高考数学数列通项公式专题复习

高考数学数列通项公式专题复习
高考数学数列通项公式专题复习

【高考地位】

在高考中数列部分的考查既是重点又是难点,不论是选择题或填空题中对基础知识的考查,还是压轴题中与其他章节知识的综合,抓住数列的通项公式通常是解题的关键和解决数列难题的瓶颈。求通项公式也是学习数列时的一个难点。由于求通项公式时渗透多种数学思想方法,因此求解过程中往往显得方法多、灵活度大、技巧性强。 【方法点评】

方法一 数学归纳法

解题模板:第一步 求出数列的前几项,并猜想出数列的通项; 第二步 使用数学归纳法证明通项公式是成立的.

例1 若数列{}n a 的前n 项和为n s ,且方程2

0n n x a x a --=有一个根为n s -1,n=1,2,3..

(1) 求12,a a ;(2)猜想数列{}n S 的通项公式,并用数学归纳法证明

【解析】(1)1211

,26

a a =

= (2)第一步,求出数列的前几项,并猜想出数列的通项;

由2(1)(1)0n n n n S a S a ----=知2

210n n n n S S a S -+-=

1(2)n n n a S S n -=-≥代入2210n n n n S S a S -+-=

1210n n n S S S --+=(2)n ≥………(*)

第二步,使用数学归纳法证明通项公式是成立的.学&科网

【变式演练1】已知数列错误!未找到引用源。满足错误!未找到引用源。,求数列错误!未找到引用源。的通项公式。

错误!未找

到引用源。错误!未找到引用源。

由此可知,当错误!未找到引用源。时等式也成立。

根据(1),(2)可知,等式对任何错误!未找到引用源。都成立。

方法二 n S 法

使用情景:已知错误!未找到引用源。()()n n n S f a S f n ==或

解题模板:第一步 利用n S 满足条件p ,写出当2n ≥时,1n S -的表达式;

第二步 利用1(2)n n n a S S n -=-≥,求出n a 或者转化为n a 的递推公式的形式;

第三步 根据11a S =求出1a ,并代入{}n a 的通项公式进行验证,若成立,则合并;若不成立,则写出分段形式或根据1a 和{}n a 的递推公式求出n a .

例2 在数列{}n a 中,已知其前n 项和为23n

n S =+,则n a =__________.

【答案】1

5,1

{ 2,2

n n n a n -==≥ 【解析】第一步,利用n S 满足条件p ,写出当2n ≥时,1n S -的表达式;

当2n ≥时,321

1+=--n n s ;

第二步,利用1(2)n n n a S S n -=-≥,求出n a 或者转化为n a 的递推公式的形式;

第三步,根据11a S =求出1a ,并代入{}n a 的通项公式进行验证,若成立,则合并;若不成立,则写出分段形式或根据1a 和{}n a 的递推公式求出n a .学/科网

【变式演练2】已知数列{}n a 的前n 项和12

33

n n S a =

+,则 {}n a 的通项公式n a =( ) A . 12n n a ??=- ??? B . 1

12n n a -??=- ?

??

C . 1

12n n a -??= ?

?? D . 1

12n n a +??=- ???

【来源】【全国校级联考word 】河南省豫南九校高二17-18学年上学期期末联考理科数学 【答案】B

【解析】令1n =,则11112,133a a a =

==,代入选项,排除,A D 选项.令2n =,则12212

33

a a a +=+,解得21

2

a =-,排除C 选项,故选B.

方法三 累加法

使用情景:型如1()n n a a f n +-=或1()n n a a f n +=+ 解题模板:第一步 将递推公式写成1()n n a a f n +-=;

第二步 依次写出121,,n n a a a a --???-,并将它们累加起来; 第三步 得到1n a a -的值,解出n a ;

第四步 检验1a 是否满足所求通项公式,若成立,则合并;若不成立,则写出分段形式.

例3 数列{}

n

a满足1

1

=

a,对任意的*

n∈N都有n

a

a

a

n

n

+

+

=

+1

1

,则=

+

+

+

2016

2

1

1

1

1

a

a

a

Λ()A

2015

2016

B、

4032

2017

C、

4034

2017

D、

2016

2017

【答案】B

【解析】第一步,将递推公式写成

1

()

n n

a a f n

+

-=;

第二步,依次写出121

,,

n n

a a a a

-

-???-,并将它们累加起来;

第三步,得到1

n

a a

-的值,解出

n

a;

所以,

第四步,检验1a是否满足所求通项公式,若成立,则合并;若不成立,则写出分段形式. 学科#网

【变式演练3】在数列{错误!未找到引用源。}中,错误!未找到引用源。=1,错误!未找到引用源。(n=2、3、4……) ,求{错误!未找到引用源。}的通项公式。

【答案】

22

2

n

n n

a

-+

=学科*网

方法四累乘法

使用情景:型如1()

n

n

a

f n

a

+=或

1

()

n n

a a f n

+

=?

解题模板:第一步将递推公式写成1()

n

n

a

f n

a

+=;

第二步依次写出2

11

,,

n

n

a a

a a

-

???,并将它们累加起来;

第三步得到

1

n

a

a的值,解出n

a;

第四步检验1a是否满足所求通项公式,若成立,则合并;若不成立,则写出分段形式. 例4 已知数列错误!未找到引用源。满足错误!未找到引用源。

【答案】

n

a

n3

2

=

【解析】第一步,将递推公式写成1()

n

n

a

f n

a

+=;

第二步,依次写出2

11

,,

n

n

a a

a a

-

???,并将它们累加起来;

第三步,得到

1

n

a a 的值,解出n a ;

第四步,检验1a 是否满足所求通项公式,若成立,则合并;若不成立,则写出分段形式.

