八年级数学实际问题与反比例函数4

合集下载

用反比例函数解决实际问题

用反比例函数解决实际问题

反比例函数是一种常见的数学模型,可以用来解决很多实际问题。

以下是一个例子:
假设一辆汽车行驶的距离与其油耗量是一个反比例关系。

也就是说,当汽车行驶的距离增加时,它消耗的油耗将减少,并且当汽车行驶的距离减少时,它消耗的油耗将增加。

如果我们知道汽车在某一段路程中的油耗量(例如每公里消耗的升数),以及这段路程的总长度,我们可以使用反比例函数来求出它的平均油耗量。

具体步骤如下:
1. 定义变量:假设总距离为 D 千米,油耗量为 H 升/公里,平均油耗为 Y 升/百公里
2. 确定反比例函数:根据定义,可得:H = k / Y,其中 k 是一个常数
3. 求解常数 k:当总距离为 D 时,油耗为 H * D 升。

因此,有:H * D = k / Y,即 Y = k / (H * D)
4. 计算平均油耗:将上一步得到的等式中,代入已知的 H 和 D 值,即可求出平均油耗量 Y 的值。

总结:反比例函数可应用于很多实际问题,如物质的浓度与稀释液的体积关系、人口密度与城市面积的关系等。

在实际应用中,需要根据具体情况选择合适的变量和反比例函数形式,以获得所需的信息。

八年级数学实际问题与反比例函数4

八年级数学实际问题与反比例函数4
小学作文加盟http://www.omsБайду номын сангаас/
用3个相同的元件组成如图14-7所示的一个系统。如果每个元件能否正常工作是相互独立的,每个元件能正常工作的概率为p,那么此系统的可靠度(元件或系统正常工作的概率通常称为可靠度)为A.p2(1-p)B.p2(2-p)C.p(1-p)2D.p(2-p)2 正常腋温A.37.5℃B.36.5~37.5℃C.36~37.5℃D.36~37℃E.35~36℃ 在同一风险水平下能够令期望投资收益率的资产组合,或者是在同一期望投资收益率下风险的资产组合形成了有效市场前沿线。A.最大,最大B.最小,最大C.最大,最小D.最小,最小 龙胆草的功效是。A.既能清热燥湿,又能止血、安胎B.既能清热燥湿,又能泻火解毒C.既能清热解毒,又能凉血消斑D.既能清热燥湿,又能清肝火E.既能清热凉血,又能养阴生津 SO2和Cl2都具有漂白作用,若将等物质的量的两种气体混合,在作用于潮湿的有色物质,则可观察到有色物质。A、立即褪色B、慢慢褪C、先褪色后恢复原色D、不褪色 2型糖尿病发病机制是A.胰岛素拮抗激素分泌增多B.胰岛素B细胞遗传缺陷C.胰岛素抵抗和胰岛素分泌缺陷D.胰岛B细胞破坏,胰岛素绝对不足E.胰岛B细胞自身免疫反应性损伤 催化剂总藏量 加入轻烧白云石造渣可增加渣中量。A.CaOB.MgOC.FeOD.MnO 八月十五又称什么节? 反映骨骼、肌肉和皮肤及皮下组织的综合测量指标是A.体重B.身高C.胸围D.上臂围E.腹围 何谓双功能催化剂? 有一砖围墙长30m,高1.5m,厚240cm,每隔5m有一个370mm×120mm的附墙砖跺。已知砌砖每立方米用0.522工日,用砂浆0.26m³。每立方米砂浆用水泥180kg,砂1600kg。计算应用多少工日,多少水泥,多少砂子?总砌砖量为m³.A.10.80B.10.82C.10.98D.11.20 《沿海港口水工建筑工程定额》是沿海港口建设工程编制的主要依据。A.经营生产计划B.年度目标值C.概算、预算D.工程结算 肾小球疾病通常具有以下特点,下列哪项不正确A.肾小球性血尿,可伴管型尿B.肾小球性蛋白尿以白蛋白为主C.无肾小管损伤D.肾小球滤过功能损伤先于而且重于肾小管功能障碍E.