列不等式解应用题专项训练
不等式的应用练习题运用不等式解决实际问题

不等式的应用练习题运用不等式解决实际问题不等式是数学中一种重要的关系式,用来表示不同数值之间的大小关系。
不等式的应用十分广泛,尤其在解决实际问题时能发挥重要作用。
下面将通过一些实际问题来展示如何运用不等式解决相关问题。
问题一:某公司生产的某种产品A的每个单位成本为c元,销售价格为p元。
现有一批产品A,最多可生产n个单位,并且销售数量不少于m个单位。
问该公司最少需要以多少价格出售每个单位产品A,能够保证不亏本?解答:设x为每个单位产品A的出售价格,由题目可知不等式关系:nx ≥ mc。
根据题意,还需满足销售数量不少于m个单位,即p ≥ m。
根据不等式nx ≥ mc和p ≥ m,我们可以得到以下关系式:nx ≥ mcp ≥ m为了保证不亏本,我们需要求解x的最小值。
首先,根据nx ≥ mc,我们可以将c除以n,得到:x ≥ c/n然后,我们再考虑p ≥ m,可以选择最小的p值来保证不亏本。
因此,最小的x值为c/n,当且仅当p = m时,不等式达到最小值。
综上所述,公司最少需要以c/n元的价格出售每个单位产品A,才能保证不亏本。
问题二:某商品的原价为p1元,现在正在打折促销,降价至p2元。
已知促销期间每天能销售的商品数量不能超过n个,如果该店至少想要保持每天的销售额不低于m元,问降价后的最低售价是多少?解答:设x为商品降价后的售价。
根据题意,我们知道不等式关系:nx ≤ m。
根据不等式nx ≤ m,我们可以得到以下关系式:nx ≤ m为了保证每天的销售额不低于m元,我们需要求解x的最小值。
由于降价后的售价p2必须小于原价p1,所以我们可以选择最小的p2值作为降价后的售价。
根据nx ≤ m,我们可以将m除以n,得到:x ≤ m/n然后,我们再考虑p2 ≤ x,可以选择最小的x值来保证每天的销售额不低于m元。
因此,降价后的最低售价为m/n元,当且仅当p2 =m/n时,不等式达到最小值。
综上所述,降价后的最低售价为m/n元,才能保证每天的销售额不低于m元。
列不等式组解决实际问题

列一元一次不等式组解应用题的一般步 骤是: (1):审题,分析题目中已知什么,求 什么,明确各数量之间的关系 (2):设适当的未知数 (3):找出题目中的所有不等关系 (4):列不等式组 (5):求出不等式组的解集 (6):写出符合题意的答案 答:审、设、找、列、解、答。
某工人在生产中, 例1 某工人在生产中,经过第一次改进技 每天所做的零件的个数比原来多10个 术,每天所做的零件的个数比原来多 个, 因而他在8天内做完的零件就超过 因而他在 天内做完的零件就超过200个, 个 天内做完的零件就超过 后来,又经过第二次技术的改进, 后来,又经过第二次技术的改进,每天又多 个零件, 做37个零件,这样他只做 天,所做的零件 个零件 这样他只做4天 的个数就超过前8天的个数 天的个数, 的个数就超过前 天的个数,问这位工人原 先每天可做零件多少个? 先每天可做零件多少个?
例2、某中学为八年级寄宿学生安 排宿舍,如果每间4人,那么有20 人无法安排,如果每间8人,那么 有一间不空也不满,求宿舍间数 和寄宿学生人数。
例3、 某校为了奖励在数学竞赛中获奖 、 的学生,买了若干本课外读物准备送给他 的学生 买了若干本课外读物准备送给他 们. 如果每人送3本 则还余 则还余8本 如果前面每 如果每人送 本,则还余 本;如果前面每 人送5本 最后一人得到的课外读物不足 最后一人得到的课外读物不足3 人送 本,最后一人得到的课外读物不足 设该校买了m本课外读物 本.设该校买了 本课外读物 有x名学生 设该校买了 本课外读物,有 名学生 获奖,请解答下列问题 请解答下列问题: 获奖 请解答下列问题 (1)用含 的代数式表示 用含x的代数式表示 用含 的代数式表示m; (2)求出该校的获奖人数及所买课外读物 求出该校的获奖人数及所买课外读物 的本数. 的本数
不等式解应用题

1、国际比赛的足球场地长在100~110米之间,宽在64~75米之间,实验室中学一个长方形足球场宽为70米,经检测它的周长大于350米,面积小于7560平方米。
通过计算,你认为它符合国际足球比赛场地的要求吗?例1:幼儿园把新购进的一批玩具分给小朋友,若每人3件,那么还剩余59件;若每人5件,那么最后一个小朋友分到玩具,但不足4件,这批玩具共有多少件?变式训练1:将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有一位小朋友分不到8个苹果,求这一箱苹果的个数与小朋友的人数变式训练2:有一群猴子,有一天结伴去偷桃子。
分桃子时,如果每只猴子分3个,那么还剩下59个;如果每只猴子分5个,就都分得桃子,但有一个猴子分得的桃子不够5个。
你能求出有几只猴子,几个桃子吗?例2:子某工厂现有甲种原料360千克,乙中原料290千克,计划用这两种原料生产A,B 两种产品共50件。
已知生产一件A种产品需用甲种原料9千克,乙种原料3千克;生产一件B种产品,需用甲种原料4千克,乙种原料10千克。
按要求安排A,B两种产品的生产件数,有哪几种方案?请你设计出来变式训练1:小亮妈妈下岗后开了一家蛋糕店,现有10.2千克面粉,10.2千克鸡蛋,计划加工一般糕点和精致糕点两种产品共50盒。
已知加工一盒一般糕点需0.3千克面粉和0.1千克鸡蛋;加工一盒精致的糕点需0.1千克面粉和0.3千克鸡蛋。
(1)有哪几种符合题意的加工方案?请你设计处出来(2)若销售一盒一般糕点和精致糕点的利润分别为1.5元和2元,那么按哪一个方案加工,小亮妈妈可获得最大利润?最大利润是多少?2、某校准备组织290名学生进行野外考察活动,行李共有100件,学校计划租用甲乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李设甲种汽车x辆,请你设计出所有可能的租车方案。
不等式应用题50道

