椭圆的简单几何性质1标准课件
合集下载
3.1.2 第1课时 椭圆的简单几何性质(课件)

经典例题
题型二 由几何性质求椭圆的标准方程
(2)由题意知 e2=1-ab22=12, 所以ba22=12,即 a2=2b2, 设所求椭圆的方程为2xb22+by22=1 或2yb22+bx22=1.
将点 M(1,2)代入椭圆方程得21b2+b42=1 或24b2+b12=1,
解得 b2=92或 b2=3. 故所求椭圆的方程为x92+y92=1 或y62+x32=1.
a 23 2
当堂达标
6.已知椭圆 C: x2 y2 1( a b 0 ),点 A,B 为长轴的两个端点,若在椭
a2 b2
圆上存在点
P,使
k AP
kBP
1 3
,
0
,求椭圆的离心率
e
的取值范围.
解:由题可知 Aa,0 , Ba,0 ,设 P x0,y0 ,
由点
P
在椭圆上,得
y02
b2 a2
∵|F1F2|=2c,|F1F2|=|PF2|,∴3a-2c=2c,∴e=ac=34.
当堂达标
5.椭圆的中心在原点,焦点在 x 轴上,焦距为 2
6 ,且经过点 3,
6 2
.
(1)求满足条件的椭圆方程; (2)求该椭圆的长半轴的长、顶点坐标和离心率.
解:(1)设椭圆的标准方程为
x2 a2
y2 b2
当堂达标
4.设 F1,F2 是椭圆 E:ax22+by22=1(a>b>0)的左、右焦点,P 为直线 x=32a上
一点,△F2PF1 是底角为 30°的等腰三角形,则 E 的离心率为________.
3 4
解析:由题意,知∠F2F1P=∠F2PF1=30°,
∴∠PF2x=60°.∴|PF2|=2×32a-c=3a-2c.
椭圆的简单几何性质ppt课件

由 e 1 ,得 1 k 1 ,即 k 5 .
2
94
4
∴满足条件的 k 4 或 k 5 .
4
例3:酒泉卫星发射中心将一颗人造卫星送入到 距地球表面近地点(离地面 近的点)高度约200km, 远地点(离地面最远的点)高度约350km的椭圆轨 道(将地球看作一个球,其半径约为6371km),求 椭圆轨道的标准方程。(注:地心(地球的中心)位
2.椭圆的标准方程
标准方程 图形
焦点在x轴上
x2 + y2 = 1a > b > 0
a2 b2
y P
F1 O F2
x
焦点在y轴上
x2 + y2 = 1a > b > 0
b2 a2
y
F2
P
O
x
F1
焦点坐标 a、b、c 的关系 焦点位置的判断
F1 -c , 0,F2 c , 0
F1 0,- c,F2 0,c
分别叫做椭圆的长轴和短轴。 A1
o
A2 x
B2(0,-b)
a、b分别叫做椭圆的长半轴长和短半轴长。
思考:椭圆的焦点与椭圆的长轴、短轴有什么关系? 焦点落在椭圆的长轴上
椭圆的简单几何性质
长轴:线段A1A2; 长轴长
短轴:线段B1B2; 短轴长
注意
焦距
|A1A2|=2a |B1B2|=2b |F1F2| =2c
y
B2(0,b)
①a和b分别叫做椭圆的 A1 (-a, 0)
b
a
A2 (a, 0)
长半轴长和短半轴长;
F1 a
o c F2 x
② a2=b2+c2,|B2F2|=a;
B1(0,-b)
椭圆的简单几何性质ppt课件

探究 离心率对椭圆形状的影响
a=1.81
c=1.2
a=1.81
c=1.5
c
=0.66
a
c
=0.83
a
离心率越大,椭圆越扁
离心率越小,椭圆越圆
c
a 2 b2
b2
e与a,b的关系: e
1 2
2
a
a
a
离心率反映
椭圆的扁平
程度
焦点的位置
焦点在x轴上
y
图形
标准
方程
范围
对称性
顶点坐标
轴长
焦点坐标
a
b
a 2 b 2 1,
消去y,得关于x的一元二次方程.
2
2
相交
当Δ>0时,方程有两个不同解,直线与椭圆_____;
y
当Δ=0时,方程有两个相同解,直线与椭圆_____;
相切
B(x2,y2)
相离
当Δ<0时,方程无解,直线与椭圆_____.
