电力电缆技术及应用 5.2 电缆故障诊断及故障测试方法
电力电缆的故障分析及检测方法

电力电缆的故障分析及检测方法
电力电缆是输送电能的重要设备,但由于各种因素的影响,电缆故障时有发生。
及时准确地分析和检测电缆故障,对于确保电力系统的正常运行和保障供电的连续性具有重要意义。
本文将介绍电力电缆的常见故障以及故障分析和检测方法。
电力电缆的常见故障包括:短路故障、接地故障、绝缘故障和断线故障等。
电缆的短路故障是指两根或多根导体之间发生的直接连接,造成电流无法正常流通的一种故障。
造成短路故障的原因有导体间绝缘层破损、外部机械损伤等。
检测短路故障的方法主要包括电气法、机械法和红外扫描法。
电气法是通过测量电缆两端电阻差异来判断是否有短路故障;机械法是通过检查电缆表面是否有烧焦或熔化的痕迹来判断是否有短路故障;红外扫描法是通过检测电缆表面的热点来判断是否有短路故障。
电缆的绝缘故障是指电缆绝缘层发生破损或老化,导致导体之间或导体与地之间发生直接连接的一种故障。
绝缘故障的原因有环境湿度过高、绝缘材料老化等。
检测绝缘故障的方法主要包括绝缘电阻测定、绝缘材料特性测试和局部放电检测。
绝缘电阻测定是通过测量电缆绝缘电阻的大小来判断是否有绝缘故障;绝缘材料特性测试是通过测试绝缘材料的电性能来判断是否有绝缘故障;局部放电检测是通过检测电缆局部放电现象来判断是否有绝缘故障。
电力电缆的故障分析和检测方法有多种,选择合适的方法可以及时准确地判断故障原因和位置,以便及时修复和维护电缆设备,确保电力系统的正常运行。
浅谈电力电缆的故障分析及检测方法

浅谈电力电缆的故障分析及检测方法
近年来,电力电缆的故障频繁发生,给我们的生产和生活带来了很大的困扰。
对电力
电缆的故障分析及检测方法进行研究成为亟需解决的问题。
电力电缆的故障分析是找出故障原因的关键步骤。
常见的电力电缆故障有短路、断路
和绝缘老化等。
短路是由于电缆绝缘被破坏引起的,可能是由于外力破坏、湿气侵入或施
工质量不良引起的。
断路可能是由于金属导线断裂、接头松脱或金属线腐蚀等原因造成的。
绝缘老化则是由于电缆绝缘材料老化、高温或电压过高引起的。
通过对电力电缆的故障模
式进行分析,可以找出故障原因,从而采取相应的修复措施。
电力电缆的故障检测需要借助一些特定的方法和仪器。
常见的电力电缆故障检测方法
有母线阻抗法、无损检测法和红外热像仪法等。
母线阻抗法是通过测量母线的阻抗变化来
判断电缆是否存在故障,这种方法可以快速、准确地检测电缆故障。
无损检测法是通过探
头检测电缆绝缘层的电气性能来判断电缆是否存在故障,这种方法依靠仪器的高精度、高
灵敏度来实现故障的检测。
红外热像仪法是通过测量电缆表面的温度分布来判断电缆是否
存在问题,通过图像分析可以准确地找出故障位置。
不同的故障检测方法各有优劣,需要
根据实际情况选择合适的方法。
电力电缆的故障分析及检测是保障电力系统正常运行的重要环节。
只有及时发现并修
复电缆故障,才能避免电力系统的停电事故发生,保障电力供应的安全稳定。
对电力电缆
故障分析及检测方法的研究具有重要的理论和实际意义。
电缆故障测试方法及技巧

电缆故障测试方法及技巧随着城市的进展扩大,城市电网的改造,电力电缆获得了越来越广泛的应用。
但另一方面,由于电缆处在地下,消失故障很难发觉其故障点位置所在,这对电网的平平稳定运行以及供电牢靠性都带来很大的困难。
对此,我们首先分析了电力电缆故障常见原因,在此基础上,进一步总结出电力电缆常用故障检测方法。