不等式应用题50道把价格为每千克20元的甲种糖果8千克和价格为每千克18元的乙种糖果若干千克混合,要使总价不超过400元,且糖果不少于15千克,所混合的乙种糖果最多是多少?最少是多少?某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数.某校为了奖励在数学竞赛中获奖的学生,买了若干本课外读物准备送给他们.如果每人送3本,则还余8本;如果前面每人送5本,最后一人得到的课外读物不足3本.设该校买了m 本课外读物,有x名学生获奖,请解答下列问题:(1)用含x的代数式表示m;(2)求出该校的获奖人数及所买课外读物的本数.(2001荆门市)有10名菜农,每人可种甲种蔬菜3亩或乙种蔬菜2亩,已知甲种蔬菜每亩可收入0.5万元,乙种蔬菜每亩可收入0.8万元,若要使总收入不低于15.6万元,则应该如何安排人员?(2001陕西)出租汽车起价是10元(即行驶路程在5km以内需付10元车费),达到或超过5km后,每增加1km加价1.2元(不足1km部分按1km计),现在某人乘这种出租汽车从甲地到乙地支付车费17.2元,从甲地到乙地的路程大约是多少?(2002重庆市)韩日“世界杯”期间,重庆球迷一行56人从旅馆乘出租车到球场为中国队加油,现有A、B两个出租车队,A队比B队少3辆车,若全部安排乘A队的车,每辆坐5人,车不够,每辆坐6人,有的车未坐满;若全部安排乘B队的车,每辆车坐4人,车不够,每辆车坐5人,有的车未坐满,则A队有出租车()A.11辆B.10辆C.9辆D.8辆(2001荆州)在双休日,某公司决定组织48名员工到附近一水上公园坐船游园,公司先派一个人去了解船只的租金情况,这个人看到的租金价格表如下:船型每只限载人数(人) 租金(元)大船5 3小船3 2那么,怎样设计租船方案才能使所付租金最少?(严禁超载)(2001安徽)某工程队要招聘甲、乙两种工种的工人150人,甲、乙两种工种的工人月工资分别为600元和1000元.现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时,可使得每月所付的工资最少?某种植物适宜生长在温度为18℃~22℃的山区,已知山区海拔每升高100m,气温下降0.6℃,现测出山脚下的平均气温为22℃,问该植物种在山上的哪一部分为宜(设山脚下的平均海拔高度为0m).把价格为每千克20元的甲种糖果8千克和价格为每千克18元的乙种糖果若干千克混合,要使总价不超过400元,且糖果不少于15千克,所混合的乙种糖果最多是多少?最少是多少?商场购进某种商品m件,每件按进价加价30元售出全部商品的65%,然后再降价10%,这样每件仍可获利18元,又售出全部商品的25%.(1)试求该商品的进价和第一次的售价;(2)为了确保这批商品总的利润不低于25%,剩余商品的售价应不低于多少元?(2001安徽)某工程队要招聘甲、乙两种工种的工人150人,甲、乙两种工种的工人月工资分别为600元和1000元.现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时,可使得每月所付的工资最少?某公司到果品基地购买某种优质水果慰问医务工作者,果品基地对购买量在3000kg以上(含3000kg)的顾客采用两种销售方案.甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己租车运回.已知该公司租车从基地到公司的运输费用为5000元.(1)分别写出该公司两种购买方案付款金额y(元)与所购买的水果量x(kg)之间的函数关系式,并写出自变量x的取值范围.(2)当购买量在哪一范围时,选择哪种购买方案付款最少?并说明理由(佳木斯)某公司经营甲、乙两种商品,每件甲种商品进价12万元,•售价14.5万元.每件乙种商品进价8万元,售价10万元,且它们的进价和售价始终不变.•现准备购进甲、乙两种商品共20件,所用资金不低于190万元不高于200万元.(1)该公司有哪几种进货方案?(2)该公司采用哪种进货方案可获得最大利润?最大利润是多少?(3)利用(2)中所求得的最大利润再次进货,•请直接写出获得最大利润的进货方案.(苏州)苏州地处太湖之滨,有丰富的水产养殖资源,•水产养殖户李大爷准备进行大闸蟹与河虾的混合养殖,他了解到如下信息:①每亩水面的年租金为500元,水面需按整数亩出租;②每亩水面可在年初混合投入4kg蟹苗和20kg虾苗;③每千克蟹苗的价格为75元,其饲养费用为525元,当年可获1 400元收益;④每千克虾苗的价格为15元,其饲养费用为85元,当年可获160元收益.(1)若租用水面n亩,则年租金共需_________元;(2)水产养殖的成本包括水面年租金、苗种费用和饲养费用,求每亩水面蟹虾混合养殖的年利润(利润=收益-成本);(3)李大爷现有资金25 000元,他准备再向银行贷不超过25 000元的款,•用于蟹虾混合养殖,已知银行贷款的年利率为8%,试问李大爷应该租多少亩水面,•并向银行贷款多少元,可使年利润超过35 000元?(哈尔滨)双蓉服装店老板到厂家选购A、B两种型号的服装,若购进A种型号服装9件,B 种型号服装10件,需要1 810元;若购进A种型号服装12件,B种型号服装8件,需要1 880元.(1)求A、B两种型号的服装每件分别为多少元?(2)若销售1件A型服装可获得18元,销售1件B型服装可获得30元.根据市场需求,服装店老板决定,购进A型服装的数量要比购进B型服装数量的2倍还多4件,且A型服装最多可购进28件,这样服装全部售出后,可使总的获利不少于699元.问有几种进货方案?如何进货?(河南)某公司为了扩大经营,决定购进6台机器用于生产某种活塞.现有甲、•乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过34万元.甲乙价格(万元/台)75每台日产量(个)10060(1)按该公司要求可以有几种购买方案?(2)若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种方案?某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货量的一半.电视机与洗衣机的进价和售价如下表:类别电视机洗衣机进价(元/台)18001500售价(元/台)20001600计划购进电视机和洗衣机共100台,商店最多可筹集资金161 800元.