A(x1,y1)
3.弦长公式
设直线l与椭圆的两个交点分别为A(x1,y1),B(x2,y2).
x12
y12
2 1
2
a
b
2
2
x
y
2 2 1
b2
a2
两式相减得:
y1 y1
b2 x1 x2
b2 x0
2
2
x1 x2
a y1 y1
a y0
k AB
2
2
【典例 2】已知椭圆 C:2 + 2=1(a>b>0)的左焦点为 F,过点 F 的直线 x-y+ 2=0 与椭
a=1.81
c=1.2
a=1.81
c=1.5
c
=0.66
a
c
=0.83
a
离心率越大,椭圆越扁
离心率越小,椭圆越圆
c
a 2 b2
b2
e与a,b的关系: e
1 2
2
a
a
a
离心率反映
椭圆的扁平
程度
焦点的位置
焦点在x轴上
y
图形
标准
方程
范围
对称性
顶点坐标
轴长
焦点坐标
a
b
a 2 b 2 1,
消去y,得关于x的一元二次方程.
2
2
相交
当Δ>0时,方程有两个不同解,直线与椭圆_____;
y
当Δ=0时,方程有两个相同解,直线与椭圆_____;
相切
B(x2,y2)
相离
当Δ<0时,方程无解,直线与椭圆_____.
A(x1,y1)
3.弦长公式
设直线l与椭圆的两个交点分别为A(x1,y1),B(x2,y2).
x12
y12
2 1
2
a
b
2
2
x
y
2 2 1
b2
a2
两式相减得:
y1 y1
b2 x1 x2
b2 x0
2
2
x1 x2
a y1 y1
a y0
k AB
2
2
【典例 2】已知椭圆 C:2 + 2=1(a>b>0)的左焦点为 F,过点 F 的直线 x-y+ 2=0 与椭
2.1.2《椭圆的简单几何性质(一)》ppt课件

y
B2
b
A1
A2
F1 O c F2
x
B1
讲授新课 3.顶点 线段A1A2、B1B2分别叫做椭圆的长轴和 短轴. 长轴的长等于2a. 短轴的长等于2b.
a叫做椭圆的长半轴长. b叫做椭圆的短半轴长.
|B1F1|=|B1F2|=|B2F1| =|B2F2|=a.
y
B2
b
a
A1
A2
F1 O c F2
x
B1
a叫做椭圆的长半轴长. b叫做椭圆的短半轴长.
y
B2
b
A1
A2
F1 O c F2
x
B1
讲授新课 3.顶点 线段A1A2、B1B2分别叫做椭圆的长轴和 短轴. 长轴的长等于2a. 短轴的长等于2b.
a叫做椭圆的长半轴长. b叫做椭圆的短半轴长.
|B1F1|=|B1F2|=|B2F1| =|B2F2|=
讲授新课 2.对称性
x2 a2
y2 b2
1
(a>b>0).
y
F1 O
F2
x
讲授新课
2.对称性
x2 a2
y2 b2
1
(a>b>0).
在椭圆的标准方程里,把x换成-x,或 把y换成-y,或把x、y同时换成-x、-y时, 方程有变化吗?这说明什么?
y
F1 O
F2
x
Y 关于y轴对称
P2(-x,y)
x2 a2
y2 b2
1,
y b B2
A1
-a F1 O
F2
椭圆位于直线x=±a和 y=±b围成的矩形里.
-b B1
A2 ax
练习1:分别说出下列椭圆方程中x,y的取值范围
高中数学选择性必修一课件:椭圆的简单几何性质(第1课时)

由①得 c2≥b2,即 c2≥a2-c2,
∴a2≤2c2,∴e2=ac22≥12.
又 0<e<1,∴e∈ 22,1. 由②得 c2-b2<c2,此式恒成立.
综上所述,椭圆的离心率 e 的取值范围是 22,1. 方法三:设椭圆与 y 轴的一个交点为 P,连接 PF1,PF2. ∵椭圆上存在一点 M,使∠F1MF2=90°, ∴∠F1PF2≥90°,则 c≥b, ∴c2≥b2=a2-c2,∴ac22≥12,∴e≥ 22或 e≤- 22, 又 0<e<1,∴椭圆的离心率 e 的取值范围为 22,1.