【变式演练4】已知数列{n a }中,1a =1,n n

n a a 21=+(n )+∈N ,则数列{n a }的通项公式为( ) A .12-=n n a B .n

n a 2=

C .2

)1(2

-=n n n

a D .

2

22n n a =

【答案】C 【解析】

考点:1累乘法求通项公式;2等差数列的前n 项和.

方法五 构造法一

使用情景:型如1n n a pa q +=+(其中,p q 为常数,且(1)0,pq p -≠) 解题模板:第一步 假设将递推公式改写为a n +1+t =p (a n +t ); 第二步 由待定系数法,解得1

q t p =

-; 第三步 写出数列{}1

n q

a p +

-的通项公式; 第四步 写出数列{}n a 通项公式.

例5 已知数列{错误!未找到引用源。}满足错误!未找到引用源。=1,错误!未找到引用源。=错误!未找到引用源。 (错误!未找到引用源。),求数列{错误!未找到引用源。}的通项公式。

【答案】错误!未找到引用源。=错误!未找到引用源。

【解析】第一步,假设将递推公式改写为a n+1+t=p(a n+t);

第二步,由待定系数法,解得

1 q

t

p

=

-

第三步,写出数列{}

1

n

q

a

p

+

-

的通项公式;

第四步,写出数列{}n a通项公式. 学科*网

【变式演练5】已知数列{}n a满足1

1

2

a=,且1

2

2

n

n

n

a

a

a

+

=

+

.

(1)求证:数列

1

n

a

??

??

??

是等差数列;

(2)若1

n n n

b a a

+

=?,求数列{}n b的前n项和n S.

【来源】【全国市级联考】安徽省蚌埠市2018届高三上学期第一次教学质量检查考试数学(文)试题

【答案】(1)见解析(2)

4

n

n+

【解析】试题分析:⑴由1

2

2

n

n

n

a

a

a

+

=

+得到

1

2

1

2

n

n n

a

a a

+

+

=,进而得到

1

111

2

n n

a a

+

-=;

⑵求出n a,推出n b,利用裂项法求解数列的和即可;

解析:(1)∵1

2

2

n

n

n

a

a

a

+

=

+,∴

1

2

1

2

n

n n

a

a a

+

+

=,∴

1

111

2

n n

a a

+

-=,

∴数列

1

n

a

??

??

??

是等差数列.

方法六 构造法二

使用情景:型如1n n a pa qn r +=++(其中,p q 为常数,且(1)0,pq p -≠) 解题模板:第一步 假设将递推公式改写为1(1)()n n a x n y p a xn y ++++=++; 第二步 由待定系数法,求出,x y 的值; 第三步 写出数列{}n a xn y ++的通项公式; 第四步 写出数列{}n a 通项公式.

例6 已知数列错误!未找到引用源。满足错误!未找到引用源。,求数列错误!未找到引用源。的通项公式。

【答案】42

231018n n a n n +=---

【解析】

第一步,假设将递推公式改写为1(1)()n n a x n y p a xn y ++++=++;

第二步,由待定系数法,求出,x y 的值;

第三步,写出数列{}n a xn y ++的通项公式;学&科网

错误!未找到引用源。为首项,以2为公比的等比数列,因此错误!未找到引用源。, 第四步,写出数列{}n a 通项公式. 则错误!未找到引用源。。

【变式演练6】 设数列{an }满足a 1=4,an =3an -1+2n -1(n ≥2),求an . 【答案】a n =2·

3n -n -1.

方法七 构造法三

使用情景:型如1n

n n a pa q +=+(其中,p q 为常数,且(1)0,pq p -≠)

解题模板:第一步 在递推公式两边同除以1

n q +,得

111

n n n n a a p q q q q

++=?+; 第二步 利用方法五,求数列{

}n

n

a q 的通项公式; 第三步 写出数列{}n a 通项公式.

例7 已知数列错误!未找到引用源。满足错误!未找到引用源。,错误!未找到引用源。,求数列错误!未找到引用源。的通项公式。

【答案】31()222

n

n a n =- 【解析】

第一步,在递推公式两边同除以1

n q

+,得

111

n n n n a a p q q q q

++=?+;

第二步,利用方法五,求数列{

}n

n

a q 的通项公式;

第三步,写出数列{}n a 通项公式.

【变式演练7】 已知数列{a n }中,a 1=56,a n +1=13a n +????12n +1

,求a n . 【答案】b n =3-2????23n ,a n =b n 2n =3????12n

-2????13n . 学科*网

【解析】法一:在a n +1=13a n +????12n +1

两边乘以2n +1,得2n +1

·a n +1=23(2n ·a n )+1. 令b n =2n

·

a n ,则

b n +1=2

3b n +1,

方法八 构造法四

使用情景:型如11n n n a pa qa +-=+(其中,p q 为常数,且0,2pq n ≠≥) 解题模板:第一步 假设将递推公式改写成11()n n n n a sa t a sa +-+=+;

第二步 利用待定系数法,求出,s t 的值;

第三步 求数列1{}n n a sa ++的通项公式;

第四步 根据数列1{}n n a sa ++的通项公式,求出数列{}n a 通项公式.

