直线与圆的方程复习题知识汇总
圆的方程与专题复习(直线与圆、圆与圆的位置关系、轨迹问题)知识梳理.doc

的方程与专题复习(直线与圆.圆与圆的位置关系.轨迹问题)知识梳理浙江省诸暨市学勉屮学(311811)郭天平圆的标准方程、一般方程与参数方程的推导与运用是这节内容的重点;涉及直线与圆、圆与圆的位置关系的讨论及有关性质的研究是这节的难点。
一、有关圆的基础知识要点归纳1.圆的定义:平而内与定点距离等于定长的点的集合(轨迹)是圆.定点即为圆心,定长为半径.2.圆的标准方程①圆的标准方程:由圆的定义及求轨迹的方法,得(x-r/)2+(y-/7)2 =r2(r>0), 其屮圆心坐标为(%),半径为r;当a = O,h = O时,即圆心在原点时圆的标准方程为x2 + y2 =厂2 ;②圆的标准方程的特点:是能够直接由方程看出圆心与半径,即突出了它的几何意义。
3.圆的一般方程①圆的一般方程:展开圆的标准方程,整理得,x2 + y2 + Dx + + F = 0(D2 + E2 - 4F >0);②圆的一般方程的特点:(1) x2,y2项系数相等且不为();(2)没有小这样的二次项③二元二次方程Ax2+Bxy + Cy2 +Dx + £y + F = 0表示圆的必要条件是4=C H 0 且B = Q;二元二次方程+ Bxy + Cy2 +Dx + Ey + F =0表示圆的充要条件是A = C^0且3 = 0 且D2 +E2-4AF>04.圆的参数方程圆的参数方程是由中间变量0将变量x, y联系起来的一个方程.[x = r cos e①鬪心在原点,半径为厂的圆的参数方程是:{.八(0为参数);[y = rsin^/ 、\x = a + r cos 0②圆心在(a,b),半径为旷的圆的参数方程是:{(〃为参数);[y = b + rsin05.圆方程之间的互化x2 +y2 +Dx + Ey + F =0(D2 +E2-4F>0)配方(E、2D2 + E2 -4F< D<=>X + —+x + —即圆心< 2丿L 2丿4 1 22厂=丄S +E: -4F o 利用(rcos0)2 +(rsin^)2 = r2得j“ °十'°°"矽为参数)2 \y = b + rsind6.确定圆方程的条件圆的标准方程、圆的一燉方程及参数方程都冇三个参数,因此要确定圆方程需要三个独立的条件,而确定圆的方程我们常用待定系数法,根据题目不同的已知条件,我们可适当地选择不同的圆方程形式,使问题简单化。
直线与圆的方程复习题知识汇总(K12教育文档)

直线与圆的方程复习题知识汇总(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(直线与圆的方程复习题知识汇总(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为直线与圆的方程复习题知识汇总(word版可编辑修改)的全部内容。
直线与圆的方程知识汇总知识一:直线与圆的位置关系1、已知直线0323=-+y x 和圆422=+y x ,则此直线与已知圆的位置关系是__________。
2、若直线m x y +=与曲线24x y -=有且只有一个公共点,则实数m 的取值范围是_________。
知识二:圆与圆的位置关系3、两圆221:2220Cx y x y +++-=,222:4210C x y x y +--+=的公切线有且仅有( )A .1条B .2条C .3条D .4条4、若圆042222=-+-+m mx y x 与圆08442222=-+-++m my x y x 相切,则实数m 的取值集合是 。
知识三:圆的切线问题5、过点P (-1,6)且与圆4)2()3(22=-++y x 相切的直线方程是________________.6、已知直线0125=++a y x 与圆0222=+-y x x 相切,则a 的值为 。
知识四:圆的弦长问题7、求直线063:=--y x l 被圆042:22=--+y x y x C 截得的弦AB 的长__________.8、设直线03=+-y ax 与圆4)2()1(22=-+-y x 相交于A 、B 两点,且弦AB 的长为32,则=a 。
知识五:圆的方程问题9、求经过点A(2,-1),和直线1=+y x 相切,且圆心在直线x y 2-=上的圆的方程.10、圆0322222=++-++a a ay ax y x 的圆心在( )A .第一象限B .第二象限C .第三象限D .第四象限知识六:综合问题11、圆0104422=---+y x y x 上的点到直线014=-+y x 的最大距离与最小距离的差是( )A 。
高考数学 第14讲 直线与圆的方程知识点+典型例题+变式训练+基础训练+高考真题

第14讲 直线与圆【基础知识】 1.斜率公式:2121y y k x x -=-,其中111(,)P x y .222(,)P x y .2.直线方程的五种形式:(1)点斜式:11()y y k x x -=-.(2)斜截式:y kx b =+.(3)两点式:112121y y x x y y x x --=--.(4)截距式:1=+bya x .(5)一般式:0Ax By C ++=. 3.两条直线的位置关系:⑴若111:l y k xb =+,222:l y k x b =+,则: ① 1l ∥2l 21k k =⇔; ②12121l l k k ⊥⇔=-.4.两个公式:⑴点00(,)P x y 到直线0Ax By C ++=的距离:d =;⑵两条平行线10Ax By C ++=与20Ax By C ++=的距离d =5.圆的方程:⑴标准方程:①222)()(r b y a x =-+- ;②222r y x =+ 。
⑵一般方程:220x y Dx Ey F ++++= (2240)D E F +-> 6.点.直线与圆的位置关系:(主要掌握几何法) ⑴点与圆的位置关系:(d 表示点到圆心的距离)①⇔=R d 点在圆上;②⇔<R d 点在圆内;③⇔>R d 点在圆外。
⑵直线与圆的位置关系:(d 表示圆心到直线的距离) ①⇔=R d 相切;②⇔<R d 相交;③⇔>R d 相离。
⑶圆与圆的位置关系:(d 表示圆心距,r R ,表示两圆半径,且r R >) ①⇔+>r R d 相离;②⇔+=r R d 外切;③⇔+<<-r R d r R 相交; ④⇔-=r R d 内切;⑤⇔-<<r R d 0内含。