3.1.2 椭圆的简单几何性质(第1课时)
要点 1 椭圆的简单几何性质
焦点的位置
焦点在 x 轴上
图形 标准方程
ax22+by22=1(a>b>0)
焦点在 y 轴上 ay22+bx22=1(a>b>0)
范围 顶点 轴长 焦点 焦距 对称性
离心率
|x|≤a,|y|≤b
|x|≤b,|y|≤a
(±a,0),(0,±b)
c趋近于a,b= a2-c2越小 ―→ 椭圆越__扁_平__
1.下列说法是否正确? ①椭圆的中心一定是原点; ②椭圆有一个对称中心及无数条对称轴; ③椭圆的长轴一定比短轴长. 答:①不正确,②不正确,③正确.
2.椭圆性质的补充 (1)椭圆上到中心距离最小的点是短轴的两个端点(即椭圆上的点到椭圆中心 的距离的最小值为短半轴长 b),到中心距离最大的点是长轴的两个端点(即椭圆 上的点到椭圆中心的距离的最大值是长半轴长 a). (2)椭圆上到焦点距离最大的点(称为“远日点”)和最小的点(称为“近日 点”)是长轴的两个端点,最大距离为 a+c,最小距离为 a-c.
椭圆的简单几何性质 课件

整理得 kAB=xy22--xy11=-396xy22++xy11,
由于 P(4,2)是 AB 的中点,∴x1+x2=8,y1+y2=4,
于是 kAB=-396××84=-12, 于是直线 AB 的方程为 y-2=-12(x-4), 即 y=-12x+4.
小结 处理直线与椭圆相交的关系问题的通法是通过解直 线与椭圆构成的方程.利用根与系数的关系或中点坐标公 式解决,涉及弦的中点,还可使用点差法:设出弦的两端 点坐标,代入椭圆方程,两式相减即得弦的中点与斜率的 关系.
椭圆的简单几何性质
1.点 P(x0,y0)与椭圆xa22+yb22=1 (a>b>0)的位置关系: 点 P 在椭圆上⇔____ax_202_+__by_202=__1____; 点 P 在椭圆内部⇔___ax_202+ ___by_202<_1____; 点 P 在椭圆外部⇔___ax_202_+__by_202_>_1___.
所以x1+2 x2=116+k2-4k82k=4,解得 k=-12,且满足 Δ>0. 这时直线的方程为 y-2=-12(x-4), 即 y=-12x+4.
方法二
设 A(x1,y1),B(x2,y2),则有3x6312x+622+y921y9=22=11,
两式相减得x22-36x21+y22-9 y21=0,
问题 3 如何求最大距离? 答案 由图可知,k=-25 时,直线 m 与椭圆的交点 到直线 l 的距离最大.
小结 本题通过对图形的观察分析,将求最小距离问题转 化为直线与椭圆的位置关系问题. 解此类问题的常规解法是直线方程与椭圆方程联立,消去 y 或 x 得到关于 x 或 y 的一元二次方程,则(1)直线与椭圆相 交⇔Δ>0;(2)直线与椭圆相切⇔Δ=0;(3)直线与椭圆相离 ⇔Δ<0,所以判定直线与椭圆的位置关系,方程及其判别式 是最基本的工具.
3.1.2椭圆的简单几何性质(第1课时)课件(人教版)

基础巩固2:由椭圆的几何性质求方程
[例2]求适合下列条件的椭圆的标准方程.
(1)焦点在x轴上, a 6, e 1 ; c 2 b2 32 x2 y2 1
3
36 32
(2)焦点在y轴上, c 3, e 3 ; 5
a 5 b2
16
y2 x2 1 25 16
(3)过P(3,0), Q(0,2)两点;
-a≤x≤a,-b≤y≤b
-b≤x≤b,-a≤y≤a
长轴为A1A2=2a,短轴为B1B1=2b 关于x轴、y轴、原点对称
e c a
1
b2 a2
| F1F2 | | PF1 | | PF2
|
0 e 1
e越接近1, 椭圆越扁平; e越接近0, 椭圆越接近圆.
基础巩固1:由方程确定椭圆的几何性质
x2 36
y2 20
1上在第一象限的点, 且MF1F2
为等腰三角形, 则M的坐标为_(_3,__1_5_)___.
y
M
析: MF1 F1F2 8
由焦半径的公式得MF1
a exM
6
4 6
xM
8
xM 3, 代入方程yM 15.