例8 数列错误!未找到引用源。中,错误!未找到引用源。,求数列错误!未找到引用源。的通项公式。 【答案】n a =

1)3

1(4347--?-n

数列专题训练包括通项公式求法和前n项和求法 的方法和习题

数列专题 1、数列的通项公式与前n 项的和的关系 11, 1,2 n n n s n a s s n -=?=?-≥?( 数列{}n a 的前n 项的和为12n n s a a a =+++L ). 2、等差数列的通项公式 *11(1)() n a a n d dn a d n N =+-=+-∈; 3、等差数列其前n 项和公式为 1()2n n n a a s += 1(1)2n n na d -=+211 ()22 d n a d n =+-. 4、等比数列的通项公式 1*11()n n n a a a q q n N q -== ?∈; 5、等比数列前n 项的和公式为 11 (1),11,1n n a q q s q na q ?-≠?=-??=? 或 11,11,1 n n a a q q q s na q -?≠? -=??=?. 常用数列不等式证明中的裂项形式: (1)( 1111n n =-+n(n+1)1111 ()1 k n k =-+n(n+k);

(2) 211111()1211 k k k <=---+2k (3)211111111(1)(1)1k k k k k k k k k - =<<=-++-- (4) 1111 (1)(2)2(1)(1)(2)n n n n n n n ??=- ??+++++?? ; (5) ()()11 1!!1! n n n n =- ++ (6) = < <=1(1)n n >+) 一.数列的通项公式的求法 1.定义法:①等差数列通项公式;②等比数列通项公式。 例.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列, 2 55a S =.求数列{}n a 的通项公式. 解:设数列{}n a 公差为)0(>d d ∵931,,a a a 成等比数列,∴9123a a a =, 即)8()2(1121d a a d a +=+d a d 12=? ∵0≠d , ∴d a =1………………………………①

高一数列通项公式常见求法

数列通项公式的常见求法 一、公式法 高中重点学了等差数列和等比数列,当题中已知数列是等差或等比数列,在求其通项公式时我们就可以直接利用等差或等比数列的公式来求通项,只需求得首项及公差公比。 1、等差数列公式 例1、已知等差数列{a n }满足a 2=0,a 6+a 8=-10,求数列{a n }的通项公式。 解:(I )设等差数列{}n a 的公差为d ,由已知条件可得 11 0,21210,a d a d +=??+=-? 解得11,1.a d =??=-? 故数列{}n a 的通项公式为2.n a n =- 2、等比数列公式 例2、设{}n a 是公比为正数的等比数列,12a =,324a a =+,求{}n a 的通项公式。 解:设q 为等比数列{}n a 的公比,则由21322,4224a a a q q ==+=+得, 即220q q --=,解得21q q ==-或(舍去),因此 2.q = 所以{}n a 的通项为1*222().n n n a n N -=?=∈ 3、通用公式 若已知数列的前n 项和n S 的表达式,求数列{}n a 的通项n a 可用公式 ?? ?≥-==-2 1 1n S S n S a n n n n 求解。一般先求出11S a =,若计算出的n a 中当n=1适合时可以合并为一个关系式,若不适合则分段表达通项公式。 例3、已知数列}{n a 的前n 项和12 -=n S n ,求}{n a 的通项公式。 解:011==s a ,当2≥n 时 12]1)1[()1(221-=----=-=-n n n s s a n n n 由于1a 不适合于此等式 。 ∴?? ?≥-==) 2(12)1(0 n n n a n

求数列通项公式专题典型例题精校版

数列的通项公式专题 题型一【积差求商】形如1 1++?=-n n n n a ka a a 例1:已知数列}{n a 满足112++?=-n n n n a a a a ,且2 11=a ,求数列}{n a 的通项公式.变式训练1:已知数列}{n a 满足113++?=-n n n n a a a a ,且911=a ,求数列}{n a 的通项公式.变式训练2:已知数列}{n a 满足113++?=-n n n n a a a a ,且21=a ,求数列}{n a 的通项公式.题型二【n a 与n S 】 例2:已知数列}{n a 的前n 项和22+=n S n ,求数列}{n a 的通项公式.

变式训练1:已知数列}{n a 的前n 项和n S 满足1)1(log 2+=+n S n ,求数列}{n a 的通项公式.变式训练2:已知数列}{n a 的前n 和为n S ,21=a ,且)1(1++=+n n S na n n ,求n a .变式训练3:已知数列}{n a 的前n 和为n S ,且满足21),2(,0211=≥=?+-a n S S a n n n ,求n a .变式训练4:已知数列}{n a 的前n 项和n S 满足2)1(4 1+=n n a S 且0>n a ,求}{n a 通项公式.变式训练5:数列{}n a 满足11154,3 n n n a S S a ++=+=,求n a .

题型三【累加法】形如已知1a 且()1n n a a f n +-=(()f n 为可求和的数列)的形式均可用累加法。例3:已知数列}{n a ,且21=a ,n a a n n =-+1,求通项公式n a .变式训练1:已知数列}{n a 满足21=a ,231++=+n a a n n ,求}{n a 的通项公式.变式训练2:已知数列}{n a ,且21=a ,n n n a a 21+=+,求通项公式n a .变式训练3:数列{}n a 中已知11=a ,3231+++=+n a a n n n ,求{}n a 的通项公式.

高中数学数列公式大全(很齐全哟~!)之欧阳数创编

一、高中数列基本公式:1、一般数列的通项an与前n项和Sn的关系:an=2、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。3、等差数列的前n项和公式:Sn=Sn= Sn=当d≠0时,Sn是关于n 的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。4、等比数列的通项公式:an= a1qn-1an= akqn-k (其中a1

为首项、ak为已知的第k项, an≠0)5、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);当q≠1时, Sn=Sn=三、高中数学中有关等差、等比数列的结论1、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍为等差数列。2、等差数列{an}中,若m+n=p+q,则 3、等比数列{an}中,若 m+n=p+q,则4、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m-

S3m、……仍为等比数列。5、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。6、两个等比数列{an}与{bn}的积、商、倒数组成的数列{an bn}、、仍为等比数列。7、等差数列{an}的任意等距离的项构成的数列仍为等差数列。8、等比数列{an}的任意等距离的项构成的数列仍为等比数列。9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法: a-3d,a-d,,a+d,a+3d10、三个数成等比数列的设法:a/q,a,aq;四个

数列求通项公式及求和9种方法

数列专题1:根据递推关系求数列的通项公式 根据递推关系求数列的通项公式主要有如下几种类型一、 n S是数列{}n a的前n项的和 1 1 (1) (2) n n n S n a S S n - = ? =? -≥ ? 【方法】:“ 1 n n S S - -”代入消元消n a 。 【注意】漏检验n的值 (如1 n=的情况 【例1】.(1)已知正数数列{} n a的前n项的和为n S, 且对任意的正整数n满足1 n a =+,求数列{} n a的通项公式。 (2)数列{} n a中,1 1 a=对所有的正整数n都有 2 123n a a a a n ????=,求数列{}n a的通项公式 【作业一】 1- 1.数列{} n a满足 21* 123 333() 3 n n n a a a a n N - ++++=∈,求数列{}n a的通 项公式.