7.直线与圆相交所得弦长||AB =【基本题型】一、求直线方程例1.已知直线l 1的方程为y =-2x +3,l 2的方程为y =4x -2,直线l 与l 1平行且与l 2在y 轴上的截距相同,求直线l 的方程.[解析] 由斜截式方程知直线l 1的斜率k 1=-2.又∵l ∥l 1,∴l 的斜率k =k 1=-2.由题意知l 2在y 轴上的截距为-2, ∴l 在y 轴上的截距b =-2,∴由斜截式可得直线l 的方程为y =-2x -2.变式训练1.已知△ABC 的三个顶点分别是A (-5,0),B (3,-3),C (0,2),试求BC 边上的高所在直线的点斜式方程.[分析] BC 边上的高与边BC 垂直,由此求得BC 边上的高所在直线的斜率,从而由点斜式得直线方程.[解析] 设BC 边上的高为AD ,则BC ⊥AD , ∴k BC k AD =-1.∴2+30-3k AD =-1,解得k AD =35.∴BC 边上的高所在直线的点斜式方程是y -0=35(x +5).即y =35x +3.二.求圆的方程例2 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.解法一:(待定系数法)设圆的标准方程为222)()(r b y a x =-+-.∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-.又∵该圆过)4,1(A 、)2,3(B 两点.∴⎪⎩⎪⎨⎧=+-=+-22224)3(16)1(r a r a 解之得:1-=a ,202=r .所以所求圆的方程为20)1(22=++y x .解法二:(直接求出圆心坐标和半径)因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13124-=--=AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x .又知圆心在直线0=y 上,故圆心坐标为)0,1(-C∴半径204)11(22=++==AC r .故所求圆的方程为20)1(22=++y x .又点)4,2(P 到圆心)0,1(-C 的距离为r PC d >=++==254)12(22.∴点P 在圆外.说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?变式训练2 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点A ,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.解:∵圆和直线02=-y x 与02=+y x 相切,∴圆心C 在这两条直线的交角平分线上,又圆心到两直线02=-y x 和02=+y x 的距离相等.∴5252y x y x +=-.∴两直线交角的平分线方程是03=+y x 或03=-y x .又∵圆过点)5,0(A ,∴圆心C 只能在直线03=-y x 上.设圆心)3,(t t C ∵C 到直线02=+y x 的距离等于AC ,∴22)53(532-+=+t t t t .化简整理得0562=+-t t .解得:1=t 或5=t∴圆心是)3,1(,半径为5或圆心是)15,5(,半径为55. ∴所求圆的方程为5)3()1(22=-+-y x 或125)15()5(22=-+-y x .说明:本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过定点且与两已知直线相切的圆的方程的常规求法. 三.切线方程、切点弦方程、公共弦方程例3 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线. 解:∵点()42,P 不在圆O 上, ∴切线PT 的直线方程可设为()42+-=x k y 根据r d = ∴ 21422=++-k k解得 43=k 所以 ()4243+-=x y即 01043=+-y x 因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x . 说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解.变式训练3.求过点(3,1)M ,且与圆22(1)4x y -+=相切的直线l 的方程. 解:设切线方程为1(3)y k x -=-,即310kx y k --+=, ∵圆心(1,0)到切线l 的距离等于半径22=,解得34k =-,∴切线方程为31(3)4y x -=--,即34130x y +-=, 当过点M 的直线的斜率不存在时,其方程为3x =,圆心(1,0)到此直线的距离等于半径2, 故直线3x =也适合题意。
直线与圆的方程试题及答案大题

直线与圆的方程试题及答案大题一、选择题1.设直线过点A(1, 2),斜率为-2,则直线方程是()– A. y = 2x + 3– B. y = -2x + 3– C. 2y = x + 3– D. -2y = x + 3答案:B2.设点A(-1,3)和B(2,-4),则直线AB的斜率为()– A. -1– B. 1– C. 2– D. -2答案:D二、填空题1.过点A(2,1)且与直线y = 2x + 3平行的直线的方程是y = ___________。
答案:2x - 12.过点A(1,-2)且与直线2y = 4x - 3垂直的直线的方程是y = ___________。
答案:-0.5x - 13.过点A(-3,4),斜率为2的直线方程是 y = ___________。
答案:2x + 10三、解答题1.求过点A(2,3)和B(-1,5)的直线方程。
解:直线AB的斜率 m = (5 - 3)/ (-1 - 2) = 2 / -3 = -2/3直线方程的一般形式为y = mx + c,其中c为常数。
将坐标A(2,3)代入直线方程,得到3 = (-2/3) * 2 + c => 3 = -4/3 + c。
解得c = 3 + 4/3 = 13/3,所以直线方程为y = -2/3x + 13/3。
2.已知直线的斜率为-1/2,过点A(3,4),求直线的方程。
解:直线方程的斜率为-1/2,过点A(3,4),所以直线方程可以表示为y = (-1/2)x + c。
将点A(3,4)代入直线方程,得到4 = (-1/2) * 3 + c => 4 = -3/2 + c。
解得c = 4 +3/2 = 11/2,所以直线方程为y = (-1/2)x + 11/2。
四、应用题1.在直角坐标系中,过点A(2,3)和B(-1,5)的直线与y轴交于点C,求点C的坐标。
解:由题意可知,过点A(2,3)和B(-1,5)的直线与y轴交于点C,所以C的横坐标为0。
2024高考一轮复习数学重难点11九种直线和圆的方程的解题方法(核心考点讲与练含答案