y
F1 O
x F2
a2 36 a 6
析:S 14 2
82
P3(x, y)
设P(
x,
y
)是椭圆上任一点,
则P满足
x a
2 2
y2 b2
1,
P1(x, y)也满足方程 任一点P关于x轴的对称点也在椭圆上
椭圆关于x轴对称
P2 (x, y)也满足方程 椭圆关于y轴对称 P3(x, y)也满足方程 椭圆关于原点对称
P1(x, y)
椭圆的简单几何性质(第1课时)(30张PPT)高中数学人教A版选择性必修第一册

椭圆的简单几何性质
例3.已知F₁,F₂ 是椭圆的两个焦点,过F₁且与椭圆长轴垂直的直线交椭圆于A,B 两点,若△ABF₂是正三角形,求该椭圆的离心率.解:不妨设椭圆的焦点在x轴上,因为ABLF₁F₂, 且△ABF₂ 为正三角形,所以在Rt△AF₁F₂中,∠AF₂F₁=30°,令|AF₁ I=x, 则|AF₂ I=2x, 所以|F₁F₂ I= √ |AF₂ I²-|AF₁ I²= √3x=2c,再由椭圆的定义,可知|AF₁ I+|AF₂ I=2a=3x,所)
椭圆的简单几何性质
03性质应用P A R T 0 N
于是a=5,b=4,c= √25-16=3.因此,椭圆的长轴和短轴的长分别是2a=10, 和2b=8,离心率两个焦点坐标分别是F₁ (-3,0)和F₂ (3,0),四个顶点坐标分别是A₁ (-5,0),A₂ (5,0),B₁ (0,-4),B₁ (0,4).
·
·
椭圆的简单几何性质
椭圆的简单几何性质 方法总结利用性质求椭圆的标准方程的方法:(1)确定标准方程的形式.(2)由a,b,c,e 的关系列出方程.(3)利用待定系数法求出椭圆方程,焦点不明确时要分类讨论.
练习:求适合下列条件的椭圆的标准方程.(1)长轴长是短轴长的5倍,且过点A(5,0).(2)离心率 焦距为12.解:(1)若椭圆焦点在x 轴上,设其标准方程为由题意得
椭圆的简单几何性质
一个焦点F(c,O), 则直线l 的方程 ,即bx+cy-bc=0.
解 , 即 故选B.
由题意知
练习:若椭圆 的离心率 则 k 的值等于 解:分两种情况进行讨论:当焦点在x 轴 上 时 ,a²=k+8,b²=9, 得 c²=k—1,又 少 解得k=4.当焦点在y 轴 上 时 ,a²=9,b²=k+8, 得 c²=1—k,
例3.已知F₁,F₂ 是椭圆的两个焦点,过F₁且与椭圆长轴垂直的直线交椭圆于A,B 两点,若△ABF₂是正三角形,求该椭圆的离心率.解:不妨设椭圆的焦点在x轴上,因为ABLF₁F₂, 且△ABF₂ 为正三角形,所以在Rt△AF₁F₂中,∠AF₂F₁=30°,令|AF₁ I=x, 则|AF₂ I=2x, 所以|F₁F₂ I= √ |AF₂ I²-|AF₁ I²= √3x=2c,再由椭圆的定义,可知|AF₁ I+|AF₂ I=2a=3x,所)
椭圆的简单几何性质
03性质应用P A R T 0 N
于是a=5,b=4,c= √25-16=3.因此,椭圆的长轴和短轴的长分别是2a=10, 和2b=8,离心率两个焦点坐标分别是F₁ (-3,0)和F₂ (3,0),四个顶点坐标分别是A₁ (-5,0),A₂ (5,0),B₁ (0,-4),B₁ (0,4).
·
·
椭圆的简单几何性质
椭圆的简单几何性质 方法总结利用性质求椭圆的标准方程的方法:(1)确定标准方程的形式.(2)由a,b,c,e 的关系列出方程.(3)利用待定系数法求出椭圆方程,焦点不明确时要分类讨论.
练习:求适合下列条件的椭圆的标准方程.(1)长轴长是短轴长的5倍,且过点A(5,0).(2)离心率 焦距为12.解:(1)若椭圆焦点在x 轴上,设其标准方程为由题意得
椭圆的简单几何性质
一个焦点F(c,O), 则直线l 的方程 ,即bx+cy-bc=0.
解 , 即 故选B.