(二).累加、累乘 型如1()n n a a f n --=, 1 ()n n a f n a -= 1()n n a a f n --= ,用累加法求通项公式(推导等差数列通项公式的方法) 【方法】 1()n n a a f n --=, 12(1)n n a a f n ---=-, ……, 21(2)a a f -=2n ≥, 从而1()(1)(2)n a a f n f n f -=+-+ +,检验1n =的情 况 ()f n =,用累乘法求通项公式(推导等比 数列通项公式的方法) 【方法】2n ≥, 1 2 12 1 ()(1)(2)n n n n a a a f n f n f a a a ---??? =?-??

高中数学数列通项公式的求法(方法总结)

(1)主题:求数列通项n a 的常用方法总结 一、 形如:特殊情况:当n+11,n n A B C A a a A =*+*+≠,常用累加法。 (n n a a +-,z 构建等比数列()1y n z *++z ; 的通项公式,进而求得n a 。 二、 形n a a * ;

三、 形 ()x f x =) 情形1:1n n A B a a +=*+型。设λ是不动点方程的根,得数列 {}n a λ-是 以公比为A 的等比数列。 情形2:1*n n n A B C D a a a +*+=+型。 设1λ和2λ 是不动点方程 *A x B x C x D *+=+的两个根; (1)当12λλ≠时,数列n 12n a a λλ??-?? ??-????是以12 A C A C λλ -*-*为公比的等比数列; (2)当12 =λλλ =时,数列1n a λ???? ??-???? 是以2*C A D +为公差的等差数列。 【推导过程:递推式为a n+1= d ca b aa n n ++(c ≠0,a,b,c,d 为常数)型的数列 a n+1-λ= d ca b aa n n ++-λ= d ca c a d b a c a n n +--+ -) )((λλλ,令λ=-λ λc a d b --,可得λ=d c b a ++λλ ……(1)。(1)是a n+1=d ca b aa n n ++中的a n ,a n+1都换成λ后的不动点方程。 ○ 1当方程(1)有两个不同根λ1,λ2时,有 a n+1-λ1= d ca a c a n n +--))((11λλ,a n+1-λ2=d ca a c a n n +--) )((22λλ ∴ 2111λλ--++n n a a =21λλc a c a --?21λλ--n n a a ,令b n =21λλ--n n a a 有b n +1= 2 1 λλc a c a --?b n ○ 2当方程(1)出现重根同为λ时, 由a n+1-λ= d ca a c a n n +--))((λλ得λ-+11n a =))((λλ--+n n a c a d ca =λ c a c -+))((λλλ--+n a c a c d ( “分离常数”)。设c n =λ-n a 1 得c n +1= λ λc a c d -+?c n + λ c a c -】

高中数学数列公式大全很齐全哟

高中数学数列公式大全 很齐全哟 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

一、数列基本公式: 1、一般数列的通项a n 与前n项和S n 的关系:a n = 2、等差数列的通项公式:a n =a 1 +(n-1)d a n =a k +(n-k)d (其中a 1 为首项、 a k 为已知的第k项) 当d≠0时,a n 是关于n的一次式;当d=0时,a n 是 一个常数。 3、等差数列的前n项和公式:S n =S n = S n = 当d≠0时,S n 是关于n的二次式且常数项为0;当d=0时(a 1 ≠0), S n =n a 1 是关于n的正比例式。 4、等比数列的通项公式:a n =a 1 q n-1a n =a k q n-k (其中a 1为首项、a k 为已知的第k项,a n ≠0) 5、等比数列的前n项和公式:当q=1时,S n =n a 1 (是关于n的正比例 式); 当q≠1时,S n =S n =

三、高中中有关等差、等比数列的结论 1、等差数列{a n }的任意连续m项的和构成的数列S m 、S 2m -S m 、S 3m -S 2m 、S 4m -S 3m 、……仍为等差数列。 2、等差数列{a n }中,若m+n=p+q,则 3、等比数列{a n }中,若m+n=p+q,则 4、等比数列{a n }的任意连续m项的和构成的数列S m 、S 2m -S m 、S 3m -S 2m 、S 4m -S 3m 、……仍为等比数列。 5、两个等差数列{a n }与{b n }的和差的数列{a n+ b n }、{a n -b n }仍为等差数列。 6、两个等比数列{a n }与{b n }的积、商、倒数组成的数列 {a n b n }、、仍为等比数列。 7、等差数列{a n }的任意等距离的项构成的数列仍为等差数列。 8、等比数列{a n }的任意等距离的项构成的数列仍为等比数列。 9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3 d 10、三个数成等比数列的设法:a/q,a,a q;四个数成等比的错误设法:a/q3,a/q,a q,a q3(为什么?)

