人教版九年级数学上册正多边形和圆

合集下载

人教版九年级数学上册《第二十四章圆24.3正多边形和圆》教学设计

人教版九年级数学上册《第二十四章圆24.3正多边形和圆》教学设计

人教版九年级数学上册《第二十四章圆24.3正多边形和圆》教学设计一. 教材分析人教版九年级数学上册《第二十四章圆24.3正多边形和圆》的内容包括正多边形的定义、性质和圆的定义、性质。

本章节的目的是让学生理解正多边形和圆的关系,掌握正多边形的计算方法,以及了解圆的性质和应用。

本节课的教学内容是24.3正多边形和圆,主要包括正多边形的定义、性质和圆的定义、性质。

二. 学情分析九年级的学生已经掌握了基本的代数和几何知识,对于图形的理解和计算能力有一定的基础。

但是,对于正多边形和圆的关系,以及圆的性质和应用可能还存在一定的困难。

因此,在教学过程中,需要引导学生通过观察、操作、思考、交流等活动,自主探索正多边形和圆的性质,提高他们的空间想象能力和思维能力。

三. 教学目标1.知识与技能:使学生掌握正多边形的定义、性质,理解圆的定义、性质,能够运用正多边形和圆的知识解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。

四. 教学重难点1.重点:正多边形的定义、性质,圆的定义、性质。

2.难点:正多边形和圆的关系,圆的性质和应用。

五. 教学方法1.情境教学法:通过实物、图片、几何画板等直观教具,引导学生观察、操作、思考,激发学生的学习兴趣。

2.问题驱动法:提出问题,引导学生思考,激发学生的求知欲。

3.合作学习法:学生进行小组讨论,培养学生的团队合作意识和交流能力。

4.归纳总结法:引导学生通过总结归纳,形成系统的知识结构。

六. 教学准备1.教学课件:制作精美的课件,包括图片、几何画板等直观教具。

2.教学素材:准备相关的实物、图片等教学素材。

3.教学用具:准备黑板、粉笔、直尺、圆规等教学用具。

七. 教学过程1.导入(5分钟)利用实物、图片等教学素材,引导学生观察正多边形和圆的实例,激发学生的学习兴趣。

人教版九年级数学上册正多边形和圆

人教版九年级数学上册正多边形和圆

24.3 正多边形和圆
二、正多边形的有关计算
例 有一个亭子,它的地基是半径为 4 m 的正六边形,求地基的周长和 面积 ( 结果保留小数点后一位 ).
F 抽象成
A
E
O
D
B PC
24.3 正多边形和圆
解:过点 O 作 OP⊥BC 于 P.
∵OB = OC,∠BOC = 60°,
∴BC = OB = 4 m,地基周长 l = 6×4 = 24 (m).

Rt△OPB
中,OB
=
4
m,PB
=
BC 2
4 2
2(m),
利用勾股定理,可得边心距 r 42 22 2 3(m).
亭子地基的面积
S 1 l r 1 24 2 3 41.6(m2 ).
2
2
F
E
A
O
D
4m
r
B PC
24.3 正多边形和圆
正n边形的一个内角的度数是多少? 中心角呢?正多边形的中心角与外角 的大小有什么关系?
些弧,就可以作出这个圆的
∴五边形ABCDE是⊙O的内接正五边形 内接正多边形,这个圆就是
⊙O是正五边形ABCDE的外接圆
这个正多形的外接圆.
24.3 正多边形和圆
归纳
A
G D
正多边形的外接圆和内切圆的公共圆心,
E
B 叫做正多边形的中心.
R
O
外接圆的半径叫做正多边形的半径.
H
r
F
C
内切圆的半径叫做正多边形的边心距.
24.3 正多边形和圆
3. 如图,已知点 O 是正六边形 ABCDEF 的对称中心,G、H 分别是
AF、BC 上的点,且 AG = BH. (1) 求∠FAB 的度数;