2024高考一轮复习专项重难点11 九种直线和圆的方程的解题方法(核心考点讲与练)能力拓展题型一:直接法求直线方程一、单选题1.(2022·全国·高三专题练习)直线l 经过两条直线10x y -+=和2320x y ++=的交点,且平行于直线240x y -+=,则直线l 的方程为()A .210x y --=B .210x y -+=C .220x y -+=D .220x y +-=2.(2022·全国·高三专题练习(文))若经过点(1,2)P --的直线与圆225x y +=相切,则该直线在y 轴上的截距为()A .52B .5C .52-D .5-3.(2022·浙江·高三专题练习)如图,圆1C 、2C 在第一象限,且与x 轴,直线2:2l y =均相切,则圆心1C 、2C 所在直线的方程为()A .2y x =B .22y x =C .24y x =D .y x=4.(2022·重庆·高三开学考试)若直线l 交圆22:420C x y x y +-+=于A 、B 两点,且弦AB 的中点为()1,0M ,则l 方程为()A .10x y --=B .10x y -+=C .10x y +-=D .10x y ++=二、多选题5.(2022·全国·高三专题练习)过点()2,3A 且在两坐标轴上截距相等的直线方程为()A .320x y -=B .230x y -=C .5x y +=D .1x y -=-6.(2022·全国·高三专题练习)已知(1,2)A ,(3,4)B -,(2,0)C -,则()A .直线0x y -=与线段AB 有公共点B .直线AB 的倾斜角大于135︒C .ABC 的边BC 上的中线所在直线的方程为2y =D .ABC 的边BC 上的高所在直线的方程为470x y -+=7.(2022·全国·高三专题练习)已知直线l 过点P (-1,1),且与直线1:230l x y -+=以及x 轴围成一个底边在x 轴上的等腰三角形,则下列结论正确的是()A .直线l 与直线l 1的斜率互为相反数B .所围成的等腰三角形面积为1C .直线l 关于原点的对称直线方程为210x y +-=D .原点到直线l 8.(2021·全国·模拟预测)已知平面上的线段l 及点P ,任取l 上一点Q ,称线段PQ 长度的最小值为点P 到线段l 的距离,记作(,)d P l .已知线段1:(122)l x y =--≤≤,21:()20l x y =-≤≤,点P 为平面上一点,且满足12(,)(,)d P l d P l =,若点P 的轨迹为曲线C ,A ,B 是第一象限内曲线C 上两点,点(10)F ,且54AF =,BF =)A .曲线C 关于x 轴对称B .点A 的坐标为1,14⎛⎫⎪⎝⎭C .点B 的坐标为35,22⎛⎫⎪⎝⎭D .FAB 的面积为1916题型二:待定系数法求直线方程一、单选题1.(2022·内蒙古·满洲里市教研培训中心模拟预测(理))已知抛物线C :22y px =的焦点F 的坐标为()20,,准线与x 轴交于点A ,点M 在第一象限且在抛物线C 上,则当MA MF取得最大值时,直线MA 的方程为()A .24y x =+B .24y x =--C .y =x +2D .2y x =--2.(2022·全国·高三专题练习)若直线1:2330l x y --=与2l 互相平行,且2l 过点(2,1),则直线2l 的方程为()A .3270x y +-=B .3240x y -+=C .2330x y -+=D .2310x y --=3.(2022·全国·高三专题练习)已知直线:20l ax y a +-+=在x 轴与y 轴上的截距相等,则实数a 的值是()A .1B .﹣1C .﹣2或1D .2或14.(2022·全国·高三专题练习)过点()1,2作直线l ,满足在两坐标轴上截距的绝对值相等的直线l 有()条.A .1B .2C .3D .4二、多选题5.(2021·重庆梁平·高三阶段练习)已知直线l 10y -+=,则下列结论正确的是()A .直线l 的倾斜角是3πB .若直线m:10x +=,则l m ⊥C .点到直线l 的距离是2D .过与直线l 40y --=6.(2022·全国·高三专题练习)下列命题正确的是()A .已知点3(2,)A -,(3,2)B --,若直线(1)1y k x =-+与线段AB 有交点,则34k ≥或4k ≤-B .1m =是直线1l :10mx y +-=与直线2l :()220m x my -+-=垂直的充分不必要条件C .经过点()1,1且在x 轴和y 轴上的截距都相等的直线的方程为20x y +-=D .已知直线1l :10ax y -+=,2l :10x ay ++=,R a ∈,和两点(0,1)A ,(1,0)B -,如果1l 与2l 交于点M ,则MA MB⋅的最大值是1.7.(2022·全国·高三专题练习)下列说法错误..的是()A .若直线210a x y -+=与直线20x ay --=互相垂直,则1a =-B .直线sin 20x y α++=的倾斜角的取值范围是30,,)44[πππ⎡⎤⋃⎢⎥⎣⎦C .()()()()0,1,2,1,3,4,1,2A B CD -四点不在同一个圆上D .经过点()1,1且在x 轴和y 轴上截距都相等的直线方程为20x y +-=8.(2021·全国·高三专题练习)直线l 与圆22(2)2x y -+=相切,且l 在x 轴、y 轴上的截距相等,则直线l 的方程可能是A .0x y +=B .20x y +-+=C .0x y -=D .40x y +-=三、填空题9.(2022·全国·高三专题练习(理))已知抛物线2:4C y x =的焦点为F ,过焦点F 的直线C 交于11(,)A x y ,22(,)B x y 两点,若21154x x -=,则直线AB 的方程为______.10.(2020·黑龙江·哈师大附中高三期末(理))若过点()1,1A 的直线l 将圆()()22:324C x y -+-=的周长分为2:1两部分,则直线l 的斜率为___________.四、解答题11.(2022·全国·高三专题练习)已知圆C :()()22214x y -+-=,直线l :()()423360m x m y m ----=.(1)过点()4,2P -,作圆C 的切线1l ,求切线1l 的方程;(2)判断直线l 与圆C 是否相交,若相交,求出直线l 被圆截得的弦长最短时m 的值及最短弦长;若不相交,请说明理由.12.(2022·全国·高三专题练习)已知椭圆C 的中心在原点,焦点在x 轴上,左右焦点分别为1F ,2F ,且12||2F F =,点3(1,2在椭圆C 上.(1)求椭圆C 的方程;(2)过1F 的直线l 与椭圆C 相交于,A B 两点,且2AF B ∆的面积为7,求以2F 为圆心且与直线l 相切的圆的方程.题型三:已知两直线位置关系求参数值或范围一、单选题1.