(完整版)求数列通项公式常用的七种方法

求数列通项公式常用的七种方法 一、公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式 ()d n a a n 11-+=或11-=n n q a a 进行求解. 例1:已知{}n a 是一个等差数列,且5,152-==a a ,求{}n a 的通项公式. 分析:设数列{}n a 的公差为d ,则???-=+=+5411 1d a d a 解得???-==23 1d a ∴ ()5211+-=-+=n d n a a n 二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a . 例2:已知数列{}n a 的前n 项和12-=n n s ,求通项n a . 分析:当2≥n 时,1--=n n n s s a =( )( ) 32 321 ----n n =12-n 而111-==s a 不适合上式,() () ???≥=-=∴-22111n n a n n 三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a . 例3:已知数列{}n a 的前n 项和n s 满足n n s a 3 1 1= +,其中11=a ,求n a . 分析:Θ 13+=n n a s ① ∴ n n a s 31=- ()2≥n ② ①-② 得 n n n a a a 331-=+ ∴ 134+=n n a a 即 341=+n n a a ()2≥n 又1123 1 31a s a ==不适合上式 ∴ 数列{}n a 从第2项起是以 3 4 为公比的等比数列 ∴ 2 2 2343134--?? ? ??=? ? ? ??=n n n a a ()2≥n ∴()()??? ??≥? ? ? ??==-23431112n n a n n 注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由n s 与n a 的关系式,类比出1-n a 与1 -n s 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项. 四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时,就 可以用这种方法. 例4: ()12,011-+==+n a a a n n ,求通项n a 分析:Θ 121-=-+n a a n n ∴ 112=-a a 323=-a a 534=-a a ┅ 321-=--n a a n n ()2≥n 以上各式相加得()()2 11327531-=-+++++=-n n a a n Λ ()2≥n 又01=a ,所以()2 1-=n a n ()2≥n ,而01=a 也适合上式, ∴ ()2 1-=n a n ( )* ∈N n 五、累乘法:它与累加法类似 ,当数列{}n a 中有 ()1 n n a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法. 例5:111,1 n n n a a a n -==- ()2,n n N *≥∈ 求通项n a 分析:Q 11 n n n a a n -= - ∴11n n a n a n -=- ()2,n n N * ≥∈ 故3241123123411231 n n n a a a a n a a n a a a a n -===-g g g g L g g g g L g () 2,n n N *≥∈ 而11a =也适合上式,所以() n a n n N *=∈ 六、构造法: ㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是 关于1n a -的“一次函数”的形式,这时用下面的方法: 一般化方法:设()1n n a m k a m -+=+ 则()11n n a ka k m -=+- 而1n n a ka b -=+ ∴()1b k m =- 即1b m k = - 故111n n b b a k a k k -? ?+=+ ?--? ?

高中数学数列复习题型归纳解题方法整理

数列 一、等差数列与等比数列 1.基本量的思想: 常设首项、(公差)比为基本量,借助于消元思想及解方程组思想等。转化为“基本量”是解决问题的基本方法。 2.等差数列与等比数列的联系 1)若数列{}n a 是等差数列,则数列}{n a a 是等比数列,公比为d a ,其中a 是常数,d 是{}n a 的公差。 (a>0且a ≠1); 2)若数列{}n a 是等比数列,且0n a >,则数列{}log a n a 是等差数列,公差为log a q ,其中a 是常数且 0,1a a >≠,q 是{}n a 的公比。 3)若{}n a 既是等差数列又是等比数列,则{}n a 是非零常数数列。 3.等差与等比数列的比较

4、典型例题分析 【题型1】等差数列与等比数列的联系 例1 (2010陕西文16)已知{}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(Ⅰ)求数列{}的通项;(Ⅱ)求数列{2}的前n项和. 解:(Ⅰ)由题设知公差d≠0, 由a1=1,a1,a3,a9成等比数列得12 1 d + = 18 12 d d + + , 解得d=1,d=0(舍去),故{}的通项=1+(n-1)×1=n. (Ⅱ)由(Ⅰ)知2m a=2n,由等比数列前n项和公式得 2+22+23+…+22(12) 12 n - - 21-2. 小结与拓展:数列{}n a是等差数列,则数列} {n a a是等比数列,公比为d a,其中a是常数,d是{}n a的公差。(a>0且a≠1). 【题型2】与“前n项和与通项”、常用求通项公式的结合 例2 已知数列{}的前三项与数列{}的前三项对应相同,且a1+2a2+22a3+…+2n-1=8n对任意的n∈N*都成立,数列{+1-}是等差数列.求数列{}与{}的通项公式。 解:a1+2a2+22a3+…+2n-1=8n(n∈N*) ① 当n≥2时,a1+2a2+22a3+…+2n-2-1=8(n-1)(n∈N*) ② ①-②得2n-1=8,求得=24-n, 在①中令n=1,可得a1=8=24-1, ∴=24-n(n∈N*).由题意知b1=8,b2=4,b3=2,∴b2-b1=-4,b3-b2=-2, ∴数列{+1-}的公差为-2-(-4)=2,∴+1-=-4+(n-1)×2=2n-6,

数列的通项公式练习题通项式考试专题

数列的通项公式练习题通项式考试专题 This model paper was revised by LINDA on December 15, 2012.

数列求和公式练习 1、 设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=, 5313 a b += (Ⅰ)求{}n a ,{}n b 的通项公式;(Ⅱ)求数列n n a b ?? ????的前n 项和n S . 2、(){213}.n n n -?求数列前项和 3、已知等差数列{}n a 满足:37a =,5726a a +=.{}n a 的前n 项和为n S .(Ⅰ)求n a 及 n S ;(Ⅱ)令2 1 1 n n b a = -(n N +∈),求数列{}n b 的前n 项和n T . 4、已知等差数列{}n a 的前3项和为6,前8项和为-4。(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设1*(4)(0,)n n n b a q q n N -=-≠∈,求数列{}n b 的前n 项和n S 5、等比数列{n a }的前n 项和为n S , 已知对任意的n N +∈ ,点(,)n n S ,均在函数 (0x y b r b =+>且1,,b b r ≠均为常数)的图像上.(1)求r 的值;(2)当b=2时,记 1 ()4n n n b n N a ++= ∈ 求数列{}n b 的前n 项和n T 6、在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>.(Ⅰ)求数列 {}n a 的通项公式;(Ⅱ)求数列{}n a 的前n 项和n S ; 7、已知数列{n a }满足:}{,2)32()12(3121n n n b n a n a a 数列+?-=-+++ 的前n 项和 n n n n W n b a n n S 项和的前求数列}{.222?-+=.

