查你所在班级的每一个同学所穿鞋子的尺码情况【考点】V2:全面调查与抽样调查.【专题】1 :常规题型.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:A、了解全国中学生心理健康现状调查范围广,适合抽样调查,故A错误;B、了解一片试验田里五种大麦的穗长情况调查范围广,适合抽样调查,故B错误;C、了解冷饮市场上冰淇淋的质量情况调查范围广,适合抽样调查,故C错误;D、调查你所在班级的每一个同学所穿鞋子的尺码情况,适合全面调查,故D正确;故选:D.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大.6.(3.00分)(2018•乐山)估计+1的值,应在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间【考点】2B:估算无理数的大小.【分析】根据≈2.236,可得答案.【解答】解:∵≈2.236,∴+1≈3.236,故选:C.【点评】本题考查了估算无理数的大小,利用≈2.236是解题关键.7.(3.00分)(2018•乐山)《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算:圆形木材的直径AC是()A.13寸B.20寸C.26寸D.28寸【考点】M3:垂径定理的应用.【专题】559:圆的有关概念及性质.【分析】设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解方程即可;【解答】解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸,故选:C.【点评】本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.8.(3.00分)(2018•乐山)已知实数a、b满足a+b=2,ab=,则a﹣b=()A.1 B.﹣2C.±1 D.±2【考点】4C:完全平方公式.【专题】11 :计算题.【分析】利用完全平方公式解答即可.【解答】解:∵a+b=2,ab=,∴(a+b)2=4=a2+2ab+b2,∴a2+b2=2,∴(a﹣b)2=a2﹣2ab+b2=1,∴a﹣b=±1,故选:C.【点评】本题考查了完全平方公式的运用,熟记公式结构是解题的关键.9.(3.00分)(2018•乐山)如图,曲线C2是双曲线C1:y=(x>0)绕原点O 逆时针旋转 °得到的图形,P是曲线C2上任意一点,点A在直线l:y=x上,且PA=PO,则△POA的面积等于()A.B.6 C.3 D.12【考点】F8:一次函数图象上点的坐标特征;G5:反比例函数系数k的几何意义;G6:反比例函数图象上点的坐标特征.【专题】534:反比例函数及其应用;558:平移、旋转与对称.【分析】将双曲线逆时针旋转使得l与y轴重合,等腰三角形△PAO的底边在y 轴上,应用反比例函数比例系数k的性质解答问题.【解答】解:如图,将C2及直线y=x绕点O逆时针旋转 °,则得到双曲线C3,直线l与y轴重合.双曲线C3,的解析式为y=﹣过点P作PB⊥y轴于点B∵PA=PB∴B为OA中点.∴S△PAB=S△POB由反比例函数比例系数k的性质,S△POB=3∴△POA的面积是6故选:B .【点评】本题为反比例函数综合题,考查了反比例函数的轴对称性以及反比例函数比例系数k 的几何意义.10.(3.00分)(2018•乐山)二次函数y=x 2+(a ﹣2)x+3的图象与一次函数y=x (1≤x ≤2)的图象有且仅有一个交点,则实数a 的取值范围是( )A .a=3±2B .﹣1≤a <2C .a=3 2 或﹣12≤a <2D .a=3﹣2 或﹣1≤a <﹣12【考点】F8:一次函数图象上点的坐标特征;H4:二次函数图象与系数的关系;H5:二次函数图象上点的坐标特征.【专题】15 :综合题.【分析】根据二次函数的图象性质即可求出答案.