(2022·四川凉山·三模(理))已知直线1:210l x y -+=,2:10l x ay +-=,且12l l ⊥,点()1,2P 到直线2l 的距离d =()A BC .5D .52.(2022·辽宁·二模)己知直线:0l ax y a ++=,直线:0m x ay a ++=,则l m ∥的充要条件是()A .1a =-B .1a =C .1a =±D .0a =二、多选题3.(2021·重庆一中高三阶段练习)下列说法正确的有()A .若m ∈R ,则“1m =”是“1l :330x my m -+=与2l :()20m x y m +--=平行”的充要条件B .当圆222110x y x +--=截直线l :()1y kx k =+∈R 所得的弦长最短时,1k =-C .若圆1C :222x y t +=+与圆2C :()()22349x y -++=有且仅有两条公切线,则()2,6t ∈D .直线l :tan 412022y x =-︒⋅+的倾斜角为139°4.(2021·广东·高三阶段练习)已知直线l 过点()1,2M 且与圆C :()2225x y -+=相切,直线l 与x 轴交于点N ,点P 是圆C 上的动点,则下列结论中正确的有()A .点N 的坐标为()3,0-B .MNP △面积的最大值为10C .当直线l 与直线10ax y -+=垂直时,2a =D .tan MNP ∠的最大值为43三、填空题5.(2022·陕西·安康市高新中学三模(理))若双曲线()2222:10,0x y C a b a b-=>>的一条渐近线l 与直线:20g ax by a ++=平行,则直线l ,g 间的距离为______.6.(2022·天津·二模)在平面直角坐标系xOy 中,已知圆222:(62)4560C x y m x my m m +---+-=,直线l 经过点(1,2)-,若对任意的实数m ,直线l 被圆C 截得的弦长都是定值,则直线l 的方程为___________.四、解答题7.(2022·全国·高三专题练习)已知曲线32y x x =+-在点0P 处的切线1l 平行于直线410x y --=,且点0P 在第三象限.(1)求0P 的坐标;(2)若直线1l l ⊥,且l 也过切点0P ,求直线l 的方程.8.(2020·江苏·南京师大附中模拟预测)如图,在平面直角坐标系xOy 中,已知圆221:(4)1C x y ++=,圆222:(4)4C x y -+=,A 是第一象限内的一点,其坐标为(,)t t .(1)若1212AC AC →→⋅=-,求t 的值;(2)过A 点作斜率为k 的直线l ,①若直线l 和圆1C ,圆2C 均相切,求k 的值;②若直线l 和圆2C ,圆2C 分别相交于,A B 和,C D ,且AB CD =,求t 的最小值.题型四:求解直线的定点一、单选题1.(2022·山东滨州·二模)已知直线()22:1(32)250l m m x m y m +++---=,圆22:20C x y x +-=,则直线l 与圆C 的位置关系是()A .相离B .相切C .相交D .不确定2.(2022·陕西·榆林市教育科学研究所模拟预测(理))在平面直角坐标系xOy 中,已知圆22:1O x y +=,若曲线12y k x =-+上存在四个点()1,2,3,4i P i =,过动点Pi 作圆O 的两条切线,A ,B 为切点,满足32i iP A PB ⋅= ,则k 的取值范围为()A .4,3∞⎛⎫-- ⎪⎝⎭B .4,03⎛⎫- ⎪⎝⎭C .(,7)(4,13)--∞-- D .4(7,)1)30(,--- 二、多选题3.(2022·湖南·长沙市明德中学二模)已知O 为坐标原点,点()P a b ,在直线()40l kx y k --=∈R :上,PA PB ,是圆222x y +=的两条切线,A B ,为切点,则()A .直线l 恒过定点()04,B .当PAB △为正三角形时,OP =C .当PA PB ⊥时,k 的取值范围为()-∞+∞ ,D .当14PO PA ⋅=时,a b +的最大值为4.(2022·江苏盐城·三模)设直线l :()220mx y m m R --+=∈,交圆C :()()22349x y -+-=于A ,B 两点,则下列说法正确的有()A .直线l 恒过定点()1,2B .弦AB 长的最小值为4C .当1m =时,圆C 关于直线l 对称的圆的方程为:()()22439x y -+-=D .过坐标原点O 作直线l 的垂线,垂足为点M ,则线段MC5.(2022·重庆·高三阶段练习)在平面直角坐标系xOy 中,圆22:1O x y +=,若曲线12y k x =-+上存在四个点()1,2,3,4=i P i ,过动点i P 作圆O 的两条切线,A ,B 为切点,满足32i iP A PB ⋅= ,则k 的值可能为()A .-7B .-5C .-2D .–1三、双空题6.(2022·北京房山·二模)已知圆()()22:121C x y -+-=和直线():1l y k x =+,则圆心坐标为___________;若点P 在圆C 上运动,P 到直线l 的距离记为()d k ,则()d k 的最大值为___________.四、填空题7.(2022·河南焦作·三模(文))已知()f x 是定义在R 上的奇函数,其图象关于点(2,0)对称,当[0,2]x ∈时,2()1(1)f x x =---,若方程()(2)0f x k x --=的所有根的和为6,则实数k 的取值范围是______.五、解答题8.(2022·全国·高三专题练习)O 为坐标原点,动点M 在椭圆22:12x C y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ =,直线l 过点P 且垂直于OQ ,求证:直线过定点.9.(2022·全国·高三专题练习)在平面直角坐标系xoy 中,如图,已知椭圆22195x y+=的左、右顶点为A 、B ,右焦点为F ,设过点(,)T t m 的直线TA 、TB 与此椭圆分别交于点1(M x ,1)y 、2(N x ,2)y ,其中0m >,10y >,20y <(1)设动点P 满足()()13PF PB PF PB +-=,求点P 的轨迹方程;(2)设12x =,213x =,求点T 的坐标;(3)若点T 在点P 的轨迹上运动,问直线MN 是否经过x 轴上的一定点,若是,求出定点的坐标;若不是,说明理由.题型五:直线相关的对称问题一、单选题1.(2022·全国·高三专题练习(理))集合M 在平面直角坐标系中表示线段的长度之和记为M .若集合(){}22,925A x y xy =≤+≤,(){},B x y y x m ==+,(){},2C x y y kx k ==+-则下列说法中不正确的有()A .