(1)请你帮助商店算一算有多少种进货方案?(不考虑除进价之外的其它费用)(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润.(利润=售价-进价)绵阳市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王灿如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?2007年我市某县筹备20周年县庆,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个种造型需甲种花卉80盆,乙种花卉40盆,搭配一个种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个种造型的成本是800元,搭配一个种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?一手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A型手机x部,B型手机y部.三款手机的进价和预售价如下表:手机型号A型B型C型进价(单位:元/部)900 1200 1100预售价(单位:元/部)1200 1600 1300(1)用含x,y的式子表示购进C型手机的部数;(2)求出y与x之间的函数关系式;(3)假设所购进手机全部售出,综合考虑各种因素,该手机经销商在购销这批手机过程中需另外支出各种费用共1500元.①求出预估利润P(元)与x(部)的函数关系式;(注:预估利润P=预售总额-购机款-各种费用)②求出预估利润的最大值,并写出此时购进三款手机各多少部.抗洪抢险,向险段运送物资,共有120公里原路程,需要1小时送到,前半小时已经走了50公里后,后半小时速度多大才能保证及时送到?某电影院暑假向学生优惠开放,每张票2元.另外,每场次还可以售出每张5元的普通票300张,如果要保持每场次票房收入不低于2000元,那么平均每场次至少应出售学生优惠票多少张?水果店进了某中水果1t,进价是7元/kg.售价定为10元/kg,销售一半以后,为了尽快售完,准备打折出售.如果要使总利润不低于2000元,那么余下的水果可以按原定价的几折出售?“中秋节”期间苹果很热销,一商家进了一批苹果,进价为每千克1.5元,销售中有6%的苹果损耗,商家把售价至少定为每kg多少元,才能避免亏本?阳光中学校长准备在暑假带领该校的“市级三好生”去青岛旅游,甲旅行社说“如果校长买全票一张,则其余学生享受半价优惠.”乙旅行社说“包括校长在内,全体人员均按全票的6折优惠”.若到青岛的全票为1000元.(1)设学生人数为x人,甲旅行社收费为y 甲元,乙旅行社收费为y乙元,分别写出两家旅行社的收费表达式.(2)就学生人数x,讨论哪家旅行社更优惠?某用煤单位有煤吨,每天烧煤吨,现已知烧煤三天后余煤102吨,烧煤8天后余煤72吨.(1)求该单位余煤量吨与烧煤天数之间的函数解析式;(2)当烧煤12天后,还余煤多少吨?(3)预计多少天后会把煤烧完?一根长20cm的弹簧,一端固定,另一端挂物体.在弹簧伸长后的长度不超过30cm的限度内,每挂1㎏质量的物体,弹簧伸长0.5cm.如果所挂物体的质量为x㎏,弹簧的长度是ycm. (1)、求y与x之间的函数关系式,并画出函数的图象.(2)、求弹簧所挂物体的最大质量是多少?某人点燃一根长度为25㎝的蜡烛,已知蜡烛每小时缩短5㎝,设xh后蜡烛剩下的长度为y ㎝.(1)、求y与x的函数关系式.(2)、几个小时以后,蜡烛的长度不足10㎝?一艘轮船以20km/h的速度从甲港驶往160km远的乙港,2h后,一艘快艇以40km/h的速度也从甲港驶往乙港.分别列出轮船和快艇行驶的路程y km与时间x h的函数关系式,并在直角坐标系中画出函数的图象,观察图象回答下列问题:(1)何时轮船行驶在快艇的前面?(2)何时快艇行驶在轮船的前面?(3)哪一艘船先驶过60km?哪一艘船先驶过100km?某学校计划购买若干台电脑,现从两家商场了解到同一型号电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原价收费,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.(1)分别写出两家商场的收费与所买电脑台数之间的关系式;(2)什么情况下到甲商场购买更优惠?(3)什么情况下到乙商场购买更优惠?(4)什么情况下两家商场的收费相同?红星公司要招聘A、B两个工种的工人150人,A、B工种的工人的月工资分别为600和1000元,现要求B工种的人数不少于A工种人数的2倍,那么招聘A工种工人多少时,可使每月所付的工资最少?此时每月工资为多少元?一群女生住若干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满.⑴如果有x间宿舍,那么可以列出关于x的不等式组:⑵可能有多少间宿舍、多少名学生?你得到几个解?它符合题意吗?有人问一位老师他所教的班上有多少学生,老师说:“一半的学生在学数学,四分之一的学生在学音乐,七分之一的学生在读外语,不足六位同学在操场上踢足球.”试问这个班共有多少名学生?我市某化工厂现有甲种原料290千克,乙种原料212千克,计划利用这两种原料生产A、B 两种产品共80件,生产一件A产品需要甲种原料5千克,乙种原料1.5千克;生产一件B 种产品需要甲种原料2.5千克,乙种原料3.5千克,该化工厂现有的原料能否保证生产顺利进行?若能的话,有几种方案?请你设计出来.某校为了奖励在数学竞赛中获奖的学生,买了若干本课外读物准备送给他们,如果每人送3本,则还余8本;如果前面每人送5本,则最后一人得到的课外读物不足3本;设该校买了m本课外读物,有x名学生获奖,请解答下列问题:⑴用含x的代数式表示m;⑵求该校的获奖人数及所买课外读物的本数.商场出售的A型冰箱每台售价2190元,每月耗电量为1千瓦·时,B型冰箱每台售价比A 型冰箱高出10%,但每日耗电量却为0.55千瓦·时,商场将A型冰箱打折销售,如果只考虑价格与耗电量,那么至少打几折消费者购买才合算?