【解答】解:由题意可知:方程x 2+(a ﹣2)x+3=x 在1≤x ≤2上只有一个解, 即x 2+(a ﹣3)x+3=0在1≤x ≤2上只有一个解,当△=0时,即(a ﹣3)2﹣12=0a=3±2当a=3+2 时,此时x=﹣ ,不满足题意,当a=3﹣2 时,此时x= ,满足题意,当△>0时,令y=x2+(a﹣3)x+3,令x=1,y=a+1,令x=2,y=2a+1(a+1)(2a+1)≤0解得:﹣1≤a≤1 2,当a=﹣1时,此时x=1或3,满足题意;当a=﹣12时,此时x=2或x=2,不满足题意,综上所述,a=3﹣2或﹣1≤a<1 2,故选:D.【点评】本题考查二次函数的综合问题,解题的关键是将问题转化为x2+(a﹣3)x+3=0在1≤x≤2上只有一个解,根据二次函数的性质即可求出答案,本题属于中等题型.二、填空题:本大题共6小题,每小题3分,共18分11.(3.00分)(2018•乐山)计算:|﹣3|= 3 .【考点】15:绝对值.【分析】根据负数的绝对值等于这个数的相反数,即可得出答案.【解答】解:|﹣3|=3.故答案为:3.【点评】此题主要考查了绝对值的性质,正确记忆绝对值的性质是解决问题的关键.12.(3.00分)(2018•乐山)化简+的结果是﹣1【考点】6B:分式的加减法.【专题】1 :常规题型.【分析】直接利用分式加减运算法则计算得出答案.【解答】解:+=﹣==﹣1.故答案为:﹣1.【点评】此题主要考查了分式的加减运算,正确掌握运算法则是解题关键.13.(3.00分)(2018•乐山)如图,在数轴上,点A表示的数为﹣1,点B表示的数为4,C是点B关于点A的对称点,则点C表示的数为﹣6 .【考点】13:数轴.【专题】511:实数.【分析】先根据已知条件可以确定线段AB的长度,然后根据点B、点C关于点A对称,设设点C所表示的数为x,列出方程即可解决.【解答】解:设点C所表示的数为x,∵数轴上A、B两点表示的数分别为﹣1和4,点B关于点A的对称点是点C,∴AB=4﹣(﹣1),AC=﹣1﹣x,根据题意AB=AC,∴4﹣(﹣1)=﹣1﹣x,解得x=﹣6.故答案为:﹣6.【点评】本题主要考查实数与数轴的对应关系和轴对称的性质,熟练掌握对称性质是解本题的关键.14.(3.00分)(2018•乐山)如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,连结CE,则∠BCE的度数是22.5 度.【考点】K7:三角形内角和定理;KH:等腰三角形的性质;LE:正方形的性质.【专题】11 :计算题.【分析】根据正方形的性质,易知∠CAE=∠ACB= °;等腰△CAE中,根据三角形内角和定理可求得∠ACE的度数,进而可由∠BCE=∠ACE﹣∠ACB得出∠BCE的度数.【解答】解:∵四边形ABCD是正方形,∴∠CAB=∠BCA= °;△ACE中,AC=AE,则:∠ACE=∠AEC=12(180°﹣∠CAE)= . °;∴∠BCE=∠ACE﹣∠ACB=22. °.故答案为22.5.【点评】此题主要考查的是正方形、等腰三角形的性质及三角形内角和定理.15.(3.00分)(2018•乐山)如图,△OAC的顶点O在坐标原点,OA边在x轴上,OA=2,AC=1,把△OAC绕点A按顺时针方向旋转到△O′AC′,使得点O′的坐标是(1,),则在旋转过程中线段OC扫过部分(阴影部分)的面积为.2【考点】MO:扇形面积的计算;R7:坐标与图形变化﹣旋转.【专题】1 :常规题型.【分析】过O′作O′M⊥OA于M,解直角三角形求出旋转角的度数,根据图形得出阴影部分的面积S=S扇形OAO′+S△O′AC′﹣S△OAC﹣S扇形CAC′=S扇形OAO′﹣S扇形CAC′,分别求出即可.【解答】解:过O′作O′M⊥OA于M,则∠O′MA=90°,∵点O′的坐标是(1,),∴O′M=,OM=1,∵AO=2,∴AM=2﹣1=1,∴tan ∠O′AM=1= ,∴∠O′AM= 0°, 即旋转角为 0°, ∴∠CAC′=∠OAO′= 0°,∵把△OAC 绕点A 按顺时针方向旋转到△O′AC′, ∴S △OAC =S △O′AC′,∴阴影部分的面积S=S 扇形OAO′+S △O′AC′﹣S △OAC ﹣S 扇形CAC′=S 扇形OAO′﹣S 扇形CAC′=0 220﹣ 0 12 0= 2, 故答案为:2.