若AB ⋂≠∅,则实数m 的取值范围为{m m -≤≤B .存在k ∈R ,使AC ⋂≠∅C .无论k 取何值,都有A C ⋂≠∅D .A C的最大值为42.(2022·全国·高三专题练习)已知平面向量12312312,,,1,,60e e e e e e e e ︒==== .若对区间1,12⎡⎤⎢⎥⎣⎦内的三个任意的实数123,,λλλ,都有11223312312e e e e e e λλλ++++,则向量1e 与3 e 夹角的最大值的余弦值为()A .36-B .C .D .二、多选题3.(2022·全国·模拟预测)已知直线:50l x y -+=,过直线上任意一点M 作圆()22:34C x y -+=的两条切线,切点分别为A ,B ,则有()A .四边形MACB 面积的最小值为B .AMB ∠最大度数为60°C .直线AB 过定点15,22⎛⎫ ⎪⎝⎭D .AB 4.(2022·福建三明·模拟预测)已知直线l :10kx y k --+=与圆C :()()222216x y -++=相交于A ,B 两点,O 为坐标原点,下列说法正确的是()A .AB的最小值为B .若圆C 关于直线l 对称,则3k =C .若2ACB CAB ∠=∠,则1k =或17k =-D .若A ,B ,C ,O 四点共圆,则13k =-三、填空题5.(2022·全国·模拟预测)已知平面内点,05n n A ⎛⎫- ⎪⎝⎭,,05n n B ⎛⎫ ⎪⎝⎭()*n ∈N ,点n C 满足n n n n AC B C ⊥.设n C 到直线()3410x y n n +++=的距离的最大值为n a ,若数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S m <恒成立,则实数m 能取的最小值是______.6.(2022·天津·南开中学模拟预测)已知圆221:(1)(2)4C x y -+-=和圆222:(2)(1)2C x y -+-=交于,A B 两点,直线l 与直线AB 平行,且与圆2C 相切,与圆1C 交于点,M N ,则MN =__________.7.(2022·广东佛山·模拟预测)已知点()1,0A ,()3,0B ,若2PA PB ⋅=,则点P 到直线l :340x y -+=的距离的最小值为____________.四、解答题8.(2022·安徽·蚌埠二中模拟预测(理))在直角坐标系xOy 中,曲线C 的参数方程为22224x t ty t ⎧=-⎨=+⎩(t 为参数).(1)求C 与坐标轴交点的直角坐标;(2)以坐标原点O 为极点,x 轴非负半轴为极轴建立极坐标系,曲线C 与坐标轴的交点是否共圆,若共圆,求出该圆的极坐标方程;若不共圆,请说明理由.9.(2022·安徽·寿县第一中学高三阶段练习(理))已知直线:sin cos 0l x y a θθ++=,圆()()221:324C x y a +--=,圆2222:340Cx y a a +-+=(1)若4θ=,求直线l 的倾斜角;(2)设直线l 截两圆的弦长分别为12,d d ,当23πθ=时,求12d d ⋅的最大值并求此时a 的值.10.(2022·江西南昌·一模(理))已知面积为ABO (O 是坐标原点)的三个顶点都在抛物线()2:20E y px p =>上,过点(),2P p -作抛物线E 的两条切线分别交y 轴于M ,N 两点.(1)求p 的值;(2)求PMN 的外接圆的方程.题型六:几何法求圆的方程一、多选题1.(2022·广东·模拟预测)三角形的外心、重心、垂心所在的直线称为欧拉线.已知圆O '的圆心在OAB 的欧拉线l 上,O 为坐标原点,点()4,1B 与点()1,4A 在圆O '上,且满足O A O B '⊥',则下列说法正确的是()A .圆O '的方程为224430x y x y +--+=B .l 的方程为0x y -=C .圆O '上的点到l 的最大距离为3D .若点(),x y 在圆O '上,则x y -的取值范围是⎡-⎣二、填空题2.(2022·河北·模拟预测)圆心为(1,2)C -,且截直线350x y ++=所得弦长为的圆的方程为___________.3.(2022·河南·高三阶段练习(文))已知㮋圆1C :()2221024x y b b+=<<的离心率为12,1F 和2F 是1C 的左右焦点,M 是1C 上的动点,点N 在线段1F M 的延长线上,2MN MF =,线段2F N 的中点为P ,则1F P 的最大值为______.4.(2022·天津·高三专题练习)已知圆C 过点(0,1)(2,1)P Q 、两点,且圆心C 在x 轴上,经过点(1,0)M -且倾斜角为钝角的直线l 交圆C 于A ,B 两点,若0CA CB ⋅= (C 为圆心),则该直线l 的斜率为________.5.(2022·全国·高三专题练习)已知圆C :(x -2)2+y 2=2,直线l :y =k (x +2)与x 轴交于点A ,过l 上一点P 作圆C 的切线,切点为T ,若|PA |PT |,则实数k 的取值范围是______________.三、解答题6.(2022·内蒙古呼和浩特·二模(理))拋物线C 的顶点为坐标原点O ,焦点在x 轴上,直线l :2x =交C 于P ,Q 两点,且OP OQ ⊥.已知点M 的坐标为()4,0,M 与直线l 相切.(1)求抛物线C 和M 的标准方程;(2)已知点()8,4N ,点1A ,2A 是C 上的两个点,且直线1NA ,2NA 均与M 相切.判断直线12A A 与M 的位置关系,并说明理由.7.(2022·江苏·南京市第五高级中学一模)已知O 为坐标原点,抛物线E :22x py =(p >0),过点C (0,2)作直线l 交抛物线E 于点A 、B (其中点A 在第一象限),4OA OB ⋅=- 且AC CB λ= (λ>0).(1)求抛物线E 的方程;(2)当λ=2时,过点A 、B 的圆与抛物线E 在点A 处有共同的切线,求该圆的方程8.(2022·全国·高三专题练习)已知平面直角坐标系上一动点(),P x y 到点()2,0A -的距离是点P 到点()10B ,的距离的2倍.(1)求点P 的轨迹方程:(2)若点P 与点Q 关于点()1,4-对称,求P 、Q 两点间距离的最大值;(3)若过点A 的直线l 与点P 的轨迹C 相交于E 、F 两点,()2,0M ,则是否存在直线l ,使BFM S △取得最大值,若存在,求出此时的方程,若不存在,请说明理由.题型七:待定系数法求圆的方程一、单选题1.