可引起高血压、水肿 1月份平均温度的0℃、3℃和8℃等温线分别通过我国的、和等地区。 深Ⅱ度烧伤创面处理不正确的是。A.1:2000氯己定清洗创面,去除异物B.去除水泡皮C.油质纱布包扎创面D.面部创面不包扎E.创面使用抗生素预防全身感染 解除气道异物造成的严重气道梗阻,下列哪项措施是错的A.反复腹部冲击法:对有意识的成人和大于1岁的儿童患者采用腹部冲击法是解除气道异物可行和有效的方法B.反复腹部冲击法:对有意识的成人和儿童、婴幼儿患者采用腹部冲击法是解除气道异物可行和有效的方法C.胸部冲击法:对肥胖 第一代挖掘机也可以称为.A.机械式挖掘机B.电力式挖掘机C.液压式挖掘机D.电子化挖掘机 低渗性缺水时,体液的容量改变为。A.细胞外液正常,细胞内液减少B.细胞外液减少,细胞内液正常C.细胞外液显著减少,细胞内液轻度减少D.细胞外液轻度减少,细胞内液显著减少E.细胞内外液按比例减少 空分装置的哪个部位的温度最低? 颈嵴位于牙体的A.颊面颈1/3B.颊面中1/3C.舌面中1/3D.近中面颈1/3E.远中面颈1/3 危机期间,满足新闻人员和危机管理者基本需要的最重要的途径是。A、新闻发布会B、新闻简报C、新闻会议D、媒介培训会 下列应按劣药论处的法定情形是。A.药品所含成分与国家药品标准规定成分不符的B.国务院药品监督管理部门规定禁止使用的C.变质的D.所标明的功能主治超出规定范围的E.超过有效期的 腋温的测量方法及出现误差的常见原因? 依据《传染病防治法》规定,采取甲类传染病的预防、控制措施的乙类传染病是。A.病毒性肝炎B.人感染高致病性禽流感C.艾滋病D.登革热E.淋病、梅毒 正弦交流电三要素是指最大值、、。 负责拟订、调整非处方药目录的技术工作及其相关业务组织工作的机构是A.国家药典委员会B.国家中药品种保护审评委员会C.国家食品药品监督管理总局药品审评中心D.国家食品药品监督管理总局药品评价中心E.中国食品药品检定研究院 在诊疗同意制度中,如果病人方面的意见不统一,医师应当以谁的意见为准A.病人家属或者关系人B.病人本人C.对病人诊疗有利者D.应当等病人和家属或者关系人意见统一后才能决定诊疗方案E.医师独立作出决定 舌侧矫正技术出现于A.1982年B.1987年C.1978年D.1990年E.1995年 2008年残疾人奥运会的会徽。A.将肖形印,中国字与奥运五环有机结合在一起B.似"印"非"印",似"京"非"京"C.以"天,地,人"为主线D.是有中国精神,中国神韵,中国气派的中国汉文化的符号 红外线系统由哪些部分组成? 下面不属于SI基本单位的是。A.米;B.安培;C.摩(尔);D.欧(姆)。 如何根据服务对象,如何提高服务质量? 某溶液主要含有Ca2+、、Mg2+及少量Fe3+、Al3+,若在PH=10时加入适量三乙醇胺,以EDTA标准溶液滴定,用铬黑T为指示剂,则测出的是。 以下哪种物质不是成骨细胞合成。A.碱性磷酸酶B.Ⅰ型胶原C.骨钙索D.骨桥蛋白E.以上都不是 鼻咽癌颈部淋巴结转移,常首先发生在。A.颌下淋巴结B.颈深淋巴结下群C.颈深淋巴结中群D.颈深淋巴结上群E.颏下淋巴结 《素问·灵兰秘典论》言膻中的主要功能有A.产生七情B.聚藏精气C.代君行令D.辅助血行E.以上都是 聚甲基丙烯酸甲酯(PMMA)的特性不包括。A.光学性能良好,矫正视力清晰B.透气性能佳C.矫正角膜散光效果佳D.聚合形式稳定耐用E.抗沉淀性好 某药t1/2为l2小时,每天给药两次,每次固定剂量,几天后血药浓度即大于稳态的98%()A.1天B.1.5天C.3天D.4天E.7天 作图题:根据已知视图补画第三视图或视图中所缺的图线。