【点评】本题考查了解直角三角形,旋转的性质、扇形的面积计算等知识点,能把求不规则图形的面积转化成求出规则图形的面积是解此题的关键.16.(3.00分)(2018•乐山)已知直线l 1:y=(k ﹣1)x+k+1和直线l 2:y=kx+k+2,其中k 为不小于2的自然数.(1)当k=2时,直线l 1、l 2与x 轴围成的三角形的面积S 2= 1 ;(2)当k=2、3、4,……,2018时,设直线l 1、l 2与x 轴围成的三角形的面积分别为S 2,S 3,S 4,……,S 2018,则S 2+S 3+S 4+……+S 2018=2011009. 【考点】38:规律型:图形的变化类;F8:一次函数图象上点的坐标特征. 【专题】533:一次函数及其应用.【分析】利用一次函数图象上点的坐标特征可求出两直线与x 轴的交点坐标,进而可得出两点间的距离,联立两直线解析式成方程组,通过解方程组可求出两直线的交点坐标.(1)代入k=2,可得出d 的值,利用三角形的面积公式可求出S 2的值; (2)分别代入k=2、3、4、…、2018求出S 2、S 3、S 4、…、S 2018值,将其相加即可得出结论.【解答】解:当y=0时,有(k ﹣1)x+k+1=0, 解得:x=﹣1﹣21, ∴直线l 1与x 轴的交点坐标为(﹣1﹣21,0),同理,可得出:直线l 2与x 轴的交点坐标为(﹣1﹣2,0),∴两直线与x 轴交点间的距离d=﹣1﹣2 ﹣(﹣1﹣2 1)=2 1﹣2.联立直线l 1、l 2成方程组,得:1 1 2,解得: 1 2,∴直线l 1、l 2的交点坐标为(﹣1,﹣2).(1)当k=2时,d=21﹣2=1,∴S 2=12×|﹣2|d=1.故答案为:1.(2)当k=3时,S 3=22﹣2 ;当k=4时,S 4=2 ﹣2 ;…;S 2018=2201 ﹣22018,∴S 2+S 3+S 4+……+S 2018=21﹣22+22﹣2 +2 ﹣2 +…+2201 ﹣22018,=21﹣22018, =2﹣11009,=201 1009. 故答案为:2011009.【点评】本题考查了一次函数图象上点的坐标特征以及规律型中图形的变化类,利用一次函数图象上点的坐标特征求出两直线与x轴交点间的距离是解题的关键.三、简答题:本大题共3小题,每小题9分,共27分17.(9.00分)(2018•乐山)计算: cos °+(π﹣2018)0﹣8【考点】2C:实数的运算;6E:零指数幂;T5:特殊角的三角函数值.【专题】11 :计算题;511:实数.【分析】原式利用特殊角的三角函数值,零指数幂法则,以及算术平方根定义计算即可求出值.【解答】解:原式=4×22+1﹣22=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键18.(9.00分)(2018•乐山)解不等式组:2< 2 2<12【考点】CB:解一元一次不等式组.【专题】1 :常规题型.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:2< 2①2<12②,∵解不等式①得:x>0,解不等式②得:x<6,∴不等式组的解集为0<x<6.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.19.(9.00分)(2018•乐山)如图,已知∠1=∠2,∠3=∠4,求证:BC=BD.【考点】KD:全等三角形的判定与性质.【专题】552:三角形.【分析】由∠3=∠4可以得出∠ABD=∠ABC,再利用ASA就可以得出△ADB≌△ACB,就可以得出结论.【解答】证明:∵∠ABD+∠ =180°∠ABC+∠ =180°,且∠3=∠4,∴∠ABD=∠ABC在△ADB和△ACB中,∠1∠2,∠ ∠∴△ADB≌△ACB(ASA),∴BD=CD.【点评】本题考查了等角的补角相等的性质的运用,全等三角形的判定与性质的运用,解答时证明三角形全等是关键.四、本大题共3小题,每小题10分,共30分20.(10.00分)(2018•乐山)先化简,再求值:(2m+1)(2m﹣1)﹣(m﹣1)2+(2m)3÷(﹣8m),其中m是方程x2+x﹣2=0的根【考点】4J:整式的混合运算—化简求值;A3:一元二次方程的解.