(使用期为10年,每年365天,每千瓦·时电费按0.4元计算)某公司有员工50人,为了提高经济效益,决定引进一条新的生产线并从现有员工中抽调一部分员工到新的生产线上工作,经调查发现:分工后,留在原生产线上工作的员工每月人均产值提高40%;到新生产线上工作的员工每月人均产值为原来的3倍,设抽调x人到新生产线上工作.⑴填空:若分工前员工每月的人均产值为a元,则分工后,留在原生产线上工作的员工每月人均产值是元,每月的总产值是元;到新生产线上工作的员工每月人均产值是元,每月的总产值是元;⑵分工后,若留在原生产线上的员工每月生产的总产值不少于分工前原生产线每月生产的总产值;而且新生产线每月生产的总产值又不少于分工前生产线每月生产的总产值的一半.问:抽调的人数应该在什么范围?今年以来,广东大部分地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y(元)与用电量x(度)的函数图象是一条折线(如图所示),根据图象解下列问题:(1)分别写出当0≤x≤100和x≥100时,y与x的函数关系式;(2)利用函数关系式,说明电力公司采取的收费标准;(3)若该用户某月用电62度,则应缴费多少元?若该用户某月缴费105元时,则该用户该月用了多少度电?某高速公路收费站,有m(m>0)辆汽车排队等候收费通过.假设通过收费站的车流量(每分钟通过的汽车数量)保持不变,每个收费窗口的收费检票的速度也是不变的.若开放一个收费窗口,则需20分钟才可能将原来排队等候的汽车以及后来接上来的汽车全部收费通过;若同时开放两个收费窗口,则只需8分钟也可将原来排队等候的汽车以及后来接上来的汽车全部收费通过.若要求在3分钟内将排队等候收费的汽车全部通过,并使后来到站的汽车也随到随时收费通过,请问至少要同时开放几个收费窗口?.为了加强学生的交通安全意识,某中学和交警大队联合举行了“我当一日小交警”活动,星期天选派部分学生到交通路口值勤,协助交通警察维护交通秩序.若每一个路口安排4人,那么还剩下78人;若每个路口安排8人,那么最后一个路口不足8人,但不少于4人.求这个中学共选派值勤学生多少人?共有多少个交通路口安排值勤?为了改善城乡人民生产、生活环境,我市投入大量资金,治理竹皮河污染,在城郊建立了一个综合性污水处理厂,设库池中存有待处理的污水吨,又从城区流入库池的污水按每小时吨的固定流量增加.如果同时开动2台机组需30小时处理完污水,同时开动4台机组需10小时处理完污水.若要求5小时内将污水处理完毕,那么至少要同时开动多少台机组?.。
完整版)解不等式组计算专项练习60题(有答案)

完整版)解不等式组计算专项练习60题(有答案)1.解不等式组60题参考答案:1.解:由不等式①得2a-3x+1≥0,即x≤(2a+1)/3;由不等式②得3b-2x-16≥0,即x≤(3b-16)/2.又因为a≤4<b,所以2a+1≤9,3b-16≥8,所以x的取值范围为x≤3或x≥-11/2.2.解:由不等式①得x≤-1或x≥3;由不等式②得x≤4/3或x≥2.综合起来,x的取值范围为x≤-1或x≥3,或者4/3≤x≤2.3.解:由不等式①得x>(a+1)/2;由不等式②得x0,所以a/2>(a+1)/2,所以不等式组的解集为a/2<x<(a+1)/2.4.解:由不等式①得x≥1;由不等式②得x<3.所以不等式组的解集为1≤x<3.5.解:由不等式①得x≤-2;由不等式②得x>-3.所以不等式组的解集为-3<x≤-2.6.解:由不等式①得x>-1;由不等式②得x≤2.所以不等式组的解集为-1<x≤2.7.解:由不等式①得x≤-1;由不等式②得x≥-2.所以不等式组的解集为-2≤x≤-1.8.解:由不等式①得x>-3;由不等式②得x≤1.所以不等式组的解集为-3<x≤1.9.解:由不等式①得x>-1;由不等式②得x≤4.所以不等式组的解集为-1<x≤4.10.解:由不等式①得x-3.所以不等式组的解集为-3<x<2.11.解:由不等式①得x≥1;由不等式②得x<3.所以不等式组的解集为1≤x<3.1.由不等式组的①得x≥-1,由不等式组的②得 x<4,因此不等式组的解集为 -1≤x<4.2.由不等式①得x≤3,由不等式②得 x>0,因此不等式组的解集为0<x≤3.3.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.4.原不等式组可化为:x+45,x<-1.因此不等式组的解集为-3<x≤3.5.解不等式①得 x<5,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<5.6.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.7.解不等式①得x≥-1,解不等式②得 x<3,因此不等式组的解集为 -1≤x<3.8.解不等式①得 x<1,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<1.9.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.10.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.11.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.12.解不等式组的①得-∞<x<1,因为②中的不等式没有解,所以不等式组的解集为 -∞<x<1.13.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.14.原不等式组可化为:x>-3,x≤3.因此不等式组的解集为-3<x≤3.15.解不等式组的①得 x<1,因为②中的不等式没有解,所以不等式组的解集为 -∞<x<1.16.解不等式①得 x<2,解不等式②得x≥-1,因此不等式组的解集为 -1≤x<2.17.解不等式①得x≥1,解不等式②得1≤x<4,因此不等式组的解集为1≤x<4.18.解不等式①得x≥-1,解不等式②得 x<3,因此不等式组的解集为 -1≤x<3.19.解不等式①得 x<1,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<1.20.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.21.不等式①的解集为x≥1,不等式②的解集为 x<4,因此原不等式的解集为1≤x<4.22.解不等式①得 x<0,解不等式②得x≥3,因此原不等式无解。
