【2014西城二模】北京市西城区2014年高三数学(理科)二模试卷(word版)含答案
北京市西城区2014届高三上学期期末考试数学理试题Word版含答案

北京市西城区2013 — 2014学年度第一学期期末试卷高三数学(理科) 2014.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合{|02}A x x =<<,1{|||}B x x =≤,则集合A B =( )(A )(0,1)(B )(0,1](C )(1,2)(D )[1,2)3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 若3a =,2b =,1cos()3A B +=,则c =( ) (A )4(B(C )3(D4.执行如图所示的程序框图,输出的S 值为( ) (A )34 (B )45(C )56(D )12.已知复数z 满足2i=1iz +,那么z 的虚部为( ) (A )1-(B )i -(C )1(D )i5.已知圆22:(1)(1)1C x y ++-=与x 轴切于A 点,与y 轴切于B 点,设劣弧»AB 的中点为M ,则过点M 的圆C 的切线方程是( )6. 若曲线221ax by +=为焦点在x 轴上的椭圆,则实数a ,b 满足( ) (A )22a b > (B )11a b< (C )0a b <<(D )0b a <<7.定义域为R 的函数()f x 满足(1)2()f x f x +=,且当(0,1]x ∈时,2()f x x x =-,则当[2,1]x ∈--时,()f x 的最小值为( ) (A )116-(B ) 18-(C ) 14-(D ) 08. 如图,正方体1111ABCD A BC D -的棱长为动点P 在对角线1BD 上,过点P 作垂直于1BD 的平面α,记这样得到的截面多边形(含三角形)的周长为y ,设BP =x ,则当[1,5]x ∈时,函数()y f x =的值域为( )(A) (B) (C) (D)第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9. 在平面直角坐标系xOy 中,点(1,3)A ,(2,)B k -,若向量OA AB ⊥,则实数k = _____.10.若等差数列{}n a 满足112a =,465a a +=,则公差d =______;24620a a a a ++++=______.(A)2y x =+-(B)1y x =+-(C)2y x =-+(D)1y x =+-11.已知一个正三棱柱的所有棱长均相等,其侧(左)视图如图所示, 那么此三棱柱正(主)视图的面积为______.12.甲、乙两名大学生从4个公司中各选2个作为实习单位,则两人所选的实习单位中恰有1个相同的选法种数是______. (用数字作答)13. 如图,,B C 为圆O 上的两个点,P 为CB 延长线上一点,PA 为圆O 的切线,A 为切点. 若2PA =,3BC =,则PB =______;ACAB=______.14.在平面直角坐标系xOy 中,记不等式组220,0,2x y x y x y +⎧⎪-⎨⎪+⎩≥≤≤所表示的平面区域为D .在映射,:u x y T v x y=+⎧⎨=-⎩的作用下,区域D 内的点(,)x y 对应的象为点(,)u v . (1)在映射T 的作用下,点(2,0)的原象是 ; (2)由点(,)u v 所形成的平面区域的面积为______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)已知函数()f x x ω=,π()sin()(0)3g x x ωω=->,且()g x 的最小正周期为π.(Ⅰ)若()2f α=,[π,π]α∈-,求α的值; (Ⅱ)求函数()()y f x g x =+的单调增区间.侧(左)视图16.(本小题满分13分)以下茎叶图记录了甲、乙两组各三名同学在期末考试中的数学成绩.乙组记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以a 表示.(Ⅰ)若甲、乙两个小组的数学平均成绩相同,求a 的值; (Ⅱ)求乙组平均成绩超过甲组平均成绩的概率;(Ⅲ)当2a =时,分别从甲、乙两组中各随机选取一名同学,记这两名同学数学成绩之差的绝对值为X ,求随机变量X 的分布列和数学期望.17.(本小题满分14分)如图,在多面体ABCDEF 中,底面ABCD 是边长为2的菱形, 60=∠BAD ,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,BF =3, H 是CF 的中点.(Ⅰ)求证:AC ⊥平面BDEF ;(Ⅱ)求直线DH 与平面BDEF 所成角的正弦值; (Ⅲ)求二面角H BD C --的大小.18.(本小题满分13分)已知函数()()e xf x x a =+,其中e 是自然对数的底数,a ∈R . (Ⅰ)求函数)(x f 的单调区间;(Ⅱ)当1a <时,试确定函数2()()g x f x a x =--的零点个数,并说明理由.甲组 乙组 891a822 F BCEAHD19.(本小题满分14分)已知,A B 是抛物线2:W y x =上的两个点,点A 的坐标为(1,1),直线AB 的斜率为k ,O 为坐标原点.(Ⅰ)若抛物线W 的焦点在直线AB 的下方,求k 的取值范围;(Ⅱ)设C 为W 上一点,且AB AC ⊥,过,B C 两点分别作W 的切线,记两切线的交点为D ,求OD 的最小值.20.(本小题满分13分)设无穷等比数列{}n a 的公比为q ,且*0()n a n >∈N ,[]n a 表示不超过实数n a 的最大整数(如[2.5]2=),记[]n n b a =,数列{}n a 的前n 项和为n S ,数列{}n b 的前n 项和为n T . (Ⅰ)若114,2a q ==,求n T ; (Ⅱ)若对于任意不超过2014的正整数n ,都有21n T n =+,证明:120122()13q <<. (Ⅲ)证明:n n S T =(1,2,3,n =L )的充分必要条件为1,a q N N **挝.北京市西城区2013 — 2014学年度第一学期期末高三数学(理科)参考答案及评分标准2014.1一、选择题:本大题共8小题,每小题5分,共40分.1.B 2.C 3.D 4.B 5.A 6.C 7.A 8.D 二、填空题:本大题共6小题,每小题5分,共30分. 9.4 10.125511. 