【专题】11 :计算题;512:整式.【分析】先利用平方差公式和完全平方公式及单项式的除法化简原式,再由方程的解的定义得出m2+m=2,代入计算可得.【解答】解:原式=4m2﹣1﹣(m2﹣2m+1)+8m3÷(﹣8m)=4m2﹣1﹣m2+2m﹣1﹣m2=2m2+2m﹣2=2(m2+m﹣1),∵m是方程x2+x﹣2=0的根,∴m2+m﹣2=0,即m2+m=2,则原式=2×(2﹣1)=2.【点评】本题主要考查整式的化简求值,解题的关键是掌握平方差公式和完全平方公式、整式的混合运算顺序和运算法则、方程的解的定义.21.(10.00分)(2018•乐山)某校八年级甲、乙两班各有学生50人,为了了解这两个班学生身体素质情况,进行了抽样调查,过程如下,请补充完整.(1)收集数据从甲、乙两个班各随机抽取10名学生进行身体素质测试,测试成绩(百分制)如下:甲班65 75 75 80 60 50 75 90 85 65乙班90 55 80 70 55 70 95 80 65 70(2)整理描述数据按如下分数段整理、描述这两组样本数据:在表中:m= 3 ,n= 2 .(3)分析数据①两组样本数据的平均数、中位数、众数如表所示:在表中:x= 75 ,y= 70 .②若规定测试成绩在80分(含80分)以上的叙述身体素质为优秀,请估计乙班50名学生中身体素质为优秀的学生有20 人.③现从甲班指定的2名学生(1男1女),乙班指定的3名学生(2男1女)中分别抽取1名学生去参加上级部门组织的身体素质测试,用树状图和列表法求抽到的2名同学是1男1女的概率.【考点】V5:用样本估计总体;V7:频数(率)分布表;W4:中位数;W5:众数;X6:列表法与树状图法.【专题】1 :常规题型;54:统计与概率.【分析】(2)由收集的数据即可得;(3)①根据众数和中位数的定义求解可得;②用总人数乘以乙班样本中优秀人数所占比例可得;③列表得出所有等可能结果,利用概率公式求解可得.【解答】解:(2)由收集的数据得知m=3、n=2,故答案为:3、2;(3)①甲班成绩为:50、60、65、65、75、75、75、80、85、90,∴甲班成绩的中位数x=2=75,乙班成绩70分出现次数最多,所以的众数y=70,故答案为:75、70;②估计乙班50名学生中身体素质为优秀的学生有50×10=20人;③列表如下:由表可知,共有6种等可能结果,其中抽到的2名同学是1男1女的有3种结果,所以抽到的2名同学是1男1女的概率为=1 2.【点评】本题考查了众数、中位数以及概率公式的应用,掌握众数、中位数以及用样本估计总体是解题的关键.22.(10.00分)(2018•乐山)某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?【考点】GA:反比例函数的应用.【专题】533:一次函数及其应用;534:反比例函数及其应用.【分析】(1)应用待定系数法分段求函数解析式;(2)观察图象可得;(3)代入临界值y=10即可.【解答】解:(1)设线段AB解析式为y=k1x+b(k≠0)∵线段AB过点(0,10),(2,14)代入得102 1 1解得12 10∴AB 解析式为:y=2x+10(0≤x <5) ∵B 在线段AB 上当x=5时,y=20 ∴B 坐标为(5,20)∴线段BC 的解析式为:y=20(5≤x <10)设双曲线CD 解析式为:y= 2(k 2≠0)∵C (10,20) ∴k2=200∴双曲线CD 解析式为:y=200(10≤x ≤24)∴y 关于x 的函数解析式为:y=2 10 0 < 20 <10 20010 2(2)由(1)恒温系统设定恒温为20°C(3)把y=10代入y=200中,解得,x=20∴20﹣10=10答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.【点评】本题为实际应用背景的函数综合题,考查求得一次函数、反比例函数和常函数关系式.解答时应注意临界点的应用.五、本大题共2小题,每小题10分,共20分23.