列不等式(组)解应用题专项练习

第三讲 列不等式(组)解应用题专项练习1.某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.(1)求该校八年级学生参加社会实践活动的人数;(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元.根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金.解:(1)设单独租用35座客车需x 辆,由题意得:3555(1)45x x =--,解得:5x =.∴35355175x =⨯=(人).答:该校八年级参加社会实践活动的人数为175人. ··································· 3分(2)设租35座客车y 辆,则租55座客车(4y -)辆,由题意得:3555(4)175320400(4)1500y y y y +-⎧⎨+-⎩≥≤, ······························· 6分 解这个不等式组,得111244y ≤≤. ∵y 取正整数,∴y = 2.∴4-y = 4-2 = 2.∴320×2+400×2 = 1440(元).所以本次社会实践活动所需车辆的租金为1440元. ································· 8分2.某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?(2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?(3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?解:(1)设购买甲种鱼苗x 尾,则购买乙种鱼苗(6000)x -尾,由题意得:0.50.8(6000)3600x x +-= ………………………………………(1分)解这个方程,得:4000x =∴60002000x -=答:甲种鱼苗买4000尾,乙种鱼苗买2000尾. …………………(2分)(2)由题意得:0.50.8(6000)4200x x +-≤ ……………………………(3分) 解这个不等式,得: 2000x ≥即购买甲种鱼苗应不少于2000尾. ………………………………(4分)(3)设购买鱼苗的总费用为y ,则0.50.8(6000)0.34800y x x x =+-=-+ (5分)由题意,有909593(6000)6000100100100x x +-≥⨯………………………(6分) 解得: 2400x ≤…………………………………………………………(7分) 在0.34800y x =-+中 ∵0.30-<,∴y 随x 的增大而减少∴当2400x =时,4080y =最小.即购买甲种鱼苗2400尾,乙种鱼苗3600尾时,总费用最低. (9)3.为支持玉树搞震救灾,某市A 、B 、C 三地现分别有赈灾物资100吨、100吨、80吨,需全部运往玉树重灾地区D 、E 两县,根据灾区情况,这批赈灾物资运往D 县的数量比运往E 县的数量的2倍少20吨。
人教版七年级下册数学不等式与不等式组应用题训练(word,含答案)

人教版七年级下册数学不等式与不等式组应用题训练1.列方程组或不等式解决问题:2022年北京冬奥会、冬残奥会已圆满结束,活泼敦厚的“冰墩墩”,喜庆祥和的“雪容融”引起广大民众的喜爱.王老师想要购买两种吉祥物作为本次冬奥会的纪念品,已知购买2件“冰墩墩”和1件“雪容融”共需150元,购买3件“冰墩墩”和2件“雪容融”共需245元.(1)求“冰墩墩”和“雪容融”的单价;(2)学校现需一次性购买上述型号的“冰墩墩”和“雪容融”纪念品共100个,要求购买的总费用不超过5000元,则最多可以购买多少个“冰墩墩”?2.为支援上海抗击新冠肺炎,甲地捐赠多批救援物资并联系了一家快递公司进行运送.快递公司准备安排A、B两种车型把这批物资从甲地快速送到上海.其中,从甲地到上海,A型货车1辆、B型货车1辆,一共需补贴油费1000元;A型货车10辆、B 型货车6辆,一共需补贴油费8400元.(1)从甲地到上海,A、B两种型号的货车,每辆车需补贴的油费分别是多少元?(2)如果需派出20辆车,并且预算油费补贴不超过9600元,那么该快递公司至多能派出几辆A型货车?3.开学前夕,某书店计划购进A、B两种笔记本共350 本.已知A种笔记本的进价为12 元/本,B种笔记本的进价为15 元/本,共计4800 元.(1)请问购进了A种笔记本多少本?(2)在销售过程中,A、B两种笔记本的标价分别为20元/本、25元/本.受疫情影响,两种笔记本按标价各卖出m本以后,该店进行促销活动,剩余的A种笔记本按标价的七折全部售出,剩余的B种笔记本按成本价清货,若两种笔记本的总利润不少于2348元,请求出m的最小值.4.抗击新型冠状肺炎疫情期间,84消毒液和酒精都是重要的防护物资.某药房根据实际需要采购了一批84消毒液和酒精,共花费11000元,84消毒液和酒精的进价和售价如下:(1)该药房销售完这批84消毒液和酒精后共获利5400元,则84消毒液和酒精各销售了多少瓶?(2)随着疫情的发展,结合药房实际,该药房打算用不超过6600元钱再次采购84消毒液和酒精共300瓶,已知84消毒液和酒精价格不变,则第二批最多采购84消毒液多少瓶?5.小玉计划购买A、B两种饮料,若购买8瓶A种饮料和5瓶B种饮料需用220元;若购买4瓶A种饮料和6瓶B种饮料需用152元.(1)求每瓶A种饮料和B种饮料各多少元;(2)小玉决定购买A种饮料和B种饮料共15瓶,总费用不超过260元,那么最多可以购买多少瓶A种饮料?6.