12.24 13.1 214.(1,1) π注:第10、13、14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:因为π()sin()(0)3g x x ωω=->的最小正周期为π, 所以 2||ωπ=π,解得2ω=. ……………… 3分由 ()2f α=22α=,即 cos 22α=, ……………… 4分所以 π22π4k α=±,k ∈Z . 因为 [π,π]α∈-, 所以7πππ7π{,,,}8888α∈--. ……………… 6分(Ⅱ)解:函数 π()()2sin(2)3y f x g x x x =+=+-ππ2sin 2cos cos 2sin 33x x x =+- (8)分1sin 222x x =+ πsin(2)3x =+, (10)分由 2πππ2π2π232k k x -++≤≤, ………………11分解得 5ππππ1212k k x -+≤≤. (12)分所以函数()()y f x g x =+的单调增区间为5ππ[ππ]()1212k k k -+∈Z ,.…………13分16.(本小题满分13分)(Ⅰ)解:依题意,得 11(889292)[9091(90)]33a ++=+++, ……………… 2分解得 1a =. ……………… 3分(Ⅱ)解:设“乙组平均成绩超过甲组平均成绩”为事件A , ……………… 4分依题意 0,1,2,,9a =,共有10种可能. (5)分由(Ⅰ)可知,当1a =时甲、乙两个小组的数学平均成绩相同, 所以当2,3,4,,9a =时,乙组平均成绩超过甲组平均成绩,共有8种可能. (6)分所以乙组平均成绩超过甲组平均成绩的概率84()105P A==. (7)分(Ⅲ)解:当2a=时,分别从甲、乙两组同学中各随机选取一名同学,所有可能的成绩结果有339⨯=种,它们是:(88,90),(88,91),(88,92),(92,90),(92,91),(92,92),(92,90),(92,91),(92,92),..................9分则这两名同学成绩之差的绝对值X的所有取值为0,1,2,3,4. (10)分因此2(0)9P X==,2(1)9P X==,1(2)3P X==,1(3)9P X==,1(4)9P X==. (11)分所以随机变量X的分布列为: (12)分所以X的数学期望221115()01234993993E X=⨯+⨯+⨯+⨯+⨯=. (13)分17.(本小题满分14分)(Ⅰ)证明:因为四边形ABCD是菱形,所以AC BD⊥. (1)分因为平面BDEF⊥平面ABCD,且四边形BDEF是矩形,所以ED⊥平面ABCD, (2)分又因为AC⊂平面ABCD,所以ED AC⊥. (3)分因为 EDBD D =,所以 AC ⊥平面BDEF . ……………… 4分(Ⅱ)解:设ACBD O =,取EF 的中点N ,连接ON ,因为四边形BDEF 是矩形,,O N 分别为,BD EF 的中点, 所以 //ON ED ,又因为 ED ⊥平面ABCD ,所以 ON ⊥平面ABCD , 由AC BD ⊥,得,,OB OC ON 两两垂直.所以以O 为原点,,,OB OC ON 所在直线分别为x 轴,y 轴,z 轴,如图建立空间直角坐标系. ……………… 5分因为底面ABCD 是边长为2的菱形,60BAD ∠=,BF =所以 (0,A ,(1,0,0)B ,(1,0,0)D -,(1,0,3)E -,(1,0,3)F ,C ,13()222H . ………………6分因为 AC ⊥平面BDEF ,所以平面BDEF 的法向量AC =. …………7分 设直线DH 与平面BDEF 所成角为α, 由 33()22DH =, 得 32sin |cos ,|DH AC DH AC DH ACα⨯⋅=<>===所以直线DH 与平面BDEF . ………………9分(Ⅲ)解:由(Ⅱ),得13(,)222BH =-,(2,0,0)DB =. 设平面BDH 的法向量为111(,,)x y z =n ,所以0,0,BH DB ⎧⋅=⎪⎨⋅=⎪⎩n n (10)分即111130,20,x z x ⎧-++=⎪⎨=⎪⎩ 令11z =,得(0,=n . ………………11分由ED ⊥平面ABCD ,得平面BCD 的法向量为(0,0,3)ED =-,则1cos ,2ED ED ED⋅<>===-n n n . (13)分由图可知二面角H BD C --为锐角,所以二面角H BD C --的大小为60. ………………14分18.(本小题满分13分)(Ⅰ)解:因为()()e xf x x a =+,x ∈R ,所以()(1)e x f x x a '=++. ……………… 2分令()0f x '=,得1x a =--. ……………… 3分当x 变化时,()f x 和()f x '的变化情况如下: (5)分故()f x 的单调减区间为(,1)a -∞--;单调增区间为(1,)a --+∞.………… 6分(Ⅱ)解:结论:函数()g x 有且仅有一个零点. ……………… 7分理由如下:由2()()0g x f x a x =--=,得方程2e x ax x -=,显然0x =为此方程的一个实数解.所以0x =是函数()g x 的一个零点. ……………… 9分当0x ≠时,方程可化简为ex ax -=. 设函数()e x a F x x -=-,则()e 1x a F x -'=-, 令()0F x '=,得x a =.当x 变化时,()F x 和()F x '的变化情况如下:即()F x 的单调增区间为(,)a +∞;单调减区间为(,)a -∞.所以()F x 的最小值min ()()1F x F a a ==-. ………………11分因为 1a <,所以min ()()10F x F a a ==->, 所以对于任意x ∈R ,()0F x >, 因此方程ex ax -=无实数解.所以当0x ≠时,函数()g x 不存在零点.综上,函数()g x 有且仅有一个零点. ………………13分19.