(2016·天津市红桥区教师发展中心高三学业考试)已知圆M 的半径为1,若此圆同时与x 轴和直线y =相切,则圆M 的标准方程可能是()A .22((1)1x y -+-=B .22(1)(1x y -+=C .22(1)(1x y -++=D .22((1)1x y ++=二、填空题2.(2022·四川眉山·三模(文))已知函数()()()2112819f x x x x =+--.过点()() 1,1A f --作曲线()y f x =两条切线,两切线与曲线()y f x =另外的公共点分别为B 、C ,则ABC 外接圆的方程为___________.3.(2022·安徽·高三阶段练习(文))已知抛物线2:8C x y =,过点(2,2)N -作抛物线C 的两条切线NA ,NB ,切点分别为点A ,B ,以AB 为直径的圆交x 轴于P ,Q 两点,则PQ =_______.4.(2022·天津·高三专题练习)已知抛物线C :24y x =的焦点为F ,抛物线C 上一点A 位于第一象限,且满足3AF =,则以点A 为圆心,AF 为半径的圆的方程为______.三、解答题5.(2022·全国·高三专题练习)已知圆C 经过点A (0,2),B (2,0),圆C 的圆心在圆x 2+y 2=2的内部,且直线3x +4y +5=0被圆C 所截得的弦长为点P 为圆C 上异于A ,B 的任意一点,直线PA 与x 轴交于点M ,直线PB 与y 轴交于点N .(1)求圆C 的方程;(2)若直线y =x +1与圆C 交于A 1,A 2两点,求12BA BA →→;(3)求证:|AN |·|BM |为定值.6.(2021·江西·高三阶段练习(理))已知圆C 过点(2,1)-,(6,3),(2,3)-.(1)求C 的标准方程;(2)若点(,)P x y 在C 上运动,求34x y -的取值范围.7.(2021·全国·模拟预测)已知点()1,1P 在抛物线C :()220y px p =>上,过点P 作圆E :()()22220y x r r +=->的两条切线,切点为A ,B ,延长PA ,PB 交抛物线于C ,D .(1)当直线AB 抛物线焦点时,求抛物线C 的方程与圆E 的方程;(2)证明:对于任意()0,1r ∈,直线CD 恒过定点.8.(2019·云南·二模(理))已知O 是坐标原点,抛物线C :2x y =的焦点为F ,过F 且斜率为1的直线l 交抛物线C 于A 、B 两点,Q 为抛物线C 的准线上一点,且2AQB π∠=.(1)求Q 点的坐标;(2)设与直线l 垂直的直线与抛物线C 交于M 、N 两点,过点M 、N 分别作抛物线C 的切线1l 、2l ,设直线1l 与2l 交于点P ,若OP OQ ⊥,求MON ∆外接圆的标准方程.题型八:几何法求弦长一、单选题1.(2022·全国·模拟预测)已知直线l 过点(A ,则直线l 被圆O :2212x y +=截得的弦长的最小值为()A .3B .6C .D .2.(2022·全国·模拟预测)过点()2,2A ,作倾斜角为π3的直线l ,则直线l被圆22:16O x y +=-弦长为()A.12-B.2C.3D.6-二、多选题3.(2022·广东·模拟预测)已知圆221:(1)1C x y ++=和圆222:(4)4C x y -+=,过圆2C 上任意一点P 作圆1C 的两条切线,设两切点分别为,A B ,则()A .线段ABB .线段ABC .当直线AP 与圆2C 相切时,原点O 到直线AP 的距离为65D .当直线AP 平分圆2C 的周长时,原点O 到直线AP 的距离为45三、填空题4.(2022·河北唐山·三模)直线:0+-=l x m 与圆22:480+--=C x y x 交于A 、B 两点,且6⋅=- CA CB ,则实数m =_______.四、解答题5.(2022·全国·高三专题练习)已知点()()1,0M m m ->,不垂直于x 轴的直线l 与椭圆22:143x y C +=相交于()11,A x y ,()22,B x y 两点.(1)若M 为线段AB 的中点,证明:212112y y x x ->-;(2)设C 的左焦点为F ,若M 在∠AFB 的角平分线所在直线上,且l 被圆224x y +=截得的弦长为l 的方程.6.(2021·湖北·武汉市第六中学高三阶段练习)已知圆O :x 2+y 2=2,过点A (1,1)的直线交圆O 所得的,且与x 轴的交点为双曲线E :2222x y a b -=1的右焦点F (c ,0)(c >2),双曲线E 的离心率为32.(1)求双曲线E 的方程;(2)若直线y =kx +m (k <0,k ≠m >0)交y 轴于点P ,交x 轴于点Q ,交双曲线右支于点M ,N 两点,当满足关系111||||||PM PN PQ +=时,求实数m 的值.7.(2022·全国·高三专题练习)已知椭圆()2222:10x y E a b a b+=>>0y -=过E 的上顶点A 和左焦点1F .(1)求E 的方程;(2)设直线l 与椭圆E 相切,又与圆22:4O x y +=交于M ,N 两点(O 为坐标原点),求OMN 面积的最大值,并求出此时直线l 的方程.题型九:利用点到直线的距离解决圆上点与直线上点的距离问题一、单选题1.(2022·江苏扬州·模拟预测)已知直线():130l a x y -+-=,圆22:(1)5C x y -+=.则“32a =”是“l 与C 相切”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.(2022·重庆南开中学模拟预测)已知圆2220x y x a +-+=上仅存在一个点到直线30x -+=的距离为1,则实数a 的值为()A .-2B .C .-1D .03.(2022·全国·高三专题练习(文))圆O :222x y +=上点P 到直线l :3410x y +=距离的最小值为()A 1B .2C .2D .04.(2022·安徽·寿县第一中学高三阶段练习(理))过直线34110x y -+=上一动点P 作圆22:2210C x y x y +--+=的两条切线,切点分别为,A B ,则四边形PACB 的面积的最小值为()AB C .3D二、多选题5.(2022·湖南·长郡中学高三阶段练习)已知点P 在圆22:4O x y +=上,点()3,0A ,()0,4B ,则()A .点P 到直线AB 的距离最大值为225B .满足AP BP ⊥的点P 有2个C .过点B 作圆O 的两切线,切点分别为M 、N ,则直线MN 的方程为1y =D .2PA PB +的最小值是6.(2022·重庆·二模)已知点(),P x y 是圆()22:14C x y -+=上的任意一点,直线()):1130l m x y m ++-+=,则下列结论正确的是()A .直线l 与圆C 的位置关系只有相交和相切两种B .圆C 的圆心到直线lC .点P 到直线43160++=x y 距离的最小值为2D .点P 可能在圆221x y +=上三、填空题7.(2022·四川省泸县第二中学模拟预测(理))过直线0x y m --=上动点P 作圆2:(2)(3)1M x y -+-=的一条切线,切点为A ,若使得1PA =的点P 有两个,则实数m 的取值范围为___________.8.(2022·贵州遵义·三模(理))圆22:2O x y +=上点P 到直线3410:x y l +=距离的最小值为__________.四、解答题9.(2022·广东茂名·模拟预测)已知抛物线2:4C y x =的焦点为F ,直线2y x =-与抛物线C 交于A ,B 两点.(1)求FAB 的面积;(2)过抛物线C 上一点Р作圆()22:34M x y -+=的两条斜率都存在的切线,分别与抛物线C 交于异于点P 的两点D ,E .证明:直线DE 与圆M 相切.高考一轮复习专项。