小明家新买了一套住房,打算装修一下,春节前住进去.现有甲、乙两家装修公司可供选择,这两家装修公司提供的信息如下表所示:若设需要x天装修完毕,请解答下列问题:(1)请分别用含x的代数式,写出甲、乙两家公司的装修总费用;(2)当装修天数为多少时,两家公司的装修总费用一样多?(3)根据装修天数x讨论选择哪家装修公司更合算(提示:结合(2)中的结论进行分类解决问题).7.每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元.(1)求甲、乙两种型号设备的价格;(2)公司决定购买甲、乙两种型号的设备共10台,且该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司甲种型号的设备至多购买几台?8.为庆祝“元旦”,光明学校统一组织合唱比赛,七、八年级共92人(其中七年级的人数多于八年级的人数,且七年级的人数不足90人)准备统一购买服装参加比赛.如表是某服装厂给出服装的价格表:(1)如果两个年级分别单独购买服装一共应付5000元,求七、八年级各有多少学生参加合唱比赛;(2)如果七年级参加合唱比赛的学生中,有10名同学抽调去参加绘画比赛,不能参加合唱比赛,请你为两个年级设计一种最省钱的购买服装方案.9.某电器超市销售每台进价分别为140元、100元的A、B两种型号的电风扇,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入一进货成本)(1)求A、B两种型号的电风扇的销售单价.(2)若超市准备用不多于6500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过2850元的目标?若能,请给出相应的采购方案:若不能,请说明理由.10.某商店欲购进A、B两种商品,若购进A种商品5件和B种商品4件需300元;购进A种商品6件和B种商品8件需440元.(1)A、B两种商品每件的进价分别为多少元?(2)若该商店A种商品每件的售价为48元,B种商品每件的售价为31元,该商店准备购进A、B两种商品共50件,且这两种商品全部售出后总获利不低于344元,则至少购进多少件A种商品?11.学校近期举办了一年一度的经典诵读比赛.某班级因节目需要,须购买A、B两种道具.已知购买1件A道具比购买1件B道具多10元,购买2件A道具和3件B道具共需要45元.(1)购买一件A道具和一件B道具各需要多少元?(2)根据班级情况,需要这两种道具共60件,且购买两种道具的总费用不超过620元.求道具A最多购买多少件?12.对于企业来说:科学技术永远是第一生产力,在长沙市里程最长、站点最多的地铁6号线建设过程中,某知名运输集团承包了地铁6号线多标段的土方运输任务,该集团为了出色完成承接任务,拟派出该集团自主研发的A、B两种新型运输车运输土方.已知4辆A型运输车与3辆B型运输车一次共运输土方64吨,2辆A型运输车与4辆B型运输车一次共运输土方52吨.(1)请问一辆A型运输车和一辆B型运输车一次各运输土方多少吨?(2)该运输集团决定派出A、B两种型号新型运输车共18辆参与运输土方,若每次运输土方总量不小于169吨,且B型运输车至少派出4辆,则有哪几种派车方案?13.某商店欲购进A、B两种商品,若购进A种商品5件和B种商品4件需300元;若购进A种商品6件和B种商品8件需440元.(1)求A、B两种商品每件的进价分别为多少元?(2)商店准备用不超过1615元购进50件这两种商品,求购进A种商品最多是多少件?14.某超市共用24000元同时购进甲、乙两种型号书包各200个,购进甲型号书包40个比购进乙型书包30个少用100元.(1)求甲、乙两种型号书包的进价各为多少元?(2)若超市把甲、乙两种型号书包均按每个90元定价进行零售,同时为扩大销售,拿出一部分书包按零售价的8折进行优惠销售.商场在这批背包全部售完后,若总获利不低于10200元,则超市用于优惠销售的书包数量最多为多少个?15.某工艺品店购进A,B两种工艺品,已知这两种工艺品的单价之和为200元,购进2个A种工艺品和3个B种工艺品需花费520元.(1)求A,B两种工艺品的单价;(2)该店主欲用9600元用于进货,且最多购进A种工艺品36个,B种工艺品的数量不超过A种工艺品的2倍,则共有几种进货方案?16.每年的4月22日是世界地球日.某校为响应“携手为保护地球投资”的号召计划购入,A B两种规格的分类垃圾桶,用于垃圾分类.若购买A种垃圾桶30个和B种垃圾桶20个共需1020元;若购买A种垃圾桶50个和B种垃圾桶40个共需1860元.(1),A B两种垃圾桶的单价分别是多少元?(2)若该校最多有4360元用于购买这两种规格的垃圾桶共200个,则B种垃圾桶最多可以买________个.17.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B 商品共用了880元.(1)A,B两种商品的单价分别是多少元?(2)已知该商店购买A,B两种商品共30件,要求购买B商品的数量不高于A商品数量的2倍,且该商店购买的A,B两种商品的总费用不超过276元,那么该商店有几种购买方案?18.每年一度的中考牵动着数万家长的心,为了给考生一个良好的环境,某市教委规定每个考场安排考生数是固定的人数,该市A 区的9000 名考生安排的考场数比B 区3000人安排的考场数多200个.(1)求每个考场安排固定考生的人数;(2)该市C区共有可作为考场的大小教室共300 间,由于今年疫情影响,该市教委要求大教室按原固定人数的80%安排考生,小教室按原固定人数的50%安排考生,若该市C 区共有考生6300 人,则至少需要有多少间大教室.19.2022年北京冬奥会吉祥物冰墩墩和雪容融在一开售时,就深受大家的喜欢.某供应商今年2月购进一批冰墩墩和雪容融,已知一个冰墩墩的进价比一个雪容融的进价多40元,并且购买20个冰墩墩和30个雪容融的价格相同.(1)问每个冰墩墩和雪容融的进价分别是多少元?(2)根据市场实际,供应商计划用20000元购进这两种吉祥物200个,则他本次采购时最多可以购进多少个冰墩墩?20.