人教版九年级数学上册第24章 圆3 正多边形和圆

人教版九年级数学上册第24章 圆3 正多边形和圆

后千余年中国圆周率计算在世界的领先地位.
如图,要拧开一个边长为6cm的正六边形螺帽,扳手张开的开
口至少是多少?你能想办法知道吗?
你能举出来生活中常见的正多边形吗?
自主探究
1.请同学们阅读课本105页.
①如果将圆n等分,依次连接各分点得到一个n边形,这个n边形一
定是正n边形吗?(一定是)
②填写下表:
正多边形的有关计算)
中心
正多边形
的对称性
正多边形的
有 关 概 念
半径
边心距
中心角
正多边形
的性质
正多边形的
有 关 计 算
添加辅助线的方法:
连半径,作边心距
【教材习题】完成课本108-109页习题1,4,5,6题.
【作业本作业】完成 相应练习.
【实践性作业】从家中找一枚一元硬币,测量它的直径,
则用它能完全覆盖住的正方形的边长最大是多少?
解: (1)如答图,连接OC、OD,作 ⊥ 于H,
∵⊙O的周长为8πcm,∴易得 = .
∵六边形ABCDEF是正六边形, ∴ ∠ = °,又∵ ⊥ ,




∴ ∠ = ∠ = °, ∴ = = ,
∴ = − = .∴圆心O到CD的距离为 .
例4:如题图,⊙O的周长为8πcm,正六边形ABCDEF内接于⊙
O.
(2)求正六边形ABCDEF的面积.
解: ∵ = ,∴易得 = .


∴正六边形ABCDEF的面积 = × × ×
= .
本节课我们学习了哪些知识?
(正多边形的有关概念;正多边形的画法;
例1:如果一个正多边形的中心角为72°,那么这个正多边