圆的方程与专题复习(直线与圆圆与圆的位置关系轨迹问题)知识梳理

圆的方程与专题复习(直线与圆、圆与圆的位置关系、轨迹问题)知识梳理浙江省诸暨市学勉中学(311811)郭天平圆的标准方程、一般方程与参数方程的推导与运用是这节内容的重点;涉及直线与圆、圆与圆的位置关系的讨论及有关性质的研究是这节的难点。
一、有关圆的基础知识要点归纳1. 圆的定义:平面内与定点距离等于定长的点的集合(轨迹)是圆.定点即为圆心,定长为半径.2. 圆的标准方程① 圆的标准方程:由圆的定义及求轨迹的方法,得()()()0222>=-+-r r b y a x ,其中圆心坐标为()b a ,,半径为r ;当0,0==b a 时,即圆心在原点时圆的标准方程为222r y x =+;② 圆的标准方程的特点:是能够直接由方程看出圆心与半径,即突出了它的几何意义。
3. 圆的一般方程①圆的一般方程:展开圆的标准方程,整理得,022=++++F Ey Dx y x ()0422>-+F E D ;② 圆的一般方程的特点:(1)22,y x 项系数相等且不为0;(2)没有xy 这样的二次项③ 二元二次方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的必要条件是0≠=C A 且0=B ;二元二次方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件是0≠=C A 且0=B 且0422>-+AF E D4. 圆的参数方程圆的参数方程是由中间变量θ将变量y x ,联系起来的一个方程. ① 圆心在原点,半径为r 的圆的参数方程是:θθθ(sin cos ⎩⎨⎧==r y r x 为参数);② 圆心在()b a ,,半径为r 的圆的参数方程是:θθθ(sin cos ⎩⎨⎧+=+=r b y r a x 为参数); 5. 圆方程之间的互化022=++++F Ey Dx y x ()0422>-+F E D配方⇔44222222F E D E x D x -+=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+即圆心⎪⎭⎫ ⎝⎛--22E ,D ,半径F E D r 42122-+=⇔利用()()222sin cos r r r =+θθ得θθθ(sin cos ⎩⎨⎧+=+=r b y r a x 为参数) 6. 确定圆方程的条件圆的标准方程、圆的一般方程及参数方程都有三个参数,因此要确定圆方程需要三个独立的条件,而确定圆的方程我们常用待定系数法,根据题目不同的已知条件,我们可适当地选择不同的圆方程形式,使问题简单化。
(完整)高三专题复习:直线与圆知识点及经典例题(含答案),推荐文档
专题:圆的方程、直线和圆的位置关系知识要点】圆的定义: 平面内与一定点距离等于定长的点的轨迹称为圆 一)圆的标准方程形如: (x a )2 (y b )2 r 2 这个方程叫做圆的标准方程 。
王新敞说明: 1、若圆心在坐标原点上,这时 a b 0 ,则圆的方程就是 x 2 y 2 r 2。
2、圆的标准方程的两个基本要素:圆心坐标和半径;圆心和半径分别确定了圆的位置和大小,从而确定了圆,所以,只要 a,b,r 三个量确定了且 r >0,圆的方程就给定了。
圆的一般方程的特点: (i ) x 2和y 2 的系数相同,不等于零; (ii )没有 xy 这样的二次项。
三)直线与圆的位置关系1、直线与圆位置关系的种类 (1)相离 --- 求距离;2、直线与圆的位置关系判断方法:几何方法主要步骤:(1)把直线方程化为一般式,利用圆的方程求出圆心和半径 (2)利用点到直线的距离公式求圆心到直线的距离(3)作判断 : 当 d>r 时,直线与圆相离;当 d =r 时,直线与圆相切 ;当 d<r 时,直线与圆相交。
代数方法主要步骤:就是说要确定圆的方程,必须具备三个独立的条件王新敞确定 a,b,r ,可以根据 3 个条件,利用 待定系数法 来解决。
将圆的标准方程(x a)2 (y 的方 程都可以写成: x 2 2 y Dx问题: 形 如x 22 y Dx Ey将方程x 22yDx Ey F (1)当 D 2 E 24F 0时,方程D 2E 24F 为半径 的圆。
心以2(2)当 D 2 E 24F 0时,方程点( D , E)22(3)当 D2E 24F 0时, 方程圆的 一般方程的 定义:当 D 2 E 22 2 2 r ,展开可得 x y 2ax 2by 222a b r 0 。
可见,任何一个圆0 的方程的曲线是不是圆? 0左边配方得: (x 与标准方程比较,y 2 Dx Eyy 2 Dx Ey 20 时,方程 x 2 D 2 E D 2)2 (y E 2)D 2E 2 4F )2方程 x 2 y 2 Dx Ey F 0 只有实数解,解为 x0表示以 ( D, E)为圆22DE2,y 2, 所以表示一个F 0 没有实数解,因而它不表示任何图形。
直线与圆专题复习题及答案
第六专题 直线与圆 ★ 考点1:直线方程 1.斜率与倾斜角...... (1)(重庆文8)若直线1kxy与圆122yx相交于QP,两点,且120POQ
(其中O为原点),则k的值为 ( ) (A)3或3;(B)3;(C)2或2;(D)3 (2)设直线0543yx的倾斜角为,则该直线关于直线)(Rmmx对称的直线的倾斜角等于 ( ) (A)2; (B)2; (C)2; (D)。 (3)(广东卷6)经过圆2220xxy的圆心C,且与直线0xy垂直的直线方程是( ) A、10xy B、10xy C、10xy D、10xy 2.到角与夹角..... (4)从圆122yx外一点)2,2(P象这个圆作两条切线,则两条切线的夹角的余切值 为 。 3.直线的位置关系.......――――平行与垂直.....