实际问题与反比例函数

实际问题与反比例函数

实际问题与反比例函数知识点一:反比例函数的图象应用知识要点1.反比例函数图象的平移:(1(22.反比例函数图象的对称性:典例分析例1、反比例函数的图象经过点)32,3(-M ,将其图象向上平移2个单位后,得到的图象所对应的函数解析式为 _________ .例2、若将反比例函数xky =的图象绕原点O 逆时针旋转90︒后经过点A (-2,3),则反比例函数的解析式为__________.巩固练习:1.反比例函数的图象经过点)32,6(-M ,将其图象向右平移2个单位后,得到的图象所对应的函数解析式为______ .2.已知反比例函数xky =的图象经过点A (-2,3),将它绕原点O 逆时针旋转90︒后经过点A (-2,3),则旋转后的反比例函数的解析式为__________.知识点二:反比例函数的应用知识要点1.方式方法:把实际问题中寻找变量之间的关系,建立数学模型,运用数学知识解决实际问题。

2.常见题型:利用反比例函数求具体问题中的值,解决确定反比例函数中常数k 值的实际问题。

典例分析题型一:反比例函数的实际应用例1、京沈高速公路全长658km ,汽车沿京沈高速公路从沈阳驶往北京,则汽车行完全程所需时间t (h )与行驶的平均速度v (k m /h )之间的函数关系式为?例2、若r 为圆柱底面的半径,h 为圆柱的高.当圆柱的侧面积一定时,则h 与r 之间函数关系的图象大致是( )例3、小林家离工作单位的距离为3600米,他每天骑自行车上班时的速度为v (米/分),所需时间为t (分)(1)则速度v 与时间t 之间有怎样的函数关系?(2)若小林到单位用15分钟,那么他骑车的平均速度是多少? (3)如果小林骑车的速度为300米/分,那他需要几分钟到达单位?巩固练习:1.一张正方形的纸片,剪去两个一样的小矩形得到一个“E ”图案,如图所示,设小矩形的长和宽分别为x 、y ,剪去部分的面积为20,若2≤x ≤10,则y 与x 的函数图像是( )A .B .C .D .2.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P (kPa )是气体体积V (m 3)的反比例函数,其图象如图所示. 当气球内的气压大于140kPa 时,气球将爆炸,为了安全起见,气体体积应( )(第2题图) A .不大于3m 3524 B .不小于3m 3524 C .不大于3m 3724D .不小于3m 37243.你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面时,面条的总长度y (m )是面条的横截面积S (mm 2)的反比例函数,其图象如图所示.⑴写出y (m )与S (mm 2)的函数关系式;⑵求当面条的横截面积是1.6 mm 2时,面条的总长度是多少米?4.正在新建中的饿某会议厅的地面约5002m ,现要铺贴地板砖. (1)所需地板砖的块数n 与每块地板砖的面积S 有怎样的函数关系?(2)为了使地面装饰美观,决定使用蓝、白两种颜色的地板砖组合成蓝白相间的图案,每块地板砖的规格为80×802cm ,蓝、白两种地板砖数相等,则需这两种地板砖各多少块?5.一场暴雨过后,一洼地存雨水20m 3,如果将雨水全部排完需t 分钟,排水量为a m 3/min ,且排水时间为 5~10min(1)试写出t 与a 的函数关系式,并指出a 的取值范围; (2)当排水量为3m 3/min 时,排水的时间需要多长? (3)当排水时间4.5分钟时,每分钟排水量多少?题型二:反比例函数与一次函数的交点问题例1、如图,一次函数y =kx +5(k 为常数,且k ≠0)的图象与反比例函数y =-8x的图象交于A (-2,b ),B 两点. (1)求一次函数的表达式;(2)若将直线AB 向下平移m (m >0)个单位长度后与反比例函数的图象有且只有一个公共点,求m 的值.【思路点拨】(1)将点A 坐标代入反比例函数解析式得b ,将A 坐标代入一次函数解析式得k ; (2)联立两函数解析式,得一元二次方程,有一个公共解则Δ=0,即可求出m 的值. 【解答】(1)∵A (-2,b )在y =-8x上, ∴-2b =-8,b =4.