1.电力电缆故障产生的原因(1)绝缘层老化变质:绝缘电缆长期在风吹日晒,在电的的作用下发生了老化,还要受到伴随电作用而来的化学、热和机械作用,从而使介质发生物理化学变化,使介质的绝缘性能下降。
(2)过热:电缆绝缘内部气隙游离造成局部过热,使绝缘炭化。
另外,电缆过负荷产生过热,安装于电缆密集地区、电缆沟及电缆隧道等通风不良处的电缆,穿于干燥管中的电缆及电缆与热力管道接近的部分等,都会因本身过热而使绝缘加速损坏。
(3)机械损伤:如挖掘等外力造成的损伤。
(4)护层的腐蚀:因受土壤内酸碱和杂散电流的影响,埋地电缆的铅或铝包将遭到腐蚀而损坏。
(5)绝缘受潮:中心接头或终端头在结构上不密封或安装质量不好而造成绝缘受潮。
(6)过电压:过电压重要指大气过电压和内过电压,很多户外终端接头的故障是由大气过电压引起的,电缆本身的缺陷也会导致在大气过电压的情形下发生故障。
(7)材料缺陷:电缆制造的问题,电缆附件制造上的缺陷和对绝缘材料的维护管理不善等都可能使电缆发生故障。
2.电力电缆故障性质类别的快速判别2.1电力电缆的故障分类电缆故障若按故障发生的直接原因可以分为两大类:一类为试验击穿故障;另一类为在运行中发生的故障。
若按故障性质来分,又可分为开路、低阻、高阻故障等。
开路故障:指电缆的甲端与乙端一相或者三相*断开。
低阻故障:若电缆相间或相对地绝缘电阻在100k以下的故障称为低阻故障。
高阻故障:若电缆相间或相对地故障电阻较大,以致不能接受电桥或低压脉冲法进行粗测的故障,通称为高阻故障。
它包括泄漏性高阻故障和闪络性高阻故障。
在试验过程中发生击穿的故障,其性质比较单纯,一般为一相接地,很少有三相同时在试验中接地或短路的情形,更不行能发生断线故障。
浅谈电力电缆的故障分析及检测方法

浅谈电力电缆的故障分析及检测方法电力电缆是输送大功率电能的主要设备之一,其正常运行对于电网的稳定运行和电能的供应至关重要。
电力电缆在长时间的使用过程中,由于各种原因可能会出现故障,如绝缘破损、接头接触不良等,这些故障不仅会导致电能的损失,还可能引起火灾、事故等安全隐患。
必须对电力电缆进行及时的故障分析和检测,以保证电缆线路的安全运行。
一、电力电缆的故障分析1. 接头接触不良电缆接头是连接电缆线路与设备的重要环节,其接触不良会导致电阻增加,引起局部发热,甚至引发火灾。
接头接触不良的原因有接头材质不合格、施工不规范等。
对于接触不良的故障,可以通过检测电缆接头的温升来判断是否存在故障。
2. 绝缘破损电力电缆的绝缘材料通常是聚乙烯、交联聚乙烯等,长时间的运行可能会引起绝缘老化、破损等问题。
绝缘破损会导致电缆的局部绝缘性能下降,容易形成局部放电,进一步破坏绝缘层,造成电能损失、局部发热等问题。
对于绝缘破损的故障,可以通过检测局部放电的信号来判断是否存在问题。
3. 金属外护层损伤电力电缆的金属外护层通常是铅护套、铜护套等,用于防止电缆绝缘层的机械损伤和外界环境的侵蚀。
金属外护层也可能因为外力撞击、腐蚀等原因而损伤,导致电缆的绝缘层暴露在外。
金属外护层损伤会导致电缆的绝缘层易受损,并可能引起漏电、短路等故障。
对于金属外护层损伤的故障,可以通过对电缆的外观检查和测试测量电缆的绝缘电阻来判断是否存在问题。
二、电力电缆的故障检测方法1. 红外热像仪检测红外热像仪可以通过对电力电缆进行红外辐射图像的拍摄和分析,来检测电缆的接头、绝缘破损、金属外护层损伤等故障。