由题意知
练习:若椭圆 的离心率 则 k 的值等于 解:分两种情况进行讨论:当焦点在x 轴 上 时 ,a²=k+8,b²=9, 得 c²=k—1,又 少 解得k=4.当焦点在y 轴 上 时 ,a²=9,b²=k+8, 得 c²=1—k,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、椭圆的对称性 2 2 x y 在 2 2 1(a b 0)之中, a b
把(X)换成(-X),方程不变,说明椭圆关于( Y )轴对称; 把(Y)换成(-Y),方程不变,说明椭圆关于( X )轴对称; 把(X)换成(-X), (Y)换成(-Y),方程还是不变,说明椭圆关 y 于( 原点 )对称;
四、椭圆的离心率
c e a
a b b 1 a a
2 2 2
2
2
练习5
下面两个椭圆中,哪个 更接近于圆?
x y x 3y 9 与 1 16 12
2 2
2
2
小结一:基本元素
{1}基本量:a、b、c、e、(共四个量) {2}基本点:顶点、焦点、中心(共七个点) {3}基本线:对称轴(共两条线) 请考虑:基本量之间、 基本点之间、基本线之 间以及它们相互之间的 关系(位置、数量之间 的关系) y B1(0,b)
椭圆的长轴长是: 2a=10 椭圆的短轴长是: 2b=8 焦点坐标是:
2
2
c 3 离心率: e 0.6 a 5
四个顶点坐标是:
F 1 (3,0), F 2 (3,0)
A1 (5,0), A2 (5,0), B1 (0,4), B2 (0,4)
巩固练习:
x2 y2 1. 若点P(x,y)在椭圆 25 9 1
0, ±b), ±a, 0)
y B1(0,b) o
A2(a,0) x
B2(0,-b)
轴长和短半轴长。
练习3
口答下列椭圆的顶点坐 标及长轴和短轴长。 x y 1 9 4
2 2
顶点是: (3,0)、 (3,0)、 (0,2)、 (0,2) 长轴长是6,短轴长是4.
根据前面所学有关知识画出下列图形
o c
B1
A2
练习1. 口答下列椭圆的范围。 x y 1 25 16
5 ≤ x ≤ 5, 4 ≤ y ≤ 4
2 2
椭圆对称性
x y 2 1(a b 0) 2 a b
2 2
关于y轴对称
P2(-x,y) P(x,y)
Y
O
X
关于原点对称
P3(-x,-y)
P1(x,-y)
关于x轴对称
4 6
。
分析:题目没有指出焦点的位置,要考虑两种位置
0 为长轴端点时,a 解:(1)当 A2,
2, b 1 ,
2 2 x y 椭圆的标准方程为: 1; 4 1 0 为短轴端点时, b 2 , a 4 , (2)当 A2, 2 2 x y 1; 椭圆的标准方程为: 4 16 2 2 2 2 x y x y 1或 1 综上所述,椭圆的标准方程是 4 1 4 16
所以,坐标轴是 椭圆的对称轴,原点 是椭圆的对称中心。
o
x
中心:椭圆的对称中心叫做椭圆的中心。
三、椭圆的顶点
令 x=0,得 y=?,说明椭圆与 y轴的交点(
x y 在 2 2 1(a b 0)中, a b
2
2
令 y=0,得 x=?, 说明椭圆与 x轴的交点(
*顶点:椭圆与它的对称轴 的四个交点,叫做椭圆的顶 点。 *长轴、短轴: 线段 A1 A1A2、B1B2分别叫做椭圆的 长轴和短轴。 a、b分别叫做椭圆的长半
(4)在x轴上的一个焦点与短轴两端点的连线互相垂直, 2 2 且焦距为6 x y
18
9
1
求椭圆的标准方程时, 应: 先定位(焦点), 再定量(a、b) 当焦点位置不确定时,要讨论,此时有两个解!