∴A (-2,4). ∵A (-2,4)在y =kx +5上, ∴k =12, ∴一次函数为y =12x +5. (2)向下平移m 个单位长度后,直线为y =12x +5-m ,由题意,得15.82y y x m x=-=+⎧⎪⎨⎪-⎪⎪⎩,整理得12x 2+(5-m )x +8=0, ∵平移后直线与双曲线有且只有一个公共点, ∴Δ=(5-m )2-4×12×8=0,解得m =1或9. 方法归纳:解决一次函数和反比例函数的问题常常从反比例函数突破,求两函数的交点问题通常联立成方程组,转化为方程解决.若两函数图象有两个交点,则对应的一元二次方程的Δ>0;若两函数图象有1个交点,则对应的一元二次方程的Δ=0;若两函数图象没有交点,则对应的一元二次方程的Δ<0.巩固练习:1.如图,已知直线1y x m =+与x 轴、y 轴分别交于点A 、B ,与双曲线2ky x=(x <0)分别交于点C 、D ,且点C 的坐标为(-1,2).⑴ 分别求出直线及双曲线的解析式; ⑵ 求出点D 的坐标;⑶ 利用图象直接写出当x 在什么范围内取值时,12y y >.2.反比例函数中y =5x-,当x <2时,y 的取值范围是 ;当y ≥-1时,x 的取值范围是 .3.一次函数y =kx+b 与反比例函数y =2x 的图象如图,则关于x 的方程kx+b =2x的解为( ) xyD CBAOA . x l =1,x 2=2B . x l =-2,x 2=-1C . x l =1,x 2=-2D . x l =2,x 2=-题型三:反比例函数求面积类问题例2、如图,点A 、B 在反比例函数ky x的图象上, A 、B 两点的横坐标分别为a 2a (a >0),AC ⊥x 轴于点C ,且ΔAOC 的面积为2. ⑴求该反比例函数的解析式;⑵若点(-a ,y 1),(-2a ,y 2)在该反比例函数的图象上,试比较y 1 与y 2的大小;⑶求ΔAOB 的面积.例3、如图,一次函数y =-x +2的图象与反比例函数y =-3x的图象交于A 、B 两点,与x 轴交于D 点,且C 、D 两点关于y 轴对称. (1)求A 、B 两点的坐标; (2)求△ABC 的面积.巩固练习:1.如图,在△AOB 中,∠ABO =90°,OB =4,AB =8,反比例函数y =kx在第一象限内的图象分别交OA ,AB 于点C 和点D ,且△BOD 的面积S △BOD =4. (1)求反比例函数解析式; (2)求点C 的坐标.2.如图,在直角坐标系xOy 中,直线y =mx 与双曲线y =nx相交于A (-1,a )、B 两点,BC ⊥x 轴,垂足为C ,△AOC 的面积是1. (1)求m 、n 的值; (2)求直线AC 的解析式.课后作业1.如图1,一次函数y x b =+与反比例函数ky x=的图象相交于A 、B 两点,若已知一个交点为A (2,1),则另一个交点B 的坐标为( )图1A . (2,-1)B .(-2,-1)C . (-1,-2)D . (1,2)2.点P 为反比例函数图象上一点,如图2,若阴影部分的面积是12个(平方单位),则解析式为 __________3.如图3,利用函数图象解不等式xx 1<,则不等式的解集为______________4.不解方程,利用函数的图象判断方程02=-x x的解的个数为_____________ 5.如图,在平面直角坐标系xOy 中,已知一次函数y =kx +b 的图象经过点A (1,0),与反比例函数y =mx(x >0)的图象相交于点B (2,1). (1)求m 的值和一次函数的解析式;(2)结合图象直接写出:当x >0时,不等式kx +b >mx的解集.6.如图,一次函数y =kx +b (k ≠0)的图象过点P (-32,0),且与反比例函数y =m x(m ≠0)的图象相交于点A (-2,1)和点B . (1)求一次函数和反比例函数的解析式;(2)求点B 的坐标,并根据图象回答:当x 在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?7.已知一次函数y =kx -6的图象与反比例函数y =-2kx的图象交于A 、B 两点,点A 的横坐标为2. (1)求k 的值和点A 的坐标; (2)判断点B 的象限,并说明理由.。