因为这些故障会产生不同的温升,通过红外热像仪可以清楚地观察到故障部位的温度异常情况。
2. 局部放电检测局部放电是电力电缆存在故障时产生的,对其进行检测可以判断电缆绝缘的性能是否正常。
常用的局部放电检测方法包括超声波检测和电磁波检测。
超声波检测可以通过探测仪器发出声波信号,来判断电缆绝缘层的破损情况;电磁波检测可以通过对电缆周围的电场和磁场进行检测,来判断放电情况。
浅谈电力电缆的故障分析及检测方法

浅谈电力电缆的故障分析及检测方法电力电缆是输送电力的重要设备,起到了安全、可靠地输电的作用。
但是在使用过程中,电力电缆可能会发生各种故障,如绝缘击穿、接头失效等。
这些故障不仅会造成电力损失,还可能引发火灾、事故等安全隐患。
对电力电缆进行故障分析及检测非常重要。
对电力电缆的故障进行分析,可以从以下几个方面进行考虑。
1. 绝缘击穿:绝缘击穿是电力电缆经常发生的一种故障。
绝缘击穿通常是由于电缆绝缘材料质量不过关或者负荷过高导致的。
在分析绝缘击穿故障时,可以通过测量电缆两端的绝缘电阻来判断绝缘击穿的位置。
还可以通过红外热像仪检测绝缘部分的温度分布,找到绝缘击穿点。
2. 接头失效:接头是电缆系统中重要的连接部分,其质量将直接影响整个电力线路的安全运行。
接头失效通常是由于接头接触不良、接头存在腐蚀、绝缘材料老化等原因造成的。
在分析接头失效故障时,可以通过检查接头外观是否有异常、测量接头温度变化等方式来判断接头失效的原因。
3. 避雷器失效:避雷器是保护电力线路设备免受雷击的重要装置。
避雷器失效通常是由于避雷器内部元件烧坏、避雷器遭受雷击损坏等原因引起的。
在分析避雷器失效故障时,可以通过检查避雷器外观是否有损坏、测量避雷器的放电电压等方式来判断避雷器失效的原因。
1. 高频局放检测:高频局放检测是一种常用的电缆故障检测方法。
该方法利用电缆故障产生的高频电磁波信号,通过检测电缆局放信号的强度和频率来判断电缆是否存在故障。
2. 高压直流测试:高压直流测试是一种常用的绝缘强度检测方法。
该方法通过施加高压直流电压到电缆上,观察电流变化,从而判断电缆的绝缘状况。
3. 红外热像检测:红外热像检测是一种非接触式的故障检测方法。
该方法通过红外热像仪测量电缆表面的温度分布,从而判断电缆是否存在故障。
对电力电缆的故障进行分析及检测是确保电力线路安全运行的重要环节。
在分析故障时可以从绝缘击穿、接头失效、避雷器失效等方面考虑,并采用高频局放检测、高压直流测试、红外热像检测、介电损耗测试等方法进行检测。
浅谈电力电缆的故障分析及检测方法

浅谈电力电缆的故障分析及检测方法电力电缆作为输送电能的重要设备,在电力系统中起着至关重要的作用。
由于各种原因,电力电缆的故障问题时有发生,给电力系统的安全运行带来了不小的影响。
对电力电缆的故障分析及检测方法进行深入研究,对保障电力系统的安全运行具有重要意义。
一、电力电缆的故障类型及其原因分析电力电缆的故障类型主要包括绝缘击穿、接头故障、外部损坏和接地故障等。
而这些故障的发生往往是由于以下几个主要原因引起的:1. 材料老化。
电力电缆长期在高温、高压、高负载的环境中运行,绝缘材料容易老化,导致绝缘性能下降,从而引起绝缘故障。
2. 安装质量。
电力电缆的安装质量直接关系到其运行的安全稳定性。
如果在安装过程中存在接头接触不良、缆芯受损或外部受力过大等情况,容易引起接头故障或外部损坏。
3. 环境因素。