(本小题满分14分)(Ⅰ)解:抛物线2y x =的焦点为1(0,)4. ……………… 1分由题意,得直线AB 的方程为1(1)y k x -=-, ……………… 2分令 0x =,得1y k =-,即直线AB 与y 轴相交于点(0,1)k -. ……………… 3分因为抛物线W 的焦点在直线AB 的下方, 所以 114k ->, 解得 34k <. ……………… 5分(Ⅱ)解:由题意,设211(,)B x x ,222(,)C x x ,33(,)D x y ,联立方程21(1),,y k x y x -=-⎧⎨=⎩ 消去y ,得210x kx k -+-=, 由韦达定理,得11x k +=,所以 11x k =-. ……………… 7分同理,得AC 的方程为11(1)y x k-=--,211x k =--. (8)分对函数2y x =求导,得2y x '=,所以抛物线2y x =在点B 处的切线斜率为12x ,所以切线BD 的方程为21112()y x x x x -=-, 即2112y x x x =-. ……………… 9分同理,抛物线2y x =在点C 处的切线CD 的方程为2222y x x x =- (10)分联立两条切线的方程2112222,2,y x x x y x x x ⎧=-⎪⎨=-⎪⎩ 解得12311(2)22x x x k k +==--,3121y x x k k==-, 所以点D 的坐标为111((2),)2k k k k---. ………………11分因此点D 在定直线220x y ++=上. ………………12分因为点O 到直线220x y ++=的距离d ==,所以5OD ≥,当且仅当点42(,)55D --时等号成立. (13)分由3125y k k =-=-,得15k =,验证知符合题意.所以当k =OD有最小值. ………………14分20.(本小题满分13分)(Ⅰ)解:由等比数列{}n a 的14a =,12q =, 得14a =,22a =,31a =,且当3n >时,01n a <<. .................. 1分 所以14b =,22b =,31b =,且当3n >时,[]0n n b a ==. (2)分即 ,6, 2,4, 17, 3.n n n T n ==⎧⎪=⎨⎪⎩≥ (3)分(Ⅱ)证明:因为 201421()n T n n =+≤,所以 113b T ==,120142(2)n n n b T T n -=-=≤≤. ……………… 4分因为 []n n b a =,所以 1[3,4)a ∈,2014[2,3)(2)n a n ∈≤≤. ……………… 5分由 21a q a =,得 1q <. ……………… 6分因为 201220142[2,3)a a q =∈,所以 20122223qa >≥, 所以 2012213q<<,即 120122()13q <<. ……………… 8分(Ⅲ)证明:(充分性)因为1a N *Î,q N *Î,所以11n n a a q N -*=?,所以 []n n n b a a == 对一切正整数n 都成立. 因为 12n n S a a a =+++L ,12n n T b b b =+++L ,所以 n n S T =. ……………… 9分(必要性)因为对于任意的n N *Î,n n S T =,当1n =时,由1111,a S b T ==,得11a b =;当2n ≥时,由1n n n a S S -=-,1n n n b T T -=-,得n n a b =.所以对一切正整数n 都有n n a b =. 由 n b Z Î,0n a >,得对一切正整数n 都有n a N *Î, (10)分所以公比21a q a =为正有理数. ………………11分假设 q N *Ï,令p q r=,其中,,1p r r N *?,且p 与r 的最大公约数为1. 因为1a 是一个有限整数,所以必然存在一个整数()k k N Î,使得1a 能被k r 整除,而不能被1k r +整除.又因为111211k k k k a p a a qr++++==,且p 与r 的最大公约数为1.所以2k a Z +Ï,这与n a N *Î(n N *Î)矛盾. 所以q *∈N .因此1a N *Î,q *∈N . ……………13分高考资源网版权所有!投稿可联系QQ :1084591801。
北京市西城区2014届高三数学二模理科数学试卷(带解析)

北京市西城区2014届高三数学二模理科数学试卷(带解析)1.已知集合{|20}A x x =-<,{|}B x x a =<,若A B A =,则实数a 的取值范围是( )(A )(,2]-∞- (B )[2,)-+∞ (C )(,2]-∞ (D )[2,)+∞ 【答案】D 【解析】试题分析:{|20}{|2}A x x x x =-<=<,{|}B x x a =<,A B A =,则A B ⊆,2a ≥.考点:集合的运算.2.在复平面内,复数2=(12i)z +对应的点位于( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 【答案】B 【解析】试题分析:2=(12i)34z i +=-+,在复平面内对应的点位于第二象限. 考点:复数的运算,复数的几何意义.3.直线2y x =为双曲线2222 1(0,0)x y C a b a b-=>>:的一条渐近线,则双曲线C 的离心率是( )(A (B (C (D 【答案】A 【解析】试题分析:由题意可得2b a =,即22222241b c a e a a-===-,所以25e =,即e = 考点:双曲性的几何意义.4.某四棱锥的三视图如图所示,记A 为此棱锥所有棱的长度的集合,则( )A .,且B .,且C .,且D .,且【答案】D 【解析】试题分析:由三视图可知,该四棱锥是底面对角线长为2,高为4的正四棱锥,因此它的底考点:三视图.5.设平面向量a ,b ,c 均为非零向量,则“()0⋅-=a b c ”是“=b c ”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件 【答案】B 【解析】试题分析:由b c =得,0b c -=,得()0a b c ⋅-=;反之不成立,故()0a b c ⋅-=是b c =的必要而不充分条件. 考点:充要条件的判断.6.如图,阴影区域是由函数cos y x =的一段图象与x 轴围成的封闭图形,那么这个阴影区域的面积是( )(A )1 (B )2 (C )π2(D )π【答案】B 【解析】图形的面积,2222cos sin 2S xdx xππππ--===⎰,故选B .考点:定积分求面积。
北京市西城区2014年高三二模试卷