人教版数学九年级上册24.3.2《正多边形和圆》教案

人教版数学九年级上册24.3.2《正多边形和圆》教案

人教版数学九年级上册24.3.2《正多边形和圆》教案一. 教材分析《正多边形和圆》是人民教育出版社出版的数学九年级上册第24章第三节的内容。

本节内容主要介绍了正多边形的定义、性质以及与圆的关系。

通过学习正多边形和圆,学生能够理解圆的定义,掌握圆的性质,并能够运用圆的知识解决实际问题。

二. 学情分析九年级的学生已经掌握了多边形的基本概念和性质,具备一定的逻辑思维能力。

但是对于正多边形和圆的关系的理解可能存在一定的困难。

因此,在教学过程中,需要通过实例和图形的演示,帮助学生建立直观的认识,引导学生主动探究正多边形和圆的性质。

三. 教学目标1.知识与技能:–能够理解正多边形的定义和性质。

–能够理解圆的定义和性质。

–能够运用正多边形和圆的知识解决实际问题。

2.过程与方法:–通过观察和操作,培养学生的观察能力和动手能力。

–通过小组合作,培养学生的合作能力和沟通能力。

3.情感态度与价值观:–培养学生对数学的兴趣和好奇心。

–培养学生的自主学习能力和解决问题的能力。

四. 教学重难点•正多边形的定义和性质。

•圆的定义和性质。

•正多边形和圆的关系的理解。

五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究正多边形和圆的性质。

2.通过实例和图形的演示,帮助学生建立直观的认识。

3.采用小组合作的学习方式,培养学生的合作能力和沟通能力。

六. 教学准备1.准备相关的图形和图片,用于演示和解释正多边形和圆的性质。

2.准备练习题和实际问题,用于巩固和拓展学生的知识。

七. 教学过程1.导入(5分钟)–利用图片和实例,引导学生回顾多边形的基本概念和性质。

–提出问题,引导学生思考正多边形和圆的关系。

2.呈现(15分钟)–通过图形和实例,展示正多边形的定义和性质。

–解释正多边形和圆的关系,引导学生理解圆的定义和性质。

3.操练(15分钟)–学生分组合作,进行实际操作,探究正多边形和圆的性质。

–教师引导学生进行讨论和交流,解答学生的疑问。

人教版初中九年级上册数学课件 《正多边形和圆》圆

人教版初中九年级上册数学课件 《正多边形和圆》圆
18
解:要使△PCD 的周长最小,即 PC+PD 的值最小.根
据正多边形的性质,得点 C 关于 BE 的对称点为点 A,连接 AD
交 BE 于点 P,那么有 PC+PD=AD 最小.易知四边形 ABCD
为等腰梯形,∠BAD=∠CDA=60°.作 BM⊥AD 于点 M,CN
⊥AD 于点 N.∵AB=2,∴AM=12AB=1,∴DN=AM=1,∴
能超过( A )
A.12 mm
B.12 3 mm
C.6 mm
D.6 3 mm
3.已知圆内接正三角形的面积为 3,则该圆的内接正六边形的边心距是( B )
A.2
B.1
C. 3
D.
3 2
7
4.【贵州贵阳中考】如图,正六边形 ABCDEF 内接于⊙O,连接 BD.则∠CBD 的度数是( A )
A.30° C.60°
10
8.【教材P106练习T3变式】如图,正八边 形ABCDEFGH的半径为2,求它的面积.
11
解:连接 AO、BO、CO、AC. ∵正八边形 ABCDEFGH 的半径为 2,∴AO= BO=CO=2,∠AOB=∠BOC=360°×18=45°,∴∠AOC=90°,∴AC=2 2,此时 AC⊥BO,∴S 四边形 ABCO=12BO·AC=12×2×2 2=2 2,∴正八边形 ABCDEFGH 的面 积为 2 2×4=8 2.
B.45° D.90°
8
5.如图,正六边形 ABCDEF 内接于半径为 4 的圆,则 B、E 两点间的距离为___8___.
9
6.将一个边长为 1 的正六边形补成如图所示的矩形,则矩形的周长等于 ___4_+__2__3____.(结果保留根号)
43 7.【山东滨州中考】若正六边形的内切圆半径为 2,则其外接圆半径为___3___.

人教版数学九年级上册第二十四章《24.3 正多边形和圆》课件(共19张PPT)

人教版数学九年级上册第二十四章《24.3  正多边形和圆》课件(共19张PPT)

对于一些特殊的正多边形,还可以用圆规和直尺来作图. 再如,用直尺和圆规作两条互相垂直的直径,就可以把圆四等分,从而作 出正方形.
用尺规等分圆: 用尺规作图的方法等分圆周,然后依次连接圆上各分点得到正多边形,这 种方法有局限性,不是任意正多边形都能用此法作图,这种方法从理论上 讲是一种准确方法.
2.如图,正五边形ABCDE的对角线AC和BE相交于点M. 求证:(1) AC//ED;(2) ME=AE.
如图,正五边形ABCDE的对角线AC和BE相交于点M. 求证:(1) AC//ED;(2) ME=AE.
归纳新知
正多边形 的画法
用量角器等分圆 用尺规等分圆
此方法可将圆任意n等分,所以用 该方法可作出任意正多边形,但边 数很大时,容易产生较大的误差.
度量法③:
用圆规在⊙O 上顺次截取6条长度等于半径(2 cm)的弦,连接其中的 AB, BC,CA 即可.
B
O
A
C
对于一些特殊的正多边形,还可以用圆规和直尺来作图. 例如,我们也可以这样来作正六边形.由于正六边形的边长等于半径,所以 在半径为R的圆上依次截取等于R的弦,就可以把圆六等分,顺次连接各分 点即可得到半径为R的正六边形.
课堂练习
1.画一个半径为2 cm的正五边形,再作出这个正五边形的各条对角线,画 出一个五角星.
2.面积相等的正三角形与正六边形的边长之比为
.
中考实题
1.已知⊙O如图所示. (1) 求作⊙O的内接正方形(要求尺规作图,保留作图痕迹,不写作法); (2) 若⊙O的半径为4,求它的内接正方形的边长.
此方法是一种比较准确的等分圆的方 法,但有局限性,不能将圆任意等分.
再见
合作探究
已知⊙O 的半径为 2 cm,画圆的内接正三角形. 度量法①: 用量角器或 30°角的三角板度量,使∠BAO=∠CAO=30°.