电力电缆长期运行在恶劣的环境中,如高温、高湿、腐蚀性气体等,容易导致电缆外屏蔽层损坏,绝缘老化等问题。
4. 施工质量。
电力电缆的施工质量直接关系到电缆的运行稳定性,如果施工质量不合格,容易导致电缆接头不牢固,绝缘受损等问题。
二、电力电缆故障的检测方法1. 绝缘测试。
绝缘测试是用来检测电力电缆的绝缘性能是否符合要求的方法。
常用的绝缘测试仪器有绝缘电阻测试仪、绝缘耐压测试仪等。
通过对电力电缆的绝缘电阻和绝缘强度进行测试,可以及时发现电缆绝缘老化或击穿等问题。
2. 介质损耗测试。
介质损耗测试是用来检测电力电缆介质性能的方法。
通过测试电力电缆的介质损耗因数,可以了解电缆的绝缘状况和绝缘材料的损耗情况。
3. 火花测试。
火花测试是通过施加高电压,在电力电缆接头或终端上产生放电火花,通过火花的情况来判断电缆接头及终端的绝缘性能。
这种方法可以有效地检测出电缆接头及终端的绝缘状态是否正常。
4. 压力测试。
压力测试是通过施加高压气体或液体,将电力电缆充满,然后进行一定时间的压力保持测试,通过测试结果来判断电力电缆外屏蔽层是否受损。
电力电缆的故障分析及检测方法
电力电缆的故障分析及检测方法电力电缆是电力系统中不可或缺的重要组成部分,用于输电、配电和电气设备间的连接。
然而,由于各种因素的影响,电力电缆在运行过程中可能会发生故障,进而影响电力系统的可靠性和经济性。
因此,对电力电缆的故障分析和检测显得尤为重要。
一、电力电缆的故障类型1、绝缘老化。
由于电力电缆在运行过程中长期受到电场、热场、机械应力和环境气氛的影响,导致电缆绝缘老化,绝缘性能下降,严重时会发生闪络、击穿等故障。
2、接头故障。
电缆接头是电力电缆传导电能的关键部位,接头绝缘处理不良、接触面积不足、接触电阻过大等因素都会导致接头故障。
3、短路和开路。
电缆短路指电缆两个或两个以上导体之间的直接接触,导致电流异常增加,严重时可能会造成电缆烧毁;电缆开路则指电缆导体之间断开,电流无法流通。
4、外力损伤。
电力电缆在架空线路、沟槽、隧道等地方易受到机械损伤,导致电缆绝缘破损,继而引发故障。
1、绝缘电阻测量。
利用万用表或绝缘电阻测试仪,测量电缆的绝缘电阻,在比较前后差异的基础上判断电缆绝缘老化程度。
2、交流耐压试验。
将电缆暂时加高电压,观察电缆是否会发生闪络、击穿等异常现象,判断电缆绝缘是否正常。
3、局部放电检测。
利用局部放电检测仪器,检测电缆上是否存在断电支、铸接支、封头等接头缺陷。
4、反射式全波长光时域反射分析。
该方法可以对电缆绝缘层、金属护套等进行测量,判断是否存在裂纹、剪切、老化等缺陷。
5、能量分散谱方法。
利用该方法可以检测电缆绝缘层的质量,合格的电缆绝缘层应该无杂质、均匀、规整。
三、结语电力电缆的故障分析和检测是电力系统维护的重要一环,只有通过科学的方法和技术手段对电力电缆进行检测和维护,才能确保电力系统的正常运行和安全可靠。
浅谈电力电缆的故障分析及检测方法
浅谈电力电缆的故障分析及检测方法
电力电缆作为输电和配电系统中不可缺少的组成部分,一旦发生故障,将会对系统的正常运行和供电安全造成严重影响。
因此,对电力电缆的故障分析和检测至关重要。
一、电力电缆的故障类型
1、绝缘损坏:电缆绝缘剥落、破损、老化或水分进入绝缘层等原因导致绝缘性能下降或失效。
2、接头失效:施工过程中接头的安装质量不良、接头材料老化、接触面积过小等原因导致接头失效。
3、电缆击穿:电缆内部放电或绕组沿面闪络,形成电火花而引起电缆击穿。