2014 高考数学预测卷(文科)2014年北京市高考模拟试卷数学(文科) 第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合A = {}2|<x x , B = {}034|2<+-x x x ,则A B 等于( )(A ){}12|<<-x x (B ){}21|<<x x (C ){}32|<<x x (D ){}32|<<-x x 2.设0.5323, log 2, cos 3a b c π===,则( ) (A )c b a <<(B )c a b <<(C )a b c <<(D )b c a <<3. 已知函数()f x 是定义在R 上的偶函数,且当0x >时,()ln(1)f x x =+,则函数()f x 的大致图像为( )(A )(B )(C )(D )4. 程序框图如图所示,若输入a 的值是虚数单位i ,则输出的结果是( ) (A )1- (B )1i -(C )0(D )i -5. 命题“0x ∃∈R ,20log 0x ≤”的否定为( ) (A )0x ∃∈R ,20log 0x > (B )0x ∃∈R ,20log 0x ≥(C )x ∀∈R ,2log 0x ≥(D )x ∀∈R ,2log 0x >6. 记集合22{(,)4}A x y x y =+≤和集合{(,)|20,0,0}B x y x y x y =+-≤≥≥表示的平面区域分别为Ω1,Ω2,若在区域Ω1内任取一点M (x ,y ),则点M 落在区域Ω2内的概率为( ) (A )21π(B )1π(C )41 (D )π-24π7. 在△ABC 中,若tan2A B a ba b--=+,则△ABC 的形状是( ) (A )直角三角形 (B )等腰三角 (C )等腰直角三角形 (D )等腰三角形或直角三角形 8. 一四面体的三视图如图所示,则该四面体四个面中最大的面积是( )(A )2(B )22 (C )32 (D )3第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.抛物线24y x =上一点M 与该抛物线的焦点F 的距离||4MF =,则点M 的横坐标x = .10.为了解本市居民的生活成本,甲、乙、丙三名同学利用假期分别对三个社区进行了“家庭每月日常消费额”的调查.他们将调查所得到的数据分别绘制成频率分布直方图(如图所示),记甲、乙、丙所调查数据的标准差分别为1s ,2s ,3,s 则它们的大小关系为 .(用“>”连接)11.已知等差数列{}n a 的前n 项和为257,1,10,n S a S S ==若则= .12.已知函数221,0()2,0x x f x x x x -⎧-≤⎪=⎨-->⎪⎩,若2(2)()f a f a ->,则实数a 的取值范围是 .乙丙甲13.设不等式组⎪⎩⎪⎨⎧+-≤≥≥kkx y y x 4,0,0在直角坐标系中所表示的区域的面积为S ,则当1k >时,1-k kS 的最小值为 .14.在平面直角坐标系xOy 中,若直线1y kx =+与曲线11||||y x x x x=+--有四个公共点,则实数k 的取值范围为 .三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数21()sin cos 2f x x x x =-. (Ⅰ)求()12f π-的值; (Ⅱ)若[0,]2x π∈,求函数()y f x =的最小值及取得最小值时的x 值.16.(本小题满分13分)某学校餐厅新推出A B C D 、、、四款套餐,某一天四款套餐销售情况的条形图如下.为了了解同学对新推出的四款套餐的评价,对每位同学都进行了问卷调查,然后用分层抽样的方法从调查问卷中抽取20份进行统计,统计结果如下面表格所示:(Ⅰ)若同学甲选择的是A 款套餐,求甲的调查问卷被选中的概率;(Ⅱ)若想从调查问卷被选中且填写不满意的同学中再选出2人进行面谈,求这两人中至少有一人选择的是D 款套餐的概率.17.(本小题满分14分)如图,菱形ABCD 的边长为6,60BAD ∠=,ACBD O =.将菱形ABCD 沿对角线AC 折起,得到三棱锥B ACD -,点M 是棱BC的中点,DM =(Ⅰ)求证://OM 平面ABD ; (Ⅱ)求证:平面ABC ⊥平面MD O ; (Ⅲ)求三棱锥M A B D -的体积.ABCCMOD18.(本小题满分13分)已知()ln 4f x a x x =-,3()g x x x =-- (1) 求()f x 在1x =处的切线方程;(2) 若20[,]x e e ∃∈使得00()()f x g x <成立,求实数a 的取值范围,在平面直角坐标系xoy 中,已知12,F F 分别是椭圆2222:1(0)x y G a b a b+=>>的左、右焦点,椭圆G 与抛物线28y x =-有一个公共的焦点,且过点(-. (Ⅰ)求椭圆G 的方程;(Ⅱ)设直线l 与椭圆G 相交于A 、B 两点,若OA OB ⊥(O 为坐标原点),试判断直线l 与圆2283x y +=的位置关系,并证明你的结论.已知数列{}n a 满足*1,()a a a N =∈,*1(0,1,)n n S pa p p n N +=≠≠-∈ (1) 求数列{}n a 的通项公式;(2) 对任意*k N ∈,若将123,,k k k a a a +++按从小到大的顺顺序排列后,此三项均能构成等差数列,且记公差为k d .i. 求p 的值以及数列{}k d 的通项公式; ii.记数列{}k d 的前k 项和为k S ,问是否存在正整数a ,使得30k S <恒成立,若存在求出a 的最大值;若不存在说明理由.参考答案及评分标准一、选择题:本大题共8小题,每小题5分,共40分.1.B 2.A 3.C 4. D 5.D 6.A 7. D 8. C 二、填空题:本大题共6小题,每小题5分,共30分. 9. 3 10.123s s s >> 11. 21 12.12a -<< 13. 32 14.11{,0,}88-三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)解:(Ⅰ)∵21()sin cos 2f x x x x =-12cos 22x x =- sin(2)6x π=-, ………………5分∴()sin(2)sin()121263f ππππ-=-⨯-=-= . ………7分 (Ⅱ)∵02x π≤≤∴02x π≤≤.∴52666x πππ-≤-≤. …………9分∴1sin(2)126x π-≤-≤,即1()12f x -≤≤. ………11分∴min 1()2f x =- 此时266x ππ-=- ∴0x =. ………12分∴当0x =时,min 1()2f x =-. ………………13分16.