人教版初中九年级上册数学课件 《正多边形和圆形》圆课件


探究四:正多边形和圆的应用
练习:正多边形的一个外角等于20°,则这个正多边形的边数是

解:因为外角是20°,360÷20=18,则这个多边形是18边形。
【思路点拨】根据外角和的大小与多边形的边数无关,由外角和 求正多边形的边数,是常见的题目,需要熟练掌握。
探究四:正多边形和圆的应用
活动2 提升型例题
解:如图,三角形的斜边长为a,
∴两条直角边长为,1 a
2
3a 2
∴S空白=1 a 3 a 3 a2
22 4
∵AB=a,
∴OC=,3 a
2
∴S正六边形6= 1 a 3 a 3 3 a2
22
2
∴S阴影=S正六边形﹣S空3白3=a2 3 a2 5 3 a2
2
4
4
S阴影
53 4
a2
5
S空白
3a
探究四:正多边形和圆的应用
例4.如图,平面直角坐标系的原点O是正方形ABCD的中心,顶点A,B
的坐标分别为(1,1),(-1,1),把正方形ABCD绕原点O逆时针
旋转45°得正方形A′B′C′D′,则正方形ABCD与正方形A′B′C′D′重叠部分
所形成的正八边形的边长为

【思路点拨】如图,首先求出正方形的边长、对角线长;进而求出OA′ 的长;证明△A′MN为等腰直角三角形,求出A′N的长度;同理求出D′M′ 的长度,即可解决问题。
探究一:从旧知识过渡到新知识
活动1 回顾旧知
观察下列图形,从这些图形中找出相应的正多边形。
(1)正六边形;(2)正八边形;(3)等边三角形;(4)正五边形。
探究一:从旧知识过渡到新知识
活动2 整合旧知
正多边形与圆有什么关系呢?

24.3 多边形和圆 第1课时 初中数学人教版九年级上册教学课件

6
△OBC是等边三角形,从而正六边形的边长等于 它半径.
因此,亭子地基的周长 l 6 4 24(m)

解:如图,连接OB,OC.因为六边形ABCDE是正六边形,所 以它的中心角等于 360 60
6 △OBC是等边三角形,从而正六边形的边长等于它半径.
因此,亭子地基的周长 l 6 4 24(m)
边形ABCDE的 边心距 , 它是正五边形ABCDE的 内切 圆的半径
2.∠AOB叫做正五边形ABCDE的 中心 角, 它的度数是 72°.

如图,有一个亭子,它的地基是半径为4m的正六边形, 求地基的周长和面积(结果保留小数点后一位).
解:如图,连接OB,OC.因为六边形ABCDE是 正六边形,所以它的中心角等于 360 60
∴OA=OB=OC=OD.
∴正方形ABCD有一个以点O为圆 心的外接圆.
问题3
任何正多边形都有一个外接圆和内切圆
以正四边形为例,根据对称轴的性质,你能得出什么结论?
A
E
B
O
G
H
DF
C
AC是∠DAB及∠DCB的角平分线, BD是∠ABC及∠ADC的角平分线, ∴OE=OH=OF=OG.
∴正方形ABCD还有一个以点O为圆心 的内切圆.
(3)OD叫作正△ABC 边心距,它是正△ABC的 内切圆的半径
(4)∠BOC是正△ABC 中心 角,∠BOC=120 度; ∠BOD= 60 度
及时练
1.正方形ABCD的外接圆圆心O叫做正方形ABCD
的 内心 .
2.正方形ABCD的内切圆的半径OE叫
做正方形ABCD的 边心距 .
及时练
1. O是正五边形ABCDE的外接圆,弦心距OF叫正五

九年级数学人教版上册24.3正多边形和圆优秀教学案例

3.通过数学学科的学习,培养学生追求真理、勇于探索的精神,培养学生的创新意识和创新能力。
在实际教学过程中,我将以知识与技能、过程与方法、情感态度与价值观为目标,设计丰富多样的教学活动和实例,引导学生积极参与,主动探究,使学生在掌握知识的同时,也能提高自身的综合素质和能力。同时,注重因材施教,关注每个学生的个体差异,充分调动学生的积极性和主动性,使每个学生都能在数学学科的学习中得到充分的发展和提高。
2.培养学生的动手操作能力,提高学生运用数学知识解决实际问题的能力。
3.引导学生运用归纳、推理等方法,总结正多边形的性质和规律,培养学生的创新思维能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和自信心,激发学生学习数学的内在动力。
2.培养学生独立思考、合作交流的习惯,提高学生的人际沟通能力和团队合作精神。
2.组织学生进行自我评价和同伴评价,让学生了解自己的学习成果和不足之处,提高学生的自我认知和评价能力。
3.教师对学生的学习情况进行总结和评价,关注学生的个体差异,给予有针对性的指导和鼓励,激发学生的学习动力和信心。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示各种正多边形的实物图片,如正方形、正三角形等,引导学生关注正多边形在现实生活中的应用。
2.问题导向与小组合作相辅相成:在教学过程中,教师引导学生提出问题并自主探究,通过小组合作的形式进行研究讨论。这样的教学方式既培养了学生的提问意识和自主学习能力,又提高了学生的团队合作和交流沟通能力。
3.反思与评价注重个体差异:教师在教学过程中注重引导学生进行反思和评价,关注学生的个体差异,给予有针对性的指导和鼓励。这种教学方式既激发了学生的学习动力,又培养了学生的自我认知和评价能力。
2.设计一个正多边形的拼图游戏,让学生在游戏中体会正多边形的性质和特点,激发学生的学习兴趣。