数列专题五构造法求通项公式

1.已知数列{a n}中,a1 =1,a n+1=2a n+4,,求数列{a n}的通项公式。 2.已知数列{a n}中,a1 =1,a n+1=3a n+4n+1,求数列{a n}的通项公式。 3.已知数列{a n}中,a1 =1,3a n a n+1+2a n+1- a n=0, 求数列{a n}的通项公式。4.[2012·广东卷] 设数列{a n}的前n项和为S n,满足2S n=a n+1-2n+1+1,n∈N*,且a1,a2+5,a3成等差数列. (1)求a1的值; (2)求数列{a n}的通项公式; (3)证明:对一切正整数n,有1 a1+1 a2+…+ 1 a n< 3 2.

5.2010全国(20)设数列满足且 . (1)求的通项公式; (Ⅱ)设. 6.2011广东20. 设数列满足, (1)求数列的通项公式; (2)证明:对于一切正整数n,. {}n a 10a =111111n n a a +-=--{}n a 1,1n n n k n k b b S == =<∑记S 证明:0,b >{}n a 111=,(2)22 n n n nba a b a n a n --= ≥+-{}n a 1 112 n n n b a ++≤+

7.(2010全国)已知数列{}n a 中,1111,n n a a c a +==- . (Ⅰ)设51,22 n n c b a ==-,求数列{}n b 的通项公式; (Ⅱ)求使不等式13n n a a +<<成立的c 的取值范围 . 8. [2012·全国卷] 函数f (x )=x 2-2x -3.定义数列{x n }如下:x 1=2,x n +1是过两点P (4,5)、Q n (x n ,f (x n ))的直线PQ n 与x 轴交点的横坐标. (1)证明:2≤x n

数列通项公式和前n项和求解方法全

数列通项公式的求法详解 一、 观察法(关键是找出各项与项数n 的关系.) 例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999, (2) ,1716 4,1093 ,542,21 1(3) ,52,21,32 ,1(4) ,5 4 ,43,32 ,21-- 答案:(1)110-=n n a (2);122++=n n n a n (3);12+=n a n (4)1 )1(1+? -=+n n a n n . 二、 公式法 公式法1:特殊数列 例2: 已知数列{a n }是公差为d 的等差数列,数列{b n }是公比为q 的(q ∈R 且q ≠1)的等比数列,若函数f (x ) = (x -1)2 ,且a 1 = f (d -1),a 3 = f (d +1),b 1 = f (q +1),b 3 = f (q -1),求数列{ a n }和{ b n }的通项公式。 答案:a n =a 1+(n -1)d = 2(n -1); b n =b ·q n -1=4·(-2)n -1 例3. 等差数列{}n a 是递减数列,且432a a a ??=48,432a a a ++=12,则数列的通项公式是( ) (A) 122-=n a n (B) 42+=n a n (C) 122+-=n a n (D) 102+-=n a n 答案:(D) 例4. 已知等比数列{}n a 的首项11=a ,公比10<

高中数学数列公式及结论总结

高中数学数列公式及结论总结 一、高中数列基本公式: 1、一般数列的通项a n与前n项和S n的关系:a n= 2、等差数列的通项公式:a n=a1+(n-1)d a n=a k+(n-k)d (其中a1为首项、a k为已知的第k项) 当d≠0时,a n是关于n的一次式;当d=0时,a n是一个常数。 3、等差数列的前n项和公式: S n=S n=S n= 当d≠0时,S n是关于n的二次式且常数项为0;当d=0时(a1≠0),S n=na1是关于n 的正比例式。 4、等比数列的通项公式:a n= a1 q n-1 a n= a k q n-k (其中a1为首项、a k为已知的第k项,a n≠0) 5、等比数列的前n项和公式:当q=1时,S n=n a1 (是关于n的正比例式); 当q≠1时,S n=S n= 三、高中数学中有关等差、等比数列的结论 1、等差数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等差数列。 2、等差数列{a n}中,若m+n=p+q,则 3、等比数列{a n}中,若m+n=p+q,则 4、等比数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等比数列。 5、两个等差数列{a n}与{b n}的和差的数列{a n+b n}、{a n-b n}仍为等差数列。 6、两个等比数列{a n}与{b n}的积、商、倒数组成的数列 {a n b n}、、仍为等比数列。 7、等差数列{a n}的任意等距离的项构成的数列仍为等差数列。 8、等比数列{a n}的任意等距离的项构成的数列仍为等比数列。 9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d 10、三个数成等比数列的设法:a/q,a,aq;

数列的通项公式练习题(通项式考试专题)