4、地缆故障:电缆外护套破损、损坏或腐蚀,电缆对地绝缘性能下降或失效。
1、局部放电检测:利用UHF检测设备、数字相位计等仪器测量电力电缆中的局部放电信号,判断电缆绝缘系统的健康状态。
2、电缆故障地点检测:利用脉冲反射法、时间域反射法等技术,测量电缆中故障点的位置。
3、电缆故障类型测试:利用交流峰值电压测试、介损角测试等仪器,对电力电缆进行故障类型测试。
4、红外热像法检测:利用红外热像仪对电力电缆进行红外热像图像的采集和分析,以发现电缆故障。
1、绝缘损坏处理:对于绝缘损坏的电力电缆,应及时更换或修复绝缘层,防止其扩大。
2、接头失效处理:对于接头失效的电力电缆,应检查接头材料和接头连接处,并进行相应的修补和更换。
3、电缆击穿处理:对于发生电缆击穿的情况,应及时停止使用该电缆,并进行修复或更换。
4、地缆故障处理:对于地缆故障的电力电缆,应修补坏损的电缆护套或切掉故障部分重新接地处理。
总之,对于电力电缆的故障,应通过科学的检测方法进行诊断,并采取相应的处理措施,以保障电力系统的正常运行和供电安全。
电力电缆的故障分析及检测方法
电力电缆的故障分析及检测方法
电力电缆是输送电能的重要组成部分,若出现故障则会导致供电中断、损失等问题,因此对电力电缆的故障分析及检测十分必要。
下面介绍电力电缆故障的分类及常用的检测方法。
一、故障分类
1.绝缘故障:电缆的绝缘材料损坏或老化,导致电力泄漏、短路等问题。
2.导体故障:电缆中导体损坏、接触不良、电阻过大等问题。
3.接头故障:电缆接头制作不良、防水措施不够、温升过高等问题。
二、常用检测方法
1.局部放电检测:通过检测电缆运行过程中的局部放电信号,判断电缆的绝缘状态,以便及早判断绝缘缺陷的出现。
2.介质损耗测试:通过测试电缆内介质的损耗,判断电缆绝缘状态的好坏。
3.电容测试:通过量取电缆母线、引出线之间的电容值,推算电缆电容率,以判断电缆绝缘状态。
4.高压测试:通过施加高电压测试电缆的绝缘强度,以便检测电缆的耐压性能。
5.电缆局部放电测量:通过检测电缆中存在的局部放电,判断导体两相之间或绝缘层内存在的故障。
6.时域反射法:通过测试电缆上电磁波信号的传输速度,以检测电缆上的绝缘故障的位置。
7.绝缘电阻测量:通过测试电缆的绝缘电阻变化情况,判断电缆的绝缘状况。
总的来说,电力电缆的故障分析及检测需要多种技术手段的综合运用,只有掌握了各种故障的原因和检测方法,才能及时发现问题,保障供电的连续性和稳定性。
电力电缆的故障分析及检测方法
电力电缆的故障分析及检测方法电力电缆作为传输电力的重要设备之一,在使用过程中可能会出现故障,给供电安全带来威胁。
对电力电缆的故障分析及检测方法进行了研究,旨在提高电缆的可靠性和使用寿命。
本文将介绍电力电缆的故障分析及常用的检测方法。
一、故障分析1. 绝缘击穿:绝缘击穿是最常见的电力电缆故障之一,其原因主要有以下几点:(1)绝缘材料的老化或损坏。
(2)电缆的安装不当,造成绝缘受力过大。
(3)外界因素,如温度变化、湿度等对绝缘的影响。
2. 线芯接地:线芯接地是电缆故障中的另一个常见问题,其原因包括:(1)电缆的线芯表面受损,导致线芯与外界金属接触。
(2)电缆绝缘缺陷导致线芯绝缘击穿。
(3)电缆终端及接头存在问题。
3. 电缆温升:电缆温升是因为电缆内部电阻产生的热量无法及时散发而导致的,其原因有以下几点:(1)电缆负载过大,超过了电缆的额定容量。
(2)电缆的散热条件不好。