(本小题满分13分)解:(Ⅰ)由条形图可得,选择A ,B ,C ,D 四款套餐的学生共有200人, ……………1分其中选A 款套餐的学生为40人,……………2分 由分层抽样可得从A 款套餐问卷中抽取了 42004020=⨯份. ……………4分 设事件M =“同学甲被选中进行问卷调查”, ……………5分 则.10404)(==M P . ……………6分 答:若甲选择的是A 款套餐,甲被选中调查的概率是0.1.(II) 由图表可知,选A ,B ,C ,D 四款套餐的学生分别接受调查的人数为4,5,6,5. 其中不满意的人数分别为1,1,0,2个 . ……………7分 记对A 款套餐不满意的学生是a ;对B 款套餐不满意的学生是b ;对D 款套餐不满意的学生是c ,d. ……………8分 设事件N=“从填写不满意的学生中选出2人,至少有一人选择的是D 款套餐” …………9分 从填写不满意的学生中选出2人,共有(a,b),(a,c),(a,d),(b,c),(b,d),(c,d)6个基本事件,……10分 而事件N 有(a,c),(a,d),(b,c),(b,d),(c,d)5个基本事件, …… …11分 则 65)(=N P . …… …13分 答:这两人中至少有一人选择的是D 款套餐的概率是65.17.(本小题满分14分)(Ⅰ)证明:因为点O 是菱形ABCD 的对角线的交点,所以O 是AC 的中点.又点M 是棱BC 的中点,所以OM 是ABC ∆的中位线,//OM AB . ……………2分 因为OM ⊄平面ABD ,AB ⊂平面ABD ,所以//OM 平面ABD . ……………4分 (Ⅱ)证明:由题意,3OM OD ==,因为DM =所以90DOM ∠=,OD OM ⊥. ……………6分 又因为菱形ABCD ,所以OD AC ⊥. …………7分 因为OMAC O =,所以OD ⊥平面ABC , ……………8分 因为OD ⊂平面MDO ,所以平面ABC ⊥平面MDO . ……………9分(Ⅲ)解:三棱锥M ABD -的体积等于三棱锥D ABM -的体积. ……………10分由(Ⅱ)知,OD ⊥平面ABC ,所以3OD =为三棱锥D ABM -的高. ……………12分ABM ∆的面积为11sin120632222BA BM ⨯⨯=⨯⨯⨯=, ……………13分所求体积等于132ABM S OD ∆⨯⨯=. ……………14分 ABCMOD18.(本小题满分13分) (1)4)(-='xax f , …………………(1分) 4)1(-='a f , …………………(2分)故切线方程为a x a y --=)4(; …………………(4分) (2)34ln )(2+-+=x x x a x h ,xax x x x a x h +-=-+='4242)(2, …………………(6分) ① 若0816≤-=∆a ,即2≥a ,则0)(≥'x h ,则)(x h 在()+∞,1上单调递增,又0)1(=h ,不符舍去. …………………(8分) ②若0>∆,则2<a ,, 令0)(>'x h 得2241ax -+>, 令0)(<'x h 得22410ax -+<<, 则)(x h 在⎪⎪⎭⎫ ⎝⎛-+2241,0a 上单调递减,在⎪⎪⎭⎫ ⎝⎛+∞-+,2241a单调递增, …………………(10分)又0)1(=h ,则必有0)(<e h , …………………(11分) 即0342<+-+e e a ,342-+-<e e a . …………………(12分) 19.(本小题满分14分)解(Ⅰ)由已知得, 由题意得2c = ,又22421a b +=,………………………2分 消去a 可得,42280b b --=,解得24b =或22b =-(舍去),则28a =,所以椭圆C 的方程为22184y x +=.……………………………………………………5分 (Ⅱ)结论:直线l 与圆2283x y +=相切. 证明:由题意可知,直线l 不过坐标原点,设,A B 的坐标分别为112212(,),(,),()x y x y y y >(ⅰ)当直线l x ⊥轴时,直线l 的方程为(0)x m m =≠且m -<<则1122,,x m y x m y ==== OA OB ⊥ 12120x x y y ∴+=22(4)02m m ∴--=解得3m =±,故直线l的方程为3x =± ,因此,点(0,0)O 到直线l的距离为d =,又圆2283x y +=的圆心为(0,0)O ,半径3r d == 所以直线l 与圆2283x y +=相切 …8分(ⅱ)当直线l 不垂直于x 轴时,设直线l 的方程为y kx n =+,联立直线和椭圆方程消去y 得; 得222(12)4280k x knx n +++-= ,2121222428,1212kn n x x x x k k--∴+==++2212121212()()()y y kx n kx n k x x nk x x n =++=+++222812n k k -=+ OA OB ⊥ 12120x x y y ∴+=,故2222228801212n n k k k--+=++, 即22223880,388n k n k --==+① ………………………………………11分又圆2283x y +=的圆心为(0,0)O ,半径r =, 圆心O 到直线l的距离为d =222222313(1)n n d k k ∴===++② 将①式带入②式得: 22288833(1)k d k +==+, 所以d r == 因此,直线l 与圆2283x y +=相切 ………………14分20.(本小题满分13分)解:(1)*1(0,1,)n n S pa p p n N +=≠≠-∈∴当2n ≥时,有1n n S pa -=,11(2)n n a p n a p++∴=≥……………………2分 所以数列{}n a 从第二项起是公比为1p p+的等比数列; 当n =1时,12a pa =,而10,p a a ≠=,可得2a a p=所以2,11(),2n n a n a a p n p p -=⎧⎪=+⎨⎪⎩≥……………………4分(2)i .