求数列通项公式专题练习 1、 设n S 就是等差数列}{n a 得前n 项与,已知 331S 与441S 得等差中项就是1,而551S 就是331S 与44 1 S 得等比中项,求数列}{n a 得通项公式 2、已知数列{}n a 中,3 1 1= a ,前n 项与n S 与n a 得关系就是 n n a n n S )12(-= ,试求通项公式n a 。 3、已知数列{}n a 中,11=a ,前n 项与n S 与通项n a 满足)2,(,1 222 ≥∈-=n N n S S a n n n ,求通项n a 得表达式、 4、在数列{n a }中,1a =1, (n+1)·1+n a =n ·n a ,求n a 得表达式。 5、已知数}{n a 得递推关系为43 2 1+=+n n a a ,且11=a 求通项n a 。 6、已知数列{}a n 得前n 项与S n b n n =+()1,其中{}b n 就是首项为1,公差为2得等差数列,数列{}a n 得通项公式 7、已知等差数列{a n }得首项a 1 = 1,公差d > 0,且第二项、第五项、第十四项分别就是等比数列{b n }得第二项、第三项、第四项. (Ⅰ)求数列{a n }与{b n }得通项公式;lTsK3。 8、已知数列}{n a 得前n 项与为n S ,且满足322-=+n a S n n )(* N n ∈.(Ⅰ)求数列}{n a 得通项公式; 9、设数列{}n a 满足2 1 123333 3 n n n a a a a -++++= …,n ∈* N .(Ⅰ)求数列{}n a 得通项; 10、已知数列}a {n 满足1a 1n 2a a 1n 1n =++=+,,求数列}a {n 得通项公式。 11、 已知数列}a {n 满足3a 132a a 1n n 1n =+?+=+,,求数列}a {n 得通项公式。 数列求与公式练习 1、 设{}n a 就是等差数列,{}n b 就是各项都为正数得等比数列,且111a b ==,3521a b +=,5313a b += (Ⅰ)求{}n a ,{}n b 得通项公式;(Ⅱ)求数列n n a b ?? ???? 得前n 项与n S . 2、(){213}.n n n -?求数列前项和 3、已知等差数列{}n a 满足:37a =,5726a a +=、{}n a 得前n 项与为n S 、(Ⅰ)求n a 及n S ;(Ⅱ)令2 1 1 n n b a =-(n N +∈),求数列{}n b 得前n 项与n T 、 4、已知等差数列{}n a 得前3项与为6,前8项与为-4。(Ⅰ)求数列{}n a 得通项公式; (Ⅱ)设1* (4)(0,)n n n b a q q n N -=-≠∈,求数列{}n b 得前n 项与n S 5、等比数列{n a }得前n 项与为n S , 已知对任意得n N + ∈ ,点(,)n n S ,均在函数(0x y b r b =+>且1,,b b r ≠均为 常数)得图像上、(1)求r 得值;(2)当b=2时,记 1 ()4n n n b n N a ++= ∈ 求数列{}n b 得前n 项与n T lJ30p 。

数列的通项公式练习题(通项式考试专题)

2010届高考数学快速提升成绩题型训练 ——数列求通项公式 在数列{n a }中,1a =1, (n+1)·1+n a =n ·n a ,求n a 的表达式。 已知数列{}n a 中,3 1 1= a ,前n 项和n S 与n a 的关系是 n n a n n S )12(-= ,试求通项公式n a 。 已知数}{n a 的递推关系为43 2 1+= +n n a a ,且11=a 求通项n a 。 在数列{}n a 中,11=a ,22=a ,n n n a a a 313212+=++,求n a 。 已知数列{n a }中11=a 且1 1+=+n n n a a a (N n ∈),,求数列的通项公式。 已知数列{}a n 的前n 项和S n b n n =+()1,其中{}b n 是首项为1,公差为2的等差数列. (1)求数列{}a n 的通项公式; 已知等差数列{a n }的首项a 1 = 1,公差d > 0,且第二项、第五项、第十四项分别是等比数列{b n }的第二项、第三项、第四项. (Ⅰ)求数列{a n }与{b n }的通项公式; 已知数列}{n a 的前n 项和为n S ,且满足 322-=+n a S n n )(*N n ∈. (Ⅰ)求数列}{n a 的通项公式; 设数列{}n a 满足2 1 123333 3 n n n a a a a -++++= …,n ∈* N . (Ⅰ)求数列{}n a 的通项;

数列{}n a 的前n 项和为n S ,11a =,*12()n n a S n +=∈N . (Ⅰ)求数列{}n a 的通项n a ; 已知数列{}n a 和{}n b 满足:11a =,22a =,0n a >,1 n n n b a a +=(*n ∈N ),且{}n b 是以q 为公比的等比数列. (I )证明:22n n a a q +=; (II )若2122n n n c a a -=+,证明数列{}n c 是等比数列; 1. 设数列{a n }的前项的和S n = 3 1(a n -1) (n * ∈N ). (Ⅰ)求a 1;a 2; (Ⅱ)求证数列{a n }为等比数列. 3. 已知二次函数()y f x =的图像经过坐标原点,其导函数为 '()62f x x =-,数列{}n a 的 前n 项和为n S ,点(,)()n n S n N *∈均在函数()y f x =的图像上. (Ⅰ)求数列{}n a 的通项公式; 7. 已知数列{}n a 的前n 项和S n 满足2(1),1n n n S a n =+-≥. (Ⅰ)写出数列{}n a 的前3项;,,321a a a (Ⅱ)求数列{}n a 的通项公式. 8. 已知数列}a {n 满足n n 1n 23a 2a ?+=+,2a 1=,求数列}a {n 的通项公式。 9. 已知数列}a {n 满足1a 1 n 2a a 1n 1n =++=+,,求数列}a {n 的通项公式。 10. 已知数列}a {n 满足3a 132a a 1n n 1n =+?+=+,,求数列}a {n 的通项公式。 11. 已知数列}a {n 满足3a 132a 3a 1n n 1n =+?+=+,,求数列}a {n 的通项公式。