(3)电缆本身存在接触电阻或其他电气问题。
二、检测方法1. 绝缘电阻测量:绝缘电阻测量是评估电缆绝缘质量的主要方法。
通过将直流电压施加于待测电缆的两个导体之间,测量绝缘电阻的大小,来判断绝缘的可靠性。
2. 耐压试验:耐压试验是通过施加高电压,观察待测电缆绝缘是否能够耐受高电压的试验。
通常采用交流耐压试验和直流耐压试验两种方法。
3. 红外热像仪检测:红外热像仪可以检测电缆的温度分布情况,从而判断电缆是否存在过热问题。
通过红外热像仪的测量,可以及时找出电缆的故障点。
4. 声波检测:声波检测是利用超声波技术检测电缆的一种方法。
通过检测电缆中传导声波的变化,可以判断电缆是否存在接地、击穿等故障。
5. 直流电阻测量:直流电阻测量适用于电缆的接地故障检测。
通过测量接地电极与大地之间的电阻大小,来判断电缆的接地情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
而
- L0= L全长 Lx
所以
Lx= 2L全长/(K+1)
电缆断路故障可也用电容电桥测量,原理与上述电阻电桥类似。
5、低压脉冲法
1.适用范围 低压脉冲法主要用于测量电缆的断线,低阻短路和低阻接地故障的 距离,据统计这类故障约占电缆故障的8%。同时可用于测量电缆的长 度、波速度和识别定位电缆的中间头、T形接头等。 2.测压原理 测试时,从测试端向电缆中输入一个低压脉冲信号,该脉冲信号沿 着电缆传播,当遇到电缆中的阻抗不匹配点时,如开路点、短路点、低 阻故障点和接头点等,会产生折反射,反射波传播向测试端,被仪器记 录下来,如图5-2所示。
(4)如用摇表测得电阻很高时,无法确定故障相。此时应对电缆做 直流耐压试验,以判断电缆是否存在故障。
(5)运行故障有发生断线故障的可能,所以还应作电缆导体连续 性是否完好的检查:在一端将A、B、C三相短接(不接地),到另一端 用万能表测量各相间是否完全通路,相间电阻是否完全一致。
3、电缆故障测试的发展历程
20世纪80年代后,出现了直流闪测法和冲击闪测法,分别测试闪络 故障及高阻故障,二者均可分为电流闪测法和电压闪测法,取样参数不 同,各有优缺点,电压取样法可测率高,波形清晰易判,盲区比电流法 少一半,但接线复杂,分压过大时对人及仪器有危险。电流取样法正好 相反,接线简单,但波形干扰大,不易判别,盲区大。
4、电桥法
(a) 图5-1 电桥法测试线路的连接(a)
4、电桥法
图5-1 等效电路图(b)
4、电桥法
仔细调节R2 数值,总可以使电桥平衡,即CD间的电位差为0,无电 流流过检流计,此时根据电桥平衡原理可得:
R1,R2 为已知电阻,设:R1/R2=K ,则 R3/R4=K
4、电桥法
由于电缆直流电阻与长度成正比,设电缆导体电阻率为R0 ,L代表 电缆全长, Lx、L0 分别为电缆故障点到测量端及末端的距离,则R2可 用(L全长+L0)R0 代替,可推出:
两种方法目前是国产高阻故障测试仪的主流方法。电流、电压闪测 法基本上解决了电缆高阻故障问题,在我国电力部门应用十分广泛,且 应用经验十分丰富,但仪器有盲区,且根据测试仪器和设备的原理,波 形有时不够明显,靠人为判断,不是很准确,仪器的精度及误差相对也 较大。
3、电缆故障测试的发展历程