某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料.生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克.经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.已知工厂用于购买甲、乙两种材料的资金不能超过10000元,且生产B产品要超过38件,问有哪几种符合条件的生产方案?参考答案:1.(1)“冰墩墩”和“雪容融”的单价分别为55元,40元(2)最多可以购买66个“冰墩墩”2.(1)每辆A型货车补贴油费600元,每辆B型货车补贴油费400元.(2)该快递公司至多能派出8辆A型货车.3.(1)购进了A种笔记本150本;(2)m的最小值128.4.(1)84消毒液销售了200瓶,酒精销售了300瓶;(2)120瓶5.(1)每瓶A种饮料20元,每瓶B种饮料12元(2)10瓶6.(1)甲公司的总费用为(900x+2700)元,乙公司的总费用为(960x+1500)元;(2)当装修天数为20天时,两家公司的装修总费用一样多;(3)当x<20时,乙装修公司更合算;当x=20时,两家装修公司一样;当x>20时,甲装修公司更合算.7.(1)甲、乙两种型号设备每台的价格分别为12万元和10万元(2)至多购买5台8.(1)七年级52人,八年级40人;(2)两个年级一起买91套时最省钱;9.(1)A、B两种型号的电风扇的销售单价分别为200元和150元(2)A种型号的电风扇最多能采购37台(3)能实现利润超过2850元的目标,相应方案有两种:方案一:购买A种型号的电风扇36台,购买B种型号的电风扇14台;方案二:购买A种型号的电风扇37台,购买B种型号的电风扇13台10.(1)A种商品每件的进价为40元,B种商品每件的进价为25元(2)至少购进22件A种商品11.(1)购买1件A道具需要15元,1件B道具需要5元(2)道具A最多购买32件12.(1)一辆A型运输车一次运土10吨,一辆B型运输车一次运土8吨(2)有两种派送方案,方案一:派出A型号的新型运输车13辆,B型号的新型运输车5辆;方案二:派出A型号的新型运输车14辆,B型号的新型运输车4辆.13.(1)A种商品每件进价40元,B种商品每件进价25元(2)24件14.(1)A、B两种型号书包的进货单价各为50元、70元;(2)商场用于优惠销售的书包数量为100个.15.(1)A种工艺品的单价为80元,B种工艺品的单价为120元(2)共有3种进货方案16.(1)A种垃圾桶的单价熟练掌握18元,B种垃圾桶的单价是24元.(2)12617.(1)A种商品的单价为16元、B种商品的单价为4元(2)有四种方案,方案一:购买A商品的件数为10件,购买B商品的件数为20件;方案二:购买A商品的件数为11件,购买B商品的件数为19件;方案三:购买A商品的件数为12件,购买B商品的件数为18件;方案四:购买A商品的件数为13件,购买B商品的件数为17件.18.(1)每个考场安排固定考生的人数为30人;(2)至少需要有200间大教室.19.(1)今年2月第一周每个冰墩墩的进价为120元,每个雪容融的进价为80元(2)最多可以购进100个冰墩墩20.共有如下四种方案:A种21件,B种39件;A种20件,B种40件;A种19件,B种41件;A种18件,B种42件。
七年级数学不等式应用题专项练习(含答案解析)

七年级数学不等式应用题专项练习(含答案解析)1. 两名教师带学生去旅游,联系了两家标价相同的旅游公司。
甲公司优惠条件是1名教师全额收费,其余7.5折收费;乙公司的优惠条件是全部师生8折收费。
问当学生人数超过多少人时,甲旅游公司比乙旅游公司更优惠?2. 一位老师所教班级的学生人数,一半学数学,四分之一学音乐,七分之一学外语,还剩不足6位学生在玩足球。
求这个班有多少位学生?3. 某工程队要招聘甲、乙两种工人150人,甲、乙两种工种的月工资分别为600元和1000元。
现要求乙种工种的人数不少于甲种工种人数的2倍。
问甲、乙两种工种各招聘多少人时,可使得每月所付工资最少?4. 某商店以每辆300元的进价购入200辆自行车,并以每辆400元的价格销售。
两个月后自行车的销售款已超过这批自行车的进货款。
问这时至少已售出多少辆自行车?5. 某校为奖励在数学竞赛中获奖的学生,买了若干本课外读物准备送给他们。
如果每人送3本,则还余8本;如果前面每人送5本,则最后一人得到的课外读物不足3本。
设该校买了m本课外读物,有x名学生获奖。
请解答下列问题:(1)用含x的代数式表示m;(2)求出该校的获奖人数及所买课外读物的本数。
6. 某果品公司要请汽车运输公司或火车货运站将60t水果从A地运到B地。
已知汽车和火车从A地到B地的运输路程都是Skm,两家运输单位除都要收取运输途中每吨每小时5元的冷藏费用外,其他收取的费用和有关运输资料由表列出。
问:(1)分别写出这两家运输单位运送这批水果所要收取的总费用y1元和y2元(用含S的式子表示);(2)为减少费用,当s=100km时,你认为果品公司应该选择哪一家运输单位更为合算?7. 用甲、乙两种原料配制成某种果汁,已知这两种原料的维生素C的含量及购买这两种原料的价格如表。
现制作这种果汁200kg,要求至少含有52,000单位的维生素C。
试写出所需甲种原料的质量x(kg)应满足的不等式。
(2)在方案一中果农应付运输费:5*2000+5*1300=元,在方案二中果农应付运输费:6*2000+4*1300=元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学第九章列不等式解应用题专项训练
1、某化工厂现有甲种原料290千克,乙种原料212千克,计划利用这两种原料生产A、B两种产品共80件,生产一件A产品需要甲种原料5千克,乙种原料1.5千克,生产成本是120元;生产一件B产品需要甲种原料2.5千克,乙种原料3.5千克,生产成本是200元。
(1)该化工厂现有原料能否保证生产?若能的话,有几种生产方案?请设计出来。
(2)试分析你设计的哪种生产方案总造价最低?最低造价是多少?