八年级数学实际问题与反比例函数4

八年级数学实际问题与反比例函数4
请你说一说本节课自己的收 获并对自己参与学习的程度做 出简单的评价.
பைடு நூலகம்
谢谢! 请多提宝贵意见!
做 一 做
(2)完成下表,如果以此蓄电池为电源用
电器电流不得超过18A,那么用电器的可变 电阻应控制在什么范围内?
R / 3 4 5 6 7 8 9 10 (Ω)
I/A
4



练一 练
1、某蓄水池的排水管每小时排水8m3 , 6h可将满池水全部排空。 ⑴蓄水池的容积是多少?____________ ⑵如果增加排水管。使每小时排水量达到 Q(m3),那么将满池水排空所需时间t(h) 将如何变化?__________ ⑶写出t与Q之间关系式。____________ ⑷如果准备在5小时内将满池水排空,那么 每小时的排水量至少为____________。 ⑸已知排水管最多为每小时12 m3,则至少 __________h可将满池水全部排空。
(4,D 0)
试一试 相信自己 !
若有两并联用电器电路图如图所示:其 中一用电器电阻R1=8.5Ω,你能想办法 得到另一个用电器的电阻R2是多少?
R1
.
R2
.
小明向老师借了一个电流表,通过测量 得出I1=0.4A,I2=0.17A,因此他断言 R2=20Ω.你能说明他是怎样得出结论的吗?
说一说 你一定会有新的启示
1、经历分析实际问题中变量之间 的关系建立反比例函数模型,进 而解决实际问题的过程。
2、体会数学与现实生活的紧密性, 培养学生的情感、态度,增强应用 意识,体会数形结合的数学思想。
3、培养学生自由学习、运用代数 方法解决实际问题的能力。
忆一忆
1、什么是反比例函数?其图象是什 么?反比例函数的性质?

初中数学 反比例函数在实际问题中的应用有哪些

初中数学 反比例函数在实际问题中的应用有哪些

初中数学反比例函数在实际问题中的应用有哪些反比例函数在实际问题中有许多应用,下面列举一些常见的应用场景:1. 速度和时间的关系:在物理学和运动学中,速度和时间之间的关系通常可以用反比例函数来描述。