人教版数学九年级上册24.3 正多边形和圆教案

3.确定教学媒体使用:为了增强教学效果,教师可以利用多媒体课件、实物模型、几何画板等教学媒体。多媒体课件可以帮助学生直观地理解圆和正多边形的相关性质;实物模型和几何画板可以让学生更好地观察和操作,提高他们的空间想象能力。
教学过程
1.导入新课
“同学们,我们今天要学习的内容是关于正多边形和圆的相关知识。在正式开始学习之前,我想请大家观察一下我们周围的物体,看看是否有圆和正多边形的影子。”
(4)让学生利用教具模型进行观察和操作,加深对正多边形和圆的理解。
(5)鼓励学生参加数学竞赛和相关活动,提高学生的数学素养。
(6)建议学生在课后进行小组讨论,共同探讨正多边形和圆在现实生活中的应用,提高合作能力。
教学反思
今天讲授的是人教版数学九年级上册第24章《正多边形和圆》,这节课是九年级数学的重要内容,也是学生对几何图形认识的一次质的飞跃。在课后,我对本节课的教学进行了深刻的反思,有以下几点体会:
然而,我也发现了一些不足之处。在教学过程中,我发现部分学生在理解圆的定义和性质时存在一定的困难。对于这部分学生,我需要采取更加直观的教学方法,如利用实物模型、几何画板等教学媒体,帮助他们更好地理解圆的相关概念。此外,在课堂互动环节,我也要注意调动每一个学生的积极性,让每一个学生都能参与到课堂讨论中来,提高他们的合作能力。
5.课堂小结
“通过本节课的学习,我们了解了正多边形和圆的定义、性质和关系。希望大家能够将这些知识运用到实际生活中,不断提高自己的数学素养。”
(教师引导学生总结本节课6.课后作业
“请大家完成课后练习第2、3题,并预习下一节课的内容。”
(教师布置课后作业,为下一节课的学习做好铺垫。)
教学方法与策略
1.选择适合教学目标和学习者特点的教学方法:本节课的教学方法主要包括讲授法、直观演示法、小组合作探究法和实践活动法。通过讲授法向学生传授圆和正多边形的基本性质,直观演示法帮助学生形成清晰的表象,小组合作探究法鼓励学生共同探讨问题,实践活动法让学生动手操作,加深对知识的理解。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学试卷
No. 41 课题:正多边形和圆预计完成时间: 20分钟
班级组号学生姓名
设计人:王长青备课组长签名级部主任审批家长签名
(A)一、基础夯实
纠错区
1. 已知正三角形的边长为23,求它的边心距、半径、周长和面积。

(B)二、巩固提高
2. 正四边形的外接圆的半径是1,求它的边心距、边长、周长和面积。

(C)三、拓展创新
3.正六边形的边心距是3,求它的半径、边长、周长和面积.
等级:整洁正确日期:月日
师生交流:
1、如果正三角形的边长为a,那么它的外接圆的周长是内切圆周长的_______倍。

2、正方形的内切圆半径为r,这个正方形将它的外接圆分割出四个阴影,其中一个阴影的面积为_________。

3、在半径为R的圆中,内接正方形与内接正六边形的边长之比为___________。

18,则它的外接圆与内切圆所围成的圆环面积为4、正六边形的面积是3
_________。

相关文档
最新文档