2、为了保护环境,某企业决定购买10台污水处理设备,现有A、B两种型号的设备,其中
(1)请你设计该企业有几种购买方案;
(2)若企业每月产生的污水量为2040吨,为了节约资金,应选择哪种购买方案;
(3)在第(2)问的条件下,若每台设备的使用年限为10年,污水厂处理污水费为每吨10元,请你计算,该企业自己处理污水与将污水排到污水厂处理相比较,10年节约资金多少万元?(注:企业处理污水的费用包括购买设备的资金和消耗费)
3、我市一山区学校为部分家远的学生安排住宿,将部分教室改造成若干间住房. 如果每间住5人,那么有12人安排不下;如果每间住8人,那么有一间房还余一些床位,问该校可能有几间住房可以安排学生住宿?住宿的学生可能有多少人?
4、某园林的门票每张10,一次使用。
考虑到人们的不同需求,也为了吸收更多的少游客,该园林除保留原有的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票从购买日起,可供持票者使用一年)。
年票分A、B、C三类:A类年票每张120元,持票者是入该园林时,无需再购买门票;B类门票每张60元,持票者进入该园林时,需再购买门票,每次2元;C类门票每张40元,持票者进入该园林时,需再购买门票,每次3元。
(1)如果您只选择一种购买门票的方式,并且您计划在一年中花80元在该园林的门票上,试通过计算,找出可使进入该园林的次数最多的购票方式。
(2)求一年中进入该园林至少超过多少次时,购买A类年票比较合算。
5、小王家里要装修,他去商店买灯,商店里有100瓦的白炽灯和40瓦的节能灯,它们的单价分别为2元和32元。
经了解知这两种灯的照明效果和使用寿命都一样。
已知小王家所在地的电价为每度0.5元。
请问当这两灯的使用寿命超过多长时间时,小王选择节能灯才合算?[用电量(度)=功率(千瓦)×时间(时)。
6、现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂在A、B两种不同规格的货车厢共40节,使用A型车厢每节费用为6000元,使用B型车厢每节费用为8000元。
(1)设运送这批货物的总费用为y万元,这列货车挂A型车厢x 节,试定出用车厢节数x表示总费用y的公式。
(2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节B型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?
7、为了增加农民收入,村委会成立了蘑菇产销联合公司,小明家是公司成员之一,
他家五月份收获干蘑菇42.5kg,干香菇35.5kg。
按公司收购要求,需将两种蘑菇包装成简装和精装两种型号的盒式装蘑菇共60盒卖给公司。
设包装简装型的盒数为x盒,两种型号的盒装蘑菇可获得的总利润为y(元)。
包装要求及每盒获得
(1
几种包装方案可供选择?
8、某城市平均每天产生垃圾700吨,由甲、乙两个垃圾处理厂处理,已知甲厂每小时处理垃圾55吨,需费用550元;乙厂每小时可处理垃圾45吨,需费用490元。
(1)甲、乙两厂同时处理该城市的垃圾,每天需要几小时完成?(2)如果规定该城市每天用于处理垃圾的费用不得超过7370元,甲厂每天处理垃圾至少需要多少小时?
9、我市某商场A型冰箱的售价是2190元,每日耗电量为1千瓦.时,最近商场又进回一批B型冰箱,其售价比A型冰箱高出10%,但每日耗电量却为0.55千瓦,为了减少库存,商场决定对A型冰箱降价销售,请解答下列问题:(1)已知A型冰箱的进价为1700元,商场为保证利润率不低于3%,试确定A型冰箱的降价范围。
(2)如果只考虑价格与耗电量,那么些商场将A型冰箱的售价至少打几折时,消费者购买A型冰箱合算?(两种冰箱的使用期均为10年,每年365天,每千瓦.时电费按0.4元计算)10、某城市为开发旅游景点,需要对古运河重新设计,加以改造,现需要A、B 两种花砖共50万块,全部由某砖瓦厂完成此项任务。
该厂现有甲种原料180万千克,乙种原料145万千克,已知生产1万块A砖,用甲种原料4.5万千克,乙种原料1.5万千克,造价1.2万元;生产1万块B砖,用甲种原料2万千克,乙种原料5万千克,造价1.8万元。
(1)利用现有原料,该厂能否按要求完成任务?若能,按A、B两种花砖的生产块数,有哪几种生产方案?请你设计出来(以万块为单位且取整数);
(2)试分析你设计的哪种生产方案总造价最低?最低造价是多少?
11、修筑高速公路经过某村,需搬迁一批农户,为了节约土地资源和保持环境,政府统一规划搬迁建房区域,规划要求区域内绿色环境占地面积不得高于区域总面积的20%,若搬迁农民建房每户占地150m2,则绿色环境面积还占总面积的40%;政府又鼓励其他有积蓄的农户到规划区域建房,这样又有20户加入建房,若仍以每户占地150m2计算,则这时绿色环境面积只占总面积的15%,为了符合规划要求,又需要退出部分农户。
问:(1)最初需搬迁的农户有多少户?政府规划的建房区域总面积是多少?(2)为了保证绿色环境占地面积不少于区域总面积的20%,至少需要退出农户几户?
12、某次篮球联赛的常规赛中,雄狮队与猛虎队要争夺一个季后赛的出线权,雄狮队目前的战绩是18胜12负,后面还要比赛6场(其中包括再与猛虎队比赛一场);猛虎队目前16胜15负,后面还要比赛5场。
(1)为确保出线,雄狮队在后面的比赛中至少要胜多少场?
(2)如果猛虎队在后面的比赛中3胜(包括胜雄狮队1场)2负,那么雄狮队在后面的比赛中至少要胜几场才能确保出线?。