例如,当一个物体以恒定速度运动时,它所用的时间与所走的距离成反比。

反比例函数可以帮助我们计算在给定速度下所需的时间,或者在给定时间内所能达到的距离。

2. 工作和时间的关系:在工程学和生产领域中,工作和时间之间的关系通常可以用反比例函数来描述。

例如,如果一台机器在单位时间内完成的工作量是恒定的,那么完成某项工作所需的时间与工作量成反比。

反比例函数可以帮助我们计算在给定工作量下所需的时间,或者在给定时间内可以完成的工作量。

3. 面积和边长的关系:在几何学中,许多图形的面积和边长之间存在反比例关系。

例如,正方形的面积与边长的平方成反比,圆的面积与半径的平方成反比。

反比例函数可以帮助我们计算在给定面积下的边长,或者在给定边长下的面积。

4. 电阻和电流的关系:在电学中,电阻和电流之间的关系通常可以用反比例函数来描述。

根据欧姆定律,电阻与电流成反比。

反比例函数可以帮助我们计算在给定电阻下的电流,或者在给定电流下的电阻。

5. 质量和密度的关系:在物理学中,物体的质量和密度之间通常存在反比例关系。

根据定义,密度等于物体的质量除以其体积。

因此,当质量增加时,密度会减小,反之亦然。

反比例函数可以帮助我们计算在给定密度下的质量,或者在给定质量下的密度。

6. 投资和收益的关系:在金融领域中,投资和收益之间通常存在反比例关系。

例如,当我们投资的金额增加时,相同的投资收益率下的收益会减少。

反比例函数可以帮助我们计算在给定投资金额下的收益,或者在给定收益率下的投资金额。

这些都是反比例函数在实际问题中的一些常见应用。

通过将实际问题转化为反比例函数的形式,我们可以更好地理解和解决这些问题,并在实际生活中应用数学知识。

初中数学利用反比例函数关系式解决实际问题建议收藏

初中数学利用反比例函数关系式解决实际问题建议收藏

初中数学利用反比例函数关系式解决实际问题建议收藏反比例函数是数学中的一种函数关系,其中变量之间存在倒数关系。

在实际生活中,我们经常会遇到一些与反比例关系相关的问题,如物体的速度与时间的关系、工人的工作效率与工作时间的关系等等。

利用反比例函数关系式解决这些实际问题是非常重要的数学应用。

首先,让我们先回顾一下反比例函数的定义和特性。

反比例函数是指当两个变量的乘积为常数时,它们之间存在反比关系。

具体而言,如果变量x和y之间满足xy=k(k为常数),则可以表示为y=k/x。

在这个函数中,x称为自变量,y称为因变量,k称为比例常数。

通过理解反比例函数的特性,我们可以利用它来解决实际问题。

下面举几个例子来说明。

例子1:电动车每小时行驶的距离与电池电量之间存在反比例关系。

当电池电量为100%,电动车可以行驶100km。

那么当电池电量为80%时,电动车可以行驶多远?首先,我们已知电池电量与行驶距离之间存在反比例关系。

设电池电量为x%,行驶距离为y km,则有xy=100。

由题可知,当电池电量为100%时,行驶距离为100km。

代入反比例关系式得100y=100,推导出y=1、所以当电池电量为80%时,电动车可以行驶1 km。

例子2:工人完成一件工作需要10小时。

如果增加一个助手,工作效率翻倍。

那么增加两个助手后,需要多少小时完成这件工作?我们已知工作时间与工作效率之间存在反比例关系。

设工作时间为x小时,工作效率为y,根据题意可得xy=10。

由题可知,增加一个助手后工作效率翻倍,即2y。

代入反比例关系式得2xy=10,推导出x=5、所以增加两个助手后,需要5小时完成这件工作。

例子3:水池自来水管每分钟注满该水池的1/4、如果将水池换成大水缸,注满水缸需要25分钟。

那么换成同样的自来水管,注满水缸需要多少分钟?我们已知注水时间与水池容积之间存在反比例关系。

设注水时间为x 分钟,水池容积为y,根据题意可得xy=25、由题可知,注满水缸需要25分钟。

八年级数学实际问题与反比例函数4

八年级数学实际问题与反比例函数4

做 一 做
(2)完成下表,如果以此蓄电池为电源用电器 电流不得超过18A,那么用电器的可变电阻应控 制在什么范围内?
R / ( Ω) 3 I / A 12 4 9 5 7.2 6 6 7 8 9 4 10 3.6
36/7 4.5
读 图
问题与情景
在自然科学电学知识中,用电器的输出功率P(瓦),
两端的电压U(伏)及用电器的电阻R(欧姆)有如下
F小刚 F小健
600 600
1 2
F小强 F小明
600 400
1 5 3
L
600 300
600 200
你能画出图象吗? 图象会在第三象限吗?
发现:动力臂越长,用的力越小。
ቤተ መጻሕፍቲ ባይዱ即动力臂越长就越省力
活动
(3)假定地球重量的近似值为6×1025牛顿 即为阻力),假设阿基米德有500牛顿的力量, 阻力臂为2000千米,请你帮助阿基米德设计 该用多长动力臂的杠杆才能把地球撬动. 解:(1)由已知得F×L=6×1025×2×106=1.2×1032 变形得:
练习4:某厂从2001年起开始投入技术改进资金, 经技术改进后其产品成本不断降低,具体数据 如下表:
年度 投入技改资金x(万元) 2001 2.5 2002 3 6 2003 2004 4 4.5 4.5 4
产品的成本y(万元/件) 7.2
⑴认真分析表格中的数据,确定这两组数据之间 的函数关系,求出解析式。 ⑵按照这种规律,若 ⑵按照这种规律,若2005 2005年投入技改资金为 年投入技改资金为5 5万 万 元,预计把每件的生产成本降低到 3.2万元,则 元,预计生产成本每件比2004年降低多少万元? 还需投入多少技改资金?(结果精确到0.01万元)