(10.00分)(2018•乐山)已知关于x 的一元二次方程mx 2+(1﹣5m )x ﹣5=0(m ≠0).(1)求证:无论m 为任何非零实数,此方程总有两个实数根;(2)若抛物线y=mx2+(1﹣5m)x﹣5=0与x轴交于A(x1,0)、B(x2,0)两点,且|x1﹣x2|=6,求m的值;(3)若m>0,点P(a,b)与Q(a+n,b)在(2)中的抛物线上(点P、Q 不重合),求代数式4a2﹣n2+8n的值.【考点】A1:一元二次方程的定义;AA:根的判别式;H5:二次函数图象上点的坐标特征;HA:抛物线与x轴的交点.【专题】1 :常规题型.【分析】(1)直接利用△=b2﹣4ac,进而利用偶次方的性质得出答案;(2)首先解方程,进而由|x1﹣x2|=6,求出答案;(3)利用(2)中所求得出m的值,进而利用二次函数对称轴得出答案.【解答】(1)证明:由题意可得:△=(1﹣5m)2﹣4m×(﹣5)=1+25m2﹣20m+20m=25m2+1>0,故无论m为任何非零实数,此方程总有两个实数根;(2)解:mx2+(1﹣5m)x﹣5=0,解得:x1=﹣1,x2=5,由|x1﹣x2|=6,得|﹣1﹣5|=6,解得:m=1或m=﹣1 11;(3)解:由(2)得,当m>0时,m=1,此时抛物线为y=x2﹣4x﹣5,其对称轴为:x=2,由题已知,P,Q关于x=2对称,=2,即2a=4﹣n,∴2∴4a2﹣n2+8n=(4﹣n)2﹣n2+8n=16.【点评】此题主要考查了抛物线与x轴的交点以及根的判别式,正确得出方程的根是解题关键.24.(10.00分)(2018•乐山)如图,P是⊙O外的一点,PA、PB是⊙O的两条切线,A、B是切点,PO交AB于点F,延长BO交⊙O于点C,交PA的延长交于点Q,连结AC.(1)求证:AC∥PO;(2)设D为PB的中点,QD交AB于点E,若⊙O的半径为3,CQ=2,求的值.【考点】M5:圆周角定理;MC:切线的性质;S9:相似三角形的判定与性质.【专题】1 :常规题型.【分析】(1)根据切线长定理得出PA=PB,且PO平分∠BPA,利用等腰三角形三线合一的性质得出PO⊥AB.根据圆周角定理得出AC⊥AB,进而得到AC∥PO;(2)连结OA、DF.先用勾股定理计算出AQ=4,再计算出PA=PB=6,利用切线长定理可得到F点为AB的中点,易得DF为△BAP的中位线,则DF=12PA=3,DF∥PA,利用DF∥AQ得到△DFE∽△QEA,所以==,设AE=4t,FE=3t,则AF=AE+FE=7t,于是BE=BF+FE=AF+FE=7t+3t=10t,最后计算.【解答】(1)证明:∵PA、PB是⊙O的两条切线,A、B是切点,∴PA=PB,且PO平分∠BPA,∴PO⊥AB.∵BC是直径,∴∠CAB=90°,∴AC⊥AB,∴AC∥PO;(2)解:连结OA、DF,如图,∵PA、PB是⊙O的两条切线,A、B是切点,∴∠OAQ=∠PBQ=90°.在Rt△OAQ中,OA=OC=3,∴OQ=5.由QA2+OA2=OQ2,得QA=4.在Rt△PBQ中,PA=PB,QB=OQ+OB=8,由QB2+PB2=PQ2,得82+PB2=(PB+4)2,解得PB=6,∴PA=PB=6,∵OP⊥AB,∴BF=AF=12 AB.又∵D 为PB 的中点,∴DF ∥AP ,DF=12PA=3, ∴△DFE ∽△QEA ,∴ = =, 设AE=4t ,FE=3t ,则AF=AE+FE=7t ,∴BE=BF+FE=AF+FE=7t+3t=10t ,∴ = 10 =2.【点评】本题考查了切线的判定与性质:圆的切线垂直于经过切点的半径;经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了勾股定理和相似三角形的判定与性质.六、本大题共2小题,第25题12分,第26题13分,共25分25.(12.00分)(2018•乐山)已知Rt △ABC 中,∠ACB=90°,点D 、E 分别在BC 、AC 边上,连结BE 、AD 交于点P ,设AC=kBD ,CD=kAE ,k 为常数,试探究∠APE 的度数:(1)如图1,若k=1,则∠APE 的度数为 ° ;(2)如图2,若k= ,试问(1)中的结论是否成立?