20世纪90年代,发明了二次脉冲法测试技术:因为低压脉冲准确易 用,结合直流高压源发射冲击闪络电压,在故障点起弧的瞬间通过内部 装置触发发射一低压脉冲,此脉冲在故障点闪络处(电弧的电阻值很低 )发生短路反射,并将波形记忆在仪器中,电弧熄灭后,复发一正常的 低压测量脉冲到电缆中,此低压脉冲在故障处(高阻)没有击穿产生通 路,直接到达电缆末端,并在电缆末端发生开路反射,将两次低压脉冲 波形进行对比较容易判断故障点(击穿点)位置。
(1)首先在任意一端用摇表测量A-地、B-地、C-地三相对地的绝缘 电阻值,测量时另外两相不接地,以判断是否为接地故障。
(2)测量各相间A-B、B-C及C-A相间的绝缘电阻,以判断有无相 间短路故障。
2、运行故障性质的判定
(3)如用摇表测得电阻很小接近于零时,则应用万用表测出各相 对地的绝缘电阻和各相间的绝缘电阻值,以区分低阻、高阻故障。一般 认为绝缘电阻值小于10倍电缆波阻抗为低阻故障,绝缘电阻值大于10倍 电缆波阻抗为高阻故障。第五章 电力电缆故障测寻
5.2 电缆故障诊断及故障测试方法
电缆发生故障后,除特殊情况可直接观察到故障点外,一般均无法 通过巡视发现,必须采用测试电缆故障的仪器进行测量来确定电缆故障 点的位置。由于电缆的故障类型很多,测寻方法也随故障性质的不同而 异。因此在故障测寻工作开始之前,准确地确定电缆故障的性质,就具 有十分重要的意义。
(1)在试验中发生击穿时:对于分相屏蔽型电缆均为一相接地; 对于统包型电缆,则应将未试相地线拆除,再进行加压,如仍发生击穿 ,则为一相接地故障,如果将未试相地线拆除后不再发生击穿,则说明 是相间故障,此时则应将未试相分别接地,以检测是哪两相之间发生短 路故障。
(2)在试验中,当电压升至某一定值时,电缆发生闪络,电压降 低后,电缆绝缘恢复,这种故障即为闪络性故障。
20世纪70年代前,世界上广泛使用电桥法及低压脉冲反射法进行电 力电缆故障测试,二者对低阻故障很准确,但对高阻故障不适用,故常 常结合燃烧降阻(烧穿)法,即加大电流将故障处烧穿使其绝缘电阻降 低,以达到可以使用电桥法或低压脉冲法测量的目的。烧穿方法对电缆 绝缘有不良影响,现已很少使用。
3、电缆故障测试的发展历程
综上所述,电缆故障测试大致可分为电桥法和脉冲法两大类。脉冲 法又分为低压脉冲法、直流高压闪络法、冲击高压闪络法、二次脉冲法 。
4、电桥法
电桥法是一种传统、经典的对低阻故障行之有效的一种方法。 电桥法操作相对简单,测试精度也较高。此法仅适用于直流电阻小 于100 Ω的低阻泄露故障,而且要求电缆必须有一根以上的好相才行。 对高阻故障,断路故障和三相均有泄露的故障电缆则无能为力。 电桥法测试线路的连接如图5-1(a)所示,将被测电缆终端故障相 与非故障相短接,电桥两臂分别接故障相与非故障相,图5-1(b)给出 了等效电路图。
根据电缆发生故障的直接原因可以分为两大类:一类为试验击穿故 障,另一类为在运行中发生的故障。
1、试验击穿故障性质的判定
在试验过程中发生击穿的故障,其性质比较简单,一般为一相、接 地或两相短路,很少有三相同时在试验中接地或短路的情况,更不可能 发生断线故障。其另一个特点是故障电阻均比较高,一般不能直接用摇 表测出,而需要借助直流耐压试验设备进行测试,其方法如下。
2、运行故障性质的判定
运行电缆故障的性质和试验击穿故障的性质相比,就比较复杂,除 发生接地或短路故障外,还可能发生断线故障,因此在测寻前,还应作 电缆导体连续性的检查,以确定是否发生断线故障。运行电缆故障一般 不会是闪络性的故障。确定电缆故障的性质,一般应用1000V或2500V 摇表或万用表进行测量并作好记录。