实际问题和反比例函数的应用课件

实际问题和反比例函数的应用课件


与三角函数的结合
三角函数和反比例函数在周期性上的联系
三角函数具有周期性,而反比例函数不具备周期性,但两者在某些情况下可以相互转化。
三角函数和反比例函数的图像变换
通过适当的变量替换和变换,可以将反比例函数的图像转换为三角函数的图像,反之亦然 。
三角函数和反比例函数的应用场景
三角函数常用于描述周期性变化的现象,如振动、波动等;而反比例函数则常用于描述变 量之间成反比的情况。
PART 05
反比例函数在实际问题中 的应用案例
REPORTING
经济问题中的应用
总结词
反比例函数在经济领域的应用广泛,涉及供需关系、运输成本、价格 与销售量等。
供需关系
在市场经济中,反比例函数可用于描述商品供应和需求之间的关系, 当供应量增加时,需求量减少,反之亦然。
运输成本
在物流和运输领域,反比例函数可用于分析运输成本与运输距离的关 系,随着运输距离的增加,运输成本通常呈反比例降低。
REPORTING
解决实际问题的方法
确定问题类型
建立数学模型
首先需要明确问题是关于反比例函数 的实际应用,还是需要利用反比例函 数解决其他数学问题。
根据问题描述,将实际问题转化为数 学问题,建立反比例函数的数学模型 。
分析问题背景
了解问题的实际背景,如物理、化学 、工程等领域的实际问题,有助于更 好地理解问题并建立数学模型。
定义域
所有非零实数。
值域
所有非零实数。
反比例函数的图像
01
当 k > 0 时,图像位于第一象限 和第三象限;
02
当 k < 0 时,图像位于第二象限 和第四象限。
反比例函数的性质
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、经历分析实际问题中变量之间 的关系建立反比例函数模型,进 而解决实际问题的过程。
2、体会数学与现实生活的紧密性, 培养学生的情感、态度,增强应用 意识,体会数形结合的数学思想。
3、培养学生自由学习、运用代数 方法解决实际问题的能力。
忆一忆
1、什么是反比例函数?其图象是什 么?反比例函数的性质? 2、小明家离学校3600米,他骑自行 车的速度x(米/分)与时间y(分) 之间的关系式是_______________ 若他每分钟骑450米,需_____分钟 到达学校。
请你说一说本节课自己的收
获并对自己参与学习的程度做
出简单的评价.
谢谢! 请多提宝贵意见!