若成立,请说明理由;若不成立,求出∠APE 的度数.(3)如图3,若k= ,且D 、E 分别在CB 、CA 的延长线上,(2)中的结论是否成立,请说明理由.【考点】KY:三角形综合题.【专题】15 :综合题.【分析】(1)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△FAE≌△ACD,得出EF=AD=BF,再判断出∠EFB=90°,即可得出结论;(2)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△FAE∽△ACD,再判断出∠EFB=90°,即可得出结论;(3)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△ACD∽△HEA,再判断出∠EFB=90°,即可得出结论;【解答】解:(1)如图1,过点A作AF∥CB,过点B作BF∥AD相交于F,连接EF,∴∠FBE=∠APE,∠FAC=∠C=90°,四边形ADBF是平行四边形,∴BD=AF,BF=AD,∵AC=BD,CD=AE,∴AF=AC,∵∠FAC=∠C=90°,∴△FAE≌△ACD,∴EF=AD=BF,∠FEA=∠ADC,∵∠ADC+∠CAD=90°,∴∠FEA+∠CAD=90°=∠EHD,∵AD∥BF,∴∠EFB=90°,∵EF=BF,∴∠FBE= °,∴∠APE= °,故答案为: °.(2)(1)中结论不成立,理由如下:如图2,过点A作AF∥CB,过点B作BF∥AD相交于F,连接EF,∴∠FBE=∠APE,∠FAC=∠C=90°,四边形ADBF是平行四边形,∴BD=AF,BF=AD,∵AC=BD,CD=AE,∴,∵BD=AF,∴,∵∠FAC=∠C=90°,∴△FAE∽△ACD,。
精品解析四川省乐山市沙湾区初中毕业数学调研考试解析版
A. B. C. D.
【5题答案】
【答案】B
【解析】
【详解】分析:分别判断△ABC,△AEF是等边三角形,用勾股定理求出AE的长.
详解:连接AC,因为∠B=60°,BA=BC,所以△ABC是等边三角形,
因为E,F分别是边BC,CD的中点,所以△AEF是等边三角形.
故选D.
【点睛】一次函数y=kx+b的图象所在象限与常数k,b的关系是:①当k>0,b>0时,函数y=kx+b的图象经过第一,二,三象限;②当k>0,b<0时,函数y=kx+b的图象经过第一,三,四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一,二,四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二,三,四象限,反之也成立.
因为AB=2,所以BE=1,由勾股定理得AE= ,
所以△AEF的周长为 .
故选B.
点睛:在菱形中,如果有60°的内角,则其中一定会有等边三角形,一般结合一边上的高,或对角线互相垂直构造直角三角形,用勾股定理求解.
6.下面两图是某班全体学生上学时,乘车、步行、骑车的人数分布条形统计图和扇形统计图(两图均不完整),则下列结论中错误的是()
A.该班总人数为50人B.骑车人数占总人数 20%
C.乘车人数是骑车人数的 倍D.步行人数为30人
【6题答案】
【答案】D
【解析】
【分析】此题首先根据乘车人数和所占总数的比例,求出总人数,即可根据图中获取信息求出步行的人数;根据乘车和骑车所占比例,可得乘车人数是骑车人数的2.5倍.
【详解】根据条形图可知:
B.两种球的个数不是一样多,所以摸到的可能性不一样,则B错误;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、单选题
1. 计算:
()
A. B. C. D.
2. 口袋里装有大小、形状完全一样的9个红球、6个白球. 则( )
A . 从中随机摸出一个球,摸到红球的可能性更大 B . 从中随机摸出一个球, 摸到红球和白球的可能性一样大 C . 从中随机摸出5
个球,必有2个白球 D . 从中随机摸出7个球,可能都是白球
17.
18.
19.
20. 21. 22.
23. 24. 25.
26.