由(1)知11123111(),(),()k k k k k k a p a p a p a a a p p p p p p-+++++++=== 若1k a +为等差中项则1232k k k a a a +++=+,解得:13p =-若2k a +为等差中项则2132k k k a a a +++=+,解得:p φ∈ 若3k a +为等差中项则3122k k k a a a +++=+,解得:23p =-综上所述13p =-或者23p =-…………………6分当13p =-时,1123(2),3(2)k k k k a a a a -++=--=--,注意到1(2)k --与(2)k -异号,112||92k k k k d a a a -++=-=⋅…………………7分当23p =-时,1133131(),()2222k k k k a a a a -++--=-=-注意到11()2k --与11()2k +-同号,11391||()82k k k k a d a a -++=-=…………………8分 综上所述:当13p =-时19(2)k k d a -=;当23p =-时191()82k k a d -=…………………9分ii 当13p =-时19(2)k k d a -=9(21)k k S a ∴=-,则由30k S <,得103(21)k a <-,当3k ≥时1013(21)k <-,1a ∴<这时不存在符合题意的最大正整数a ;…………………10分当23p =-时191()82k k a d -=91(1())42k k a S ∴=-则由30k S <,得4013(1())2k a <-4040133(1())2k >-,13a ∴=时,满足30k S <恒成立,当14a ≥时,存在*k N ∈,使得4013(1())2ka >-即30k S >,所以当14a ≥时30k S <不恒成立…………………12分 综上所述:当23p =-时存在满足题意的最大正整数13a =………………13分。
2014年北京西城区高三二模数学(理)试卷分析

2014年北京西城区高三二模数学(理科)试题解析整张卷子相对于一模试卷,难度并没有明显起伏,作为距离高考最近的一次模拟,难度与区分度都接近高考水平,我们一起分题型来看一下。
【选择题】8道选择题目,考察的知识点相比一模少了极坐标系的基本概念,不过极坐标知识点本身高考的要求较低,对应难度的题目应该同属于送分的题目,这里不多赘述。
其他题目中规中矩,没有非常具有区分度的题目。
第七题具有一定的迷惑性,结合概率及不等式组的相关基本概念,本身并不难,重点考查的是考生审题及对概率问题基本概念的理解。
第八题题干的描述相对复杂,就算开始没有很好的理解题目,结合题目后半部分给出的三个待判断的结论,可以辅助理解题目,帮助作答。
本题有一定的区分度。
在这多说两句关于难度与区分度的事情。
我们说一道题难,很可能在答题者的角度,只有两个结果,会或者不会;考生要么直接下笔作答,要么绞尽脑汁也不知道怎么做,一道题目难度越大,越少的人会做。
那什么是区分度呢?首先,区分度跟难度有一定关系,比方说一道题目让小学生求函数的导数,题目难度绝对大,神童一下子就被区分出来了;那么撇开难度的区分度我们怎么理解呢?举个二次函数的例子,给出一个二次函数的具体表达式,要求求单调区间。
可用的方法非常多,可以求导,可以利用韦达定理,可以结合图像顶点。
那么最善于用最快速的方法解题的学生,就可以快速的拿分。
那么从整张试卷的角度来看,如果考生可以用最快的速度完成选择题,那么就有更多的时间作答后面的大题,毕竟考试的时间是有限的,在保证做对已经做了的题目的基础上,保留更多时间给还没做的题目,那么就有更多拿分的机会,这也是区分度的一种表现。
【填空题】填空题的每一道题都有对应的知识点,第9题是较单纯的二项式展开;第10题是解三角形,具体涉及到三角函数的运算,正弦定理;第11题是平面几何的题目,用到了相似三角形,比例的计算,如果学会了解析几何,反而忘记了平面几何的相关定理,这题会比较棘手;第12题考察了算法,结果又呈现周期性,要细心;第13题考察了圆锥曲线;第14题比较有意思,我们具体说下。
【2014西城二模】北京市西城区2014届高三二模试卷英语含答案

北京市西城区2014年高三二模试卷英语2014.5第一部分:听力理解(共三节,30分)第一节(共5小题;每小题1.5分,共7.5分)听下面5段对话。
每段对话后有一道小题,从每题所给的A、B、C三个选项中选出最佳选项。
听完每段对话后,你将有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话你将听一遍。
例: What is the man going to read?A. A. newspaper.B. A magazine.C. A book.答案是A。
1. What will the woman probably do now?A. Go for a trip.B. Board the plane.C. Take a rest.2. What is the man doing?A. Offering help.B. Asking for advice.C. Making an appointment.3. What would the woman like to have now?A. A. glass of wine.B. Some more chicken.C. Nothing else.4. Where are the two speakers talking?A. At home.B. On the phone.C. At the restaurant.5. What is the probable relationship between the two speakers?A. Waiter and customer.B. Teacher and studentC. Boy and girl friends.第二节(共10小题;每小题1.5分,共15分)听下面4段对话或独白。
每段对话或独白后有几道小题,从每题所给的A、B、C三个选项中选出最佳选项。
听每段对话或独白前,你将有5秒钟的时间阅读每小题。
2014年北京市西城区中考数学二模试卷-含详细解析