/ 信息分类网 nqx48kop
耿家父子们和李尚武不认识他们,他们也不认识耿家父子们和李尚武。这些孩子们大概在想:管他们是谁呢,今儿个是月初的 第一个集市日,来赶集的人多着呢!因此,他们并没有驻足留意,都自管蹦来蹿去地继续玩儿去了。远远望见自家的院门儿了, 耿老爹不由地脚下用力加快了步伐。不一会儿,从后面快步赶上来三个人。耿正注意到,当他们从车旁超过去的时候,都回头 专注地张望了几眼,尤其死死地盯住包裹着红色篷布的寿棺多看了几眼。熟悉的院门儿近在咫尺了:简洁的门楼,磨得光滑发 亮的黄铜门环„„耿老爹激动得浑身直打颤!几乎就在同时,一左一右挽着爹爹胳膊的耿英和耿直,也都控制不住地浑身打颤 了!是啊,九年半了!此时,谁的心情又能够做得到不会万分激动呢!院门儿忽然打开了,两个十四、五岁的女娃儿说笑着并 肩走了出来。耿老爹定睛一看,其中的一个女娃儿,长得实在是太像九年半之前跟他南下时的大女儿耿英了!他不由地拽着耿 英和耿直快步向前,猛然之间脱口喊出一声:“兰儿!你就是俺的兰儿啊!”耿英和耿直也同时喊道:“兰兰!”看着愣在一 旁的另一个女娃儿,耿英又喊道:“你是妞儿啊!”两个女娃儿且不答应,同时一个左右急转身,一起冲回院儿里去了!随即 就有两个声音传出来:“娘,你快来看啊,是不是俺爹和俺哥哥姐姐们回来了呀!”“婶儿,你快来看啊,那个喊俺‘妞儿’ 的,好像是俺耿英姐姐呢!”耿正赶快招呼李尚武将两挂骡车停在门前。在停车的当儿,耿正又注意到,那三个从后面快步赶 上来超过去的人也停下来了。他们一起朝这边望望之后,又快步往前走了。耿正不由得皱皱眉头,心想:今儿个固然是逢集人 杂一些,但这三个人的行迹可是有些个不太正常呢!院儿内传出来一阵轻重不一急促的脚步声,耿兰和董妞儿搀扶着头发花白 的郭氏深一脚浅一脚地出门来了。“娘!娘啊!”随着这明显带着颤音的一声喊,耿英和耿直泪如雨下„„耿老爹早已老泪纵 流泣不成声„„他定眼望着憔悴残老了许多的贤妻,哽咽着艰难地说着:“他,他娘啊,你,你受苦了„„”由于太激动了, 郭氏的身子在剧烈地颤抖着。她泪流满面,但张着嘴巴却只能吃力地吐出来几个字:“他,他爹啊,是,是,是你爷儿们吗? 你们,可,可回来啦„„”“是俺啊,俺和咱娃儿们,都,都回来了„„”耿英和耿直放开爹爹,一起扑上来抱住了日思夜想 的亲娘,娘儿三个直哭得声嘶力竭„„搀扶着郭氏的耿兰和董妞儿见状,同时放开手退在一旁呆若木鸡!看到没有人搀扶的爹 爹一个趔趄几乎摔倒,耿正一个箭步上前用力扶住,同时强忍着激动的颤栗尽量镇静地颤声低喊:“英子,小直子,你们忍住 点儿!娘,娘啊,你快看看,这是谁啊!”耿英和耿直听了哥
D (4,0)
试一试
R1
相信自己 !
若有两并联用电器电路图如图所示:其 中一用电器电阻R1=8.5Ω,你能想办法 得到另一个用电器的电阻R2是多少?
. .
R2
小明向老师借了一个电流表,通过测量 得出I1=0.4A,I2=0.17A,因此他断言 R2=20Ω.你能说明他是怎样得出结论的吗?
说一说
你一定会有新的启示
(5)请利用图象对(2)和 (3)作出直观解释。 O S/㎡
1、蓄电池的电压为定值。使用此电源时, 电流I(A)与电阻R(Ω)之间的函数关 系如图所示:
通过图象你能得到哪些信息?
做 一 做
(1) 蓄电池的电压是多少?你能写出这 一函数的表达式吗?电流是电阻的反比例 函数吗?
做 一 做
(2)完成下表,如果以此蓄电池为电源用 电器电流不得超过18A,那么用电器的可变 电阻应控制在什么范围内?
2、如图所示,正比例函数y=k1x的图象与 反比例函数y=
k2 的图象交于A、B两点,其 x 3
中点A的坐标为(
,2
3
)。
2 33
(1)分别写出这两个函数的表达式。 (2)你能求出点B的坐标吗? 你是怎样求的? (3)若点C坐标是(–4, 0).请求△BOC的面积。 C (4)试着在坐标轴上找 点D,使△AOD≌△BOC。
R / ( Ω) I / A 3 4 5 6 7 8 9 4 10
做 一 做
练一 练
1、某蓄水池的排水管每小时排水8m3 , 6h可将满池水全部排空。 ⑴蓄水池的容积是多少?____________ ⑵如果增加排水管。使每小时排水量达到 Q(m3),那么将满池水排空所需时间t(h) 将如何变化?__________ ⑶写出t与Q之间关系式。____________ ⑷如果准备在5小时内将满池水排空,那么 每小时的排水量至少为____________。 ⑸已知排水管最多为每小时12 m3,则至少 __________h可将满池水全部排空。
想一想
我校科技小组进行野外考察,途中 遇到一片十几米宽的烂泥湿地。 1、为安全迅速通过这片 湿地,想一想,我们应 该怎样做? 2、他们沿着前进路线铺垫了若干木板 ,构筑成一条临时通道,从而顺利完成 任务。你能帮助他解释这个道理吗?
3、当人和木板对湿地的压力一定时,随 着木板面积 S(㎡)的变化,人和木板对 地面的压强P (Pa)将如何变化? 如果人和木板对湿地地面的压力合计为 600N,那么 (1)用含S的代数式表示P(Pa), P是S的反比例函数吗?为什么? (2)当木板面积为0.2 ㎡时,压强是多少? (3)如果要求压强不超过6000 Pa , 木板面积至少要多少? (4)在直角坐标系中作出相应的函数图 P/ Pa 象。
相关文档
最新文档