3. 如图,直线 ∥ ,
,
,则
()
A. B. 4. 方程
C. D. 的两根为
A. B. C. D.
5. 如图,在菱形
中,
、 ,则 ,
() , 、 分别是边 、 中点,则
周长等于( )
A. B. C. D. 6. 如图是某班全体学生外出时乘车、步行、骑车的人数分布直方图和扇形统计图(两图都不完整),则下列结论中错误 的是( )
A . 该班总人数为50 B . 骑车人数占总人数的20% C . 步行人数为30 D . 乘车人数是骑车人数的2.5倍 7. 小明用作图象的方法解二元一次方程组时,他作出了相应的两个一次函数的图象,则他解的这个方程组是( )
A.
B.
C.
D.
8. 甲工厂生产的5件产品中有4件正品,1件次品;乙工厂生产的5件产品中有3件正品,2件次品。从这两个工厂生产的 产品各任取1件,2件都是次品的概率为( )
25. 阅读下列材料: 题目:如图1,在
中,已知
,
,
,请用 、
表示
.
解:如图2,作 边上的中线 ,
于,
则
,
,
,
在
中,
根据以上阅读,请解决下列问题:
(1) 如图3,在
中,
,
,
,求 ,
的值
(2) 上面阅读材料中,题目条件不变,请用 或
表示
.
26. 如图,抛物线
经过点 , ,与 轴正半轴交于 点,与 轴交于 点.
(2) 若学校计划购买这两种球共50个,总费用不超过5500元,那么最多可购买足球多少个?
20. 如图,在正方形
中, 、 分别是 、 边上的点,且
.
(1) 求证:
;
(2) 若
,
,求 的长.
21. 某服装厂每天生产 、 两种品牌的服装共600件, 、 两种品牌的服装每件的成本和利润如右表:
A
B
成本(元/件)
于点 .
(1) 求证: 平分
(2) 若
,
24. 如图,直线
;
,求 的长.
与反比例函数
的图象只有一个交点 .
(1) 求反比例函数的解析式;
(2) 在函数
的图象上取异于点 的一点 ,作
轴于点 ,连接 交直线 y = x + 4 于点 .设直
线 y = x + 4 与 轴交于点 ,若
的面积是
面积的 倍,求点 的坐标.
方向走恰
16. 如图,直线
交 轴于点 ,交 轴于点 .在
顶点在 边上,作出的等边三角形第一个是
,第二个是
内依次作等边三角形使一边在 轴上,另一个
,第三个是
…
(1) (2)
的边长等于; 的边长等于
三、解答题
17. 计算: -
.
18. 已知
,求
的值.
19. 某校计划购买一批排球和足球,已知购买2个排球和1个足球共需321元,购买3个排球和2个足球共需540元. (1) 求每个排球和足球的售价;
13. 老师对甲乙两人五次的数学测试成绩进行统计,得出甲乙两人五次测试的平均分别为91分和92分,他们的方差分
别是
,
.则成绩比较稳定的是________
14. 如图,点 在
的边 上,请你添加一个条件,使得
∽
,这个条件可以是 ________.
15. 小明从A处出发,要到北偏东 方向的 处,他先沿正东方向走了200米到达B处,再沿北偏东 能到达目的地 处. 则 、 两地的距离为________
(1) 求直线 的解析式;
(2) 设点 为直线 下方抛物线上一点,连接
(3) 在(2)的条件下,直线
过直线 与
是直线 上一点,求
周长的最小值.
、 ,当
轴的交点 .设
面积最大时,求点 的坐标;
的中点为 , 是直线
上一点,
参考答案 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16.
A. B. C. D.
9. 二次函数
在
的范围内有最小值 ,则 的值是( )
A. B. C. D.
10. 如图,正方形
中,点 、 分别是边
()
, 的中点,连接 、
交于点 ,则下列结论错误的是
A.
B.
C.
D.
二、填空题
11. 计算: (−1)2+|−2|= ________.
12. 分式方程
的解为________
50
35
利润(元/件)
20
15
设每天生产 种品牌服装 件,每天两种服装获利 元.
(1) 请写出 关于 的函数关系式;
(2) 如果服装厂每天至少投入成本26400元,那么每天至少获利多少元?
22. 如图,在矩形
中,
,以 为圆心, 为半径的圆弧交
,求图中阴影部分的面积.
于点 ,交
的延长线于点 ,
23. 如图,点 在⊙ 的直径 的延长线上, 切⊙ 于点 ,