2014年北京市西城区中考数学二模试卷副标题一、选择题(本大题共8小题,共32.0分)1.在,0,-2,-1这四个数中,最小的数是()A. B. 0 C. 1 D.2.据报道,按常住人口计算,2013年北京市人均GDP(地区生产总值)达到约93210元,将93210用科学记数法表示为()A. B. C. D.3.如图,四边形ABCD为⊙O的内接四边形,若∠BCD=110°,则∠BAD为()A.B.C.D.4.在一个不透明的口袋中装有5张完全相同的卡片,卡片上面分别写有数字-2,-1,0,1,3,从中随机抽出一张卡片,卡片上面的数字是负数的概率为()A. B. C. D.5.如图,为估算学校的旗杆的高度,身高1.6米的小红同学沿着旗杆在地面的影子AB由A向B走去,当她走到点C处时,她的影子的顶端正好与旗杆的影子的顶端重合,此时测得AC=2m,BC=8m,则旗杆的高度是()A. B. 7m C. 8m D. 9m6.如图,菱形ABCD的周长是20,对角线AC,BD相交于点O,若BD=6,则菱形ABCD的面积是()A. 6B. 12C. 24D. 487.如图,在平面直角坐标系xOy中,直线经过点A,作AB⊥x轴于点B,将△ABO绕点B顺时针旋转60°得到△BCD,若点B的坐标为(2,0),则点C的坐标为()A.B.C.D.8.如图表示一个正方体的展开图,下面四个正方体中只有一个符合要求,那么这个正方体是()A. B. C. D.二、填空题(本大题共4小题,共16.0分)9.函数y=-1中,自变量x的取值范围是______.10.若一次函数的图象过点(0,2),且函数y随自变量x的增大而增大,请写出一个符合要求的一次函数表达式:______.11.一组数据:3,2,1,2,2的中位数是______,方差是______.12.如图,在平面直角坐标系xOy中,已知抛物线y=-x(x-3)(0≤x≤3)在x轴上方的部分,记作C1,它与x轴交于点O,A1,将C1绕点A1旋转180°得C2,C2与x轴交于另一点A2.请继续操作并探究:将C2绕点A2旋转180°得C3,与x轴交于另一点A3;将C3绕点A2旋转180°得C4,与x轴交于另一点A4,这样依次得到x轴上的点A1,A2,A3,…,A n,…,及抛物线C1,C2,…,C n,….则点A4的坐标为______;Cn的顶点坐标为______(n为正整数,用含n的代数式表示).三、计算题(本大题共3小题,共17.0分)13.解分式方程:+=1.14.已知关于x的一元二次方程x2+2x+2k-4=0有两个不相等的实数根.(1)求k的取值范围;(2)若k为正整数,且该方程的根都是整数,求k的值.15.在△ABC,∠BAC为锐角,AB>AC,AD平分∠BAC交BC于点D.(1)如图1,若△ABC是等腰直角三角形,直接写出线段AC,CD,AB之间的数量关系;(2)BC的垂直平分线交AD延长线于点E,交BC于点F.①如图2,若∠ABE=60°,判断AC,CE,AB之间有怎样的数量关系并加以证明;②如图3,若AC+AB=AE,求∠BAC的度数.四、解答题(本大题共10小题,共55.0分)16.计算:()-1+|-|-(π-3)0+3tan30°.17.已知:如图,C是AE上一点,∠B=∠DAE,BC∥DE,AC=DE.求证:AB=DA.18.在海南东环高铁上运行的一列“和谐号”动车组有一等车厢和二等车厢共6节,一共设有座位496个.其中每节一等车厢设座位64个,每节二等车厢设座位92个.试求该列车一等车厢和二等车厢各有多少节?19.抛物线y=x2+bx+c(b,c均为常数)与x轴交于A(1,0),B两点,与y轴交于点C(0,3).(1)求该抛物线对应的函数表达式;(2)若P是抛物线上一点,且点P到抛物线的对称轴的距离为3,请直接写出点P 的坐标.20.如图,在四边形ABCD中,AB∥DC,DB平分∠ADC,E是CD的延长线上一点,且∠AEC=∠ADC.(1)求证:四边形ABDE是平行四边形.(2)若DB⊥CB,∠BCD=60°,CD=12,作AH⊥BD于H,求四边形AEDH的周长.21.据报道:2013年底我国微信用户规模已到达6亿.以下是根据相关数据制作的统计图表的一部分:请根据以上信息,回答以下问题:(1)从2012年到2013年微信的人均使用时长增加了______分钟;(2)补全2013年微信用户对“微信公众平台”参与关注度扇形统计图,在我国6亿微信用户中,经常使用户约为______亿(结果精确到0.1);(3)从调查数据看,预计我国微信用户今后每年将以20%的增长率递增,请你估计两年后,我国微信用户的规模将到达______亿.22.如图,AB为⊙O的直径,弦CD⊥AB于点H,过点B作⊙O的切线与AD的延长线交于F.(1)求证:∠ABC=∠F;(2)若,DF=6,求⊙O的半径.23.阅读下面材料:小明遇到这样一个问题:如图1,五个正方形的边长都为1,将这五个正方形分割为四部分,再拼接为一个大正方形.小明研究发现:如图2,拼接的大正方形的边长为,“日”字形的对角线长都为,五个正方形被两条互相垂直的线段AB,CD分割为四部分,将这四部分图形分别标号,以CD为一边画大正方形,把这四部分图形分别移入正方形内,就解决问题.请你参考小明的画法,完成下列问题:(1)如图3,边长分别为a,b的两个正方形被两条互相垂直的线段AB,CD分割为四部分图形,现将这四部分图形拼接成一个大正方形,请画出拼接示意图(2)如图4,一个八角形纸板有个个角都是直角,所有的边都相等,将这个纸板沿虚线分割为八部分,再拼接成一个正方形,如图5所示,画出拼接示意图;若拼接后的正方形的面积为,则八角形纸板的边长为______.24.经过点(1,1)的直线l:y=kx+2(k≠0)与反比例函数G1的图象交于点A(-1,a),B(b,-1),与y轴交于点D.(1)求直线l对应的函数表达式及反比例函数G1的表达式;(2)反比例函数G2:,①若点E在第一象限内,且在反比例函数G2的图象上,若EA=EB,且△AEB的面积为8,求点E的坐标及t值;②反比例函数G2的图象与直线l有两个公共点M,N(点M在点N的左侧),若<,直接写出t的取值范围.25.在平面直角坐标系xOy中,对于⊙A上一点B及⊙A外一点P,给出如下定义:若直线PB与x轴有公共点(记作M),则称直线PB为⊙A的“x关联直线”,记作l PBM.(1)已知⊙O是以原点为圆心,1为半径的圆,点P(0,2),①直线l1:y=2,直线l2:y=x+2,直线l3:,直线l4:y=-2x+2都经过点P,在直线l1,l2,l3,l4中,是⊙O的“x关联直线”的是______;②若直线l PBM是⊙O的“x关联直线”,则点M的横坐标x M的最大值是______;(2)点A(2,0),⊙A的半径为1,①若P(-1,2),⊙A的“x关联直线”l PBM:y=kx+k+2,点M的横坐标为x M,当x M最大时,求k的值;②若P是y轴上一个动点,且点P的纵坐标y p>2,⊙A的两条“x关联直线”l PCM,l PDN是⊙A的两条切线,切点分别为C,D,作直线CD与x轴交于点E,当点P的位置发生变化时,AE的长度是否发生改变?