(5)(天津文3) “2a”是“直线20axy平行于直线1xy”的( ) A.充分而不必要条件; B.必要而不充分条件; C.充分必要条件; D.既不充分也不必要条件。
(6) 若直线024yax与直线052cyx垂直,且相交与点(1,d),则ca ,d 。
(7)若直线06:21ymxl与023)2(:2mmyxml平行,则实数m的值为 。
(8)(全国二3)原点到直线052yx的距离为( ) A.1 B.3 C.2 D.5 (9)(福建卷2)“1a”是“直线0yx和直线0ayx互相垂直”的 A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 ★考点2:线性规划 1.目标函数的最优解........
(10)已知实数yx,满足11xyy,则yx2的最大值为 。
(11)(全国二6)设变量xy,满足约束条件:222yxxyx,,.≥≤≥,则yxz3的最小值为( ) A.2 B.4 C.6 D.8
直线和圆的方程全章十类必考压轴题
直线和圆的方程全章十类必考压轴题直线和圆是几何学中的基本概念,它们在解决几何问题和建模实际情况中起着重要的作用。
在本文中,我们将讨论直线和圆的方程,并介绍与之相关的十类必考压轴题。
一、直线的方程1. 点斜式方程:已知直线上一点P(x₁, y₁)和直线的斜率k,直线的方程可以表示为y - y₁ = k(x - x₁)。
2. 两点式方程:已知直线上两点P₁(x₁, y₁)和P₂(x₂, y₂),直线的方程可以表示为(y - y₁)/(y₂ - y₁) = (x - x₁)/(x₂ - x₁)。
3. 截距式方程:已知直线与x轴和y轴的截距分别为a和b,直线的方程可以表示为y = mx + b,其中m为直线的斜率。
二、圆的方程4. 标准方程:已知圆心坐标为(h, k)和半径r,圆的方程可以表示为(x - h)² + (y - k)² = r²。
5. 中心半径式方程:已知圆心坐标为(h, k)和半径r,圆的方程可以表示为(x - h)² + (y - k)² = r²。
6. 直径式方程:已知圆上两点P₁(x₁, y₁)和P₂(x₂, y₂),圆的方程可以表示为(x - (x₁ + x₂)/2)² + (y - (y₁ + y₂)/2)² = ((x₂ - x₁)² + (y₂ - y₁)²)/4。
三、直线和圆的关系7. 直线与圆的位置关系:直线与圆有三种可能的位置关系,即相离、相切和相交。
相离时,直线与圆没有交点;相切时,直线与圆有且仅有一个交点;相交时,直线与圆有两个交点。
8. 直线与圆的切线:直线与圆相切时,直线被称为圆的切线。
切线与圆的切点处的切线斜率等于圆的斜率。
四、直线和圆的求解问题9. 直线与圆的交点:已知直线和圆的方程,可以通过联立方程求解得到直线与圆的交点坐标。
10. 直线和圆的切点:已知直线和圆的方程,可以通过求解直线与圆的切线方程,再求解切线与圆的交点坐标得到直线和圆的切点坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线与圆的方程知识汇总
知识一:直线与圆的位置关系
1、已知直线0323yx和圆422yx,则此直线与已知圆的位置关系是
__________。
2、若直线mxy与曲线24xy有且只有一个公共点,则实数m的取值范围是
_________。
知识二:圆与圆的位置关系
3、两圆221:2220Cxyxy,222:4210Cxyxy的公切线有且仅有()
A.1条B.2条C.3条D.4条
4、若圆042222mmxyx与圆08442222mmyxyx相切,则实数m的取
值集合是 .
知识三:圆的切线问题
5、过点P(-1,6)且与圆
4)2()3(
22
yx
相切的直线方程是________________.
6、已知直线0125ayx与圆0222yxx相切,则a的值为 .
知识四:圆的弦长问题
7、求直线063:yxl被圆
042:
22
yxyxC
截得的弦AB的长__________。
8、设直线03yax与圆4)2()1(22yx相交于A、B两点,且弦AB的长为32,
则a .
知识五:圆的方程问题
9、求经过点A(2,-1),和直线1yx相切,且圆心在直线xy2上的圆的方程.
10、圆0322222aaayaxyx的圆心在()
A.第一象限B.第二象限C.第三象限D.第四象限
知识六:综合问题
11、圆
01044
22
yxyx上的点到直线014yx
的最大距离与最小距离的差是
()
A.36 B.18 C.26 D.
25
12、方程04122yxyx所表示的图形是()
A.一条直线及一个圆B.两个点
C.一条射线及一个圆D.两条射线及一个圆
13、已知圆C:252122yx及直线47112:mymxml.
Rm
(1)证明:不论m取什么实数,直线l与圆C恒相交;
(2)求直线l与圆C所截得的弦长的最短长度及此时直线l的方程.
14、如果实数,xy满足22410xyx求:(1)
y
x
的最大值;
(2)yx的最小值;(3)22xy的最值.
15、求与直线
xy
20
和曲线221212540xyxy都相切的半径最小的圆的标准
方程。