求椭圆的离心率:
1、若椭圆的焦距长等于它的短轴长,则其离心率 为
2 2
。
2、若椭圆的两个焦点及一个短轴端点构成正三角形, 则其离心率为
x y 1 (1 ) 25 16
4 B2 3 2 1 A2 A1 0 12 3 4 5 x -5 -4 -3 -2 -1 -1 -2 -3 -4
2 2
x y 1 (2) 25 4
y
4 3 B 2 2 1 A2 A1 0 12 3 4 5 x -5 -4 -3 -2 -1 -1 -2 -3 B1 -4
x y 2 1(a b 0) 2 a 2 b 2 y x 2 1(a b 0) 2 a b
观察:椭圆
2 x y 一、范围: 1, 1得: 2 2 a b -a≤x≤a, -b≤y≤b 知
2
椭圆落在x=±a,y= ± b组成的矩形中 y
B2 A1
b F1
a F2
1 3 1 2
。
3、若椭圆的 的两个焦点把长轴分成三等分,则其
离心率为 。
求椭圆的离心率:
例 3 : 椭 圆
b 7
x2 y 2 2 1 2 a b
的 左 焦 点 为
F1 (c,0), A(a,0), B(0, b) 是两的顶点,如果 F1 到直
线 AB 的距离为
,求椭圆的离心率
变式训练:
A1
o B2(0,-b)
A2 x
|MF1|+|MF2|=2a (2a>|F1F2|) 定 义 一个框,四个点,注意光滑和圆扁,莫忘对称要体现 y
y M F2 x
2 2
F1 O F2M x图 形源自F12 2O
方 程 范 围 对称性 焦 点 顶 点
x y 2 1 2 a b
x y a b 0 2 2 1 a b 0 b a |x| a |y| b |x| b |y| a
高二数学组
复习:
1.椭圆的定义:
到两定点F1、F2的距离之和为常数(大于|F1F2 |)的 动点的轨迹叫做椭圆。
| PF1 | | PF2 | 2a(2a | F1F2 |)
2.椭圆的标准方程是: 2 2
当焦点在X轴上时 当焦点在Y轴上时
3.椭圆中a,b,c的关系是:
2 2 2 a =b +c
关于x轴、y轴、原点对称 (c,0)、(c,0) (a,0)、(0,b) (0,c)、(0,c) (b,0)、(0,a)
离心率
c e a
2 + 25y2 =400的长轴和短轴的长、离心 求椭圆 16 x 例1 率、焦点和顶点坐标。
x y 1 解:把已知方程化成标准方程 2 2 5 4 a 5, b 4, c 25 16 3
练习6.已知椭圆方程为 6x y 6 则
它的长轴长是: 短轴长是: 焦距是: 离心率等于: 焦点坐标是:
2
2
2 6
; ;
2
2 5
30 6
(0, 5)
; ;
___ (0, - 5) ;
(1, 0)(- 1, 0); 顶点坐标是:(0, 6) (0,- 6) _______
外切矩形的面积等于:
2
2
y
B1
c 离心率:椭圆的焦距与长轴长的比: e a 叫做椭圆的离心率。 [1]离心率的取值范围:0<e<1
[2]离心率对椭圆形状的影响: 1)e 越接近 1,c 就越接近 a,从而 b就越小,椭 圆就越扁 2)e 越接近 0,c 就越接近 0,从而 b就越大,椭 圆就越圆 [3]e与a,b的关系:
4.说出椭圆 和焦点坐标
4x y 16的长轴长,短轴长,顶点
2 2
1 x2 y2 已知椭圆 1的离心率 e ,求 k 的值 2 k 8 9
解:当椭圆的焦点在
2
2
思考:
x 轴上时,
2
a k 8 ,b 9 ,得 c k 1.
1 由 e ,得:k 2
2
4
2
当椭圆的焦点在
2
y 轴上时,
a 9 , b k 8 ,得 c 1 k . 1 5 1 k 1 ,即 k . 由e ,得 9 4 2 4 5 ∴满足条件的 k 4 或 k . 4
0 ,其长轴长是短轴长 例2 椭圆的一个顶点为 A2, 的2倍,求椭圆的标准方程.
变式训练:求适合下列条件的椭圆的标准方程
1 (1) a=6, e= , 焦点在x轴上 3
2
x y 1 36 32
2 2 2
2
2
x y y x (2) 离心率 e=0.8, 焦距为8 1或 1 25 9 25 9 2 2 2 2 x y y x (3) 长轴是短轴的2倍, 且过点P(2,-6) 1或 1 148 37 52 13
x2 y 2 2 1 2 1.椭圆 a b 的左焦点 F1 作
x 轴的垂线交椭圆于
F PF 60 P 点, F2 为右焦点,若 1 2 ,求椭圆的离心
率。
小结:
1.知识小结: (1) 学习了椭圆的范围、对称性、顶点坐标、离 心率等概念及其几何意义。 (2) 研究了椭圆的几个基本量a,b,c,e及顶点、 焦点、对称中心及其相互之间的关系 2.数学思想方法: (1)数与形的结合,用代数的方法解决几何问题。 (2)分类讨论的数学思想
上,则点P(x,y)横坐标x的取值范围 上的点有 (1)P(-2,4) (2)P(-4,2) (3) P(-2,-4) (4)P(2,-4)
?
x2 y2 2.若点P(2,4)在椭圆 2 2 1(a b 0)上,下列是椭圆 a b
3. 中心在原点,焦点在x轴上,长轴、短轴的长分别为8和6 的椭圆方程为 ?