求数列通项公式的十种方法

求数列通项公式的十种方法 一、公式法 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以1 2 n +,得 113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2n n a 是以1222a 1 1==为首项,以2 3 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 113 222 n n n n a a ++-=,说明数列{}2 n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。 二、利用 { 1(2)1(1) n n S S n S n n a --≥== 例2.若n S 和n T 分别表示数列{}n a 和{}n b 的前n 项和,对任意正整数 2(1)n a n =-+,34n n T S n -=.求数列{}n b 的通项公式; 解 : 22(1) 4 2 31a n a d S n n n n =-+∴=-=-=-- 23435T S n n n n n ∴=+=--… …2分 当1,35811n T b ===--=-时 当2,62 6 2.1n b T T n b n n n n n ≥=-=--∴=---时……4分 练习:1. 已知正项数列{a n },其前n 项和S n 满足10S n =a n 2+5a n +6且a 1,a 3,a 15成等 比数列,求数列{a n }的通项a n 解: ∵10S n =a n 2+5a n +6, ① ∴10a 1=a 12+5a 1+6,解之得a 1=2或a 1=3 又10S n -1=a n -12+5a n -1+6(n ≥2),② 由①-②得 10a n =(a n 2-a n -12)+6(a n -a n -1),即(a n +a n -1)(a n -a n -1-5)=0 ∵a n +a n -1>0 , ∴a n -a n -1=5 (n ≥2) 当a 1=3时,a 3=13,a 15=73 a 1, a 3,a 15不成等比数列∴a 1≠3; 当a 1=2时, a 3=12, a 15=72, 有 a 32=a 1a 15 , ∴a 1=2, ∴a n =5n -3 2.(2006年全国卷I )设数列{}n a 的前n 项的和

高中数学数列公式大全(很齐全哟~)

一、高中数列基本公式: 1、一般数列的通项a n与前n项和S n的关系:a n= 2、等差数列的通项公式:a n=a1+(n-1)d a n=a k+(n-k)d (其中a1为首项、a k为已知的第k项) 当d≠0时,a n是关于n的一次式;当d=0时,a n是一个常数。 3、等差数列的前n项和公式:S n= S n= S n= 当d≠0时,S n是关于n的二次式且常数项为0;当d=0时(a1≠0),S n=na1是关于n的正比例式。 4、等比数列的通项公式: a n= a1 q n-1a n= a k q n-k (其中a1为首项、a k为已知的第k项,a n≠0) 5、等比数列的前n项和公式:当q=1时,S n=n a1 (是关于n 的正比例式); 当q≠1时,S n= S n= 三、高中数学中有关等差、等比数列的结论 1、等差数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等差数列。 2、等差数列{a n}中,若m+n=p+q,则 3、等比数列{a n}中,若m+n=p+q,则

4、等比数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等比数列。 5、两个等差数列{a n}与{b n}的和差的数列{a n+b n}、{a n-b n}仍为等差数列。 6、两个等比数列{a n}与{b n}的积、商、倒数组成的数列 {a n b n}、、仍为等比数列。 7、等差数列{a n}的任意等距离的项构成的数列仍为等差数列。 8、等比数列{a n}的任意等距离的项构成的数列仍为等比数列。 9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d 10、三个数成等比数列的设法:a/q,a,aq; 四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?) 11、{a n}为等差数列,则 (c>0)是等比数列。 12、{b n}(b n>0)是等比数列,则{log c b n} (c>0且c 1) 是等差数列。 13. 在等差数列中: (1)若项数为,则 (2)若数为则,, 14. 在等比数列中:

高考数学数列通项公式专题复习

【高考地位】 在高考中数列部分的考查既是重点又是难点,不论是选择题或填空题中对基础知识的考查,还是压轴题中与其他章节知识的综合,抓住数列的通项公式通常是解题的关键和解决数列难题的瓶颈。求通项公式也是学习数列时的一个难点。由于求通项公式时渗透多种数学思想方法,因此求解过程中往往显得方法多、灵活度大、技巧性强。 【方法点评】 方法一 数学归纳法 解题模板:第一步 求出数列的前几项,并猜想出数列的通项; 第二步 使用数学归纳法证明通项公式是成立的. 例1 若数列{}n a 的前n 项和为n s ,且方程2 0n n x a x a --=有一个根为n s -1,n=1,2,3.. (1) 求12,a a ;(2)猜想数列{}n S 的通项公式,并用数学归纳法证明 【解析】(1)1211 ,26 a a = = (2)第一步,求出数列的前几项,并猜想出数列的通项; 由2(1)(1)0n n n n S a S a ----=知2 210n n n n S S a S -+-= 1(2)n n n a S S n -=-≥代入2210n n n n S S a S -+-=

1210n n n S S S --+=(2)n ≥………(*) 第二步,使用数学归纳法证明通项公式是成立的.学&科网 【变式演练1】已知数列错误!未找到引用源。满足错误!未找到引用源。,求数列错误!未找到引用源。的通项公式。

错误!未找 到引用源。错误!未找到引用源。 由此可知,当错误!未找到引用源。时等式也成立。 根据(1),(2)可知,等式对任何错误!未找到引用源。都成立。 方法二 n S 法 使用情景:已知错误!未找到引用源。()()n n n S f a S f n ==或 解题模板:第一步 利用n S 满足条件p ,写出当2n ≥时,1n S -的表达式; 第二步 利用1(2)n n n a S S n -=-≥,求出n a 或者转化为n a 的递推公式的形式; 第三步 根据11a S =求出1a ,并代入{}n a 的通项公式进行验证,若成立,则合并;若不成立,则写出分段形式或根据1a 和{}n a 的递推公式求出n a . 例2 在数列{}n a 中,已知其前n 项和为23n n S =+,则n a =__________. 【答案】1 5,1 { 2,2 n n n a n -==≥ 【解析】第一步,利用n S 满足条件p ,写出当2n ≥时,1n S -的表达式; 当2n ≥时,321 1+=--n n s ;

相关文档
最新文档