并说明理由.答案和解析1.【答案】D【解析】解:因为-2<-1<0<,所以最小的数是-2.故选:D.利用有理数大小比较的方法:正数都大于零,负数都小于零,正数大于负数;两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小;直接按顺序排列,选择答案即可.此题考查有理数大小比较的方法,注意先分类再比较.2.【答案】B【解析】解:将93210用科学记数法表示为:9.321×104.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】D【解析】解:∵四边形ABCD为⊙O的内接四边形,∴∠BCD+∠BAD=180°(圆内接四边形的对角互补);又∵∠BCD=110°,∴∠BAD=70°.故选D.根据圆内接四边形的对角互补求∠BAD的度数即可.本题主要考查了圆内接四边形的性质.解答此题时,利用了圆内接四边形的对角互补的性质来求∠BCD的补角即可.4.【答案】C【解析】解:∵在一个不透明的口袋中装有5张完全相同的卡片,卡片上面分别写有数字-2,-1,0,1,3,∴从中随机抽出一张卡片,卡片上面的数字是负数的概率为:.故选C.由在一个不透明的口袋中装有5张完全相同的卡片,卡片上面分别写有数字-2,-1,0,1,3,直接利用概率公式求解即可求得答案.此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.5.【答案】C【解析】解:设旗杆高度为h,由题意得=,h=8米.故选:C.因为人和旗杆均垂直于地面,所以构成相似三角形,利用相似比解题即可.本题考查了考查相似三角形的性质和投影知识,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.6.【答案】C【解析】解:∵菱形ABCD的周长是20,∴AB=20÷4=5,AC⊥BD,OB=BD=3,∴OA==4,∴AC=2OA=8,∴菱形ABCD的面积是:AC•BD=×8×6=24.故选:C.由菱形ABCD的周长是20,即可求得AB=5,然后由股定理即可求得OA的长,继而求得AC的长,则可求得菱形ABCD的面积.此题考查了菱形的性质以及勾股定理.此题难度不大,注意掌握数形结合思想的应用.7.【答案】A【解析】解:∵AB⊥x轴于点B,点B的坐标为(2,0),∴y=2,∴点A的坐标为(2,2),∴AB=2,OB=2,由勾股定理得,OA===4,∴∠A=30°,∠AOB=60°,∵△ABO绕点B顺时针旋转60°得到△BCD,∴∠C=30°,CD∥x轴,设AB与CD相交于点E,则BE=BC=AB=×2=,CE===3,∴点C的横坐标为3+2=5,∴点C的坐标为(5,).故选:A.根据直线解析式求出点A的坐标,然后求出AB、OB,再利用勾股定理列式求出OA,然后判断出∠C=30°,CD∥x轴,再根据直角三角形30°角所对的直角边等于斜边的一半求出BE,利用勾股定理列式求出CE,然后求出点C的横坐标,再写出点C的坐标即可.本题考查了坐标与图形性质,一次函数图象上点的坐标特征,勾股定理的应用,求出△AOB的各角的度数以及CD∥x轴是解题的关键.8.【答案】B【解析】解:空白面的每个邻面是斜线面,故选:B.本题考查了展开图折成几何体,邻面间的相对关系是解题关键,根据相邻面、对面的关系,可得答案.9.【答案】x≥0【解析】解:根据题意,得x≥0.故答案为:x≥0.根据二次根式的意义,被开方数不能为负数,据此求解.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.10.【答案】y=x+2【解析】解:设一次函数的解析式为y=kx+b,把(0,2)代入得b=2,∴y=kx+2,∵函数y随自变量x的增大而增大,∴k>0,∴k可取1,此时一次函数解析式为y=x+2.故答案为y=x+2.设一次函数的解析式为y=kx+b,根据一次函数的图象过点(0,2)得到b=2,根据函数y随自变量x的增大而增大得到k>0,然后取k=1写出一个满足条件的解析式.本题考查了一次函数y=kx+b的性质:当k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.11.【答案】2;0.4【解析】解:把这组数据从小到大排列为:1,2,2,2,3,最中间的数是2,则中位数是2;∵这组数据的平均数是(1+2+2+2+3)÷5=2,∴方差是:[(3-2)2+(2-2)2+(1-2)2+(2-2)2+(2-2)2]=0.4.故答案为:2,0.4.先将这组数据从小到大排列,再找出最中间的数,即可得出中位数;先求出这组数据的平均数,再根据方差公式S2=[(x 1-)2+(x2-)2+…+(x n-)2]进行计算即可.本题考查方差和中位数:一般地设n个数据,x 1,x2,…x n的平均数为,则方差S2=[(x 1-)2+(x2-)2+…+(x n-)2];中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).12.【答案】(12,0);(3n-,(-1)n+1•)【解析】解:这样依次得到x轴上的点A1,A2,A3,…,A n,…,及抛物线C1,C2,…,C n,….则点A4的坐标为(12,0);Cn的顶点坐标为(3n-,(-1)n+1•),故答案为:(12,0),(3n-,(-1)).根据图形连续旋转,旋转奇数次时,图象在x轴下方,每两个图象全等且相隔三个单位;旋转偶数次时,图象在x轴上方,每两个图象全等且相隔三个单位.本题考查了二次函数图象与几何变换,交点间的距离是3,顶点间的横向距离距离是3,纵向距离是.13.【答案】解:去分母得:2+x(x+2)=x2-4,解得:x=-3,经检验x=-3是分式方程的解.【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.14.【答案】解:(1)根据题意得:△=4-4(2k-4)=20-8k>0,解得:k<;(2)由k为正整数,得到k=1或2,利用求根公式表示出方程的解为x=-1±,∵方程的解为整数,∴5-2k为完全平方数,则k的值为2.【解析】(1)根据方程有两个不相等的实数根,得到根的判别式的值大于0列出关于k 的不等式,求出不等式的解集即可得到k的范围;(2)找出k范围中的整数解确定出k的值,经检验即可得到满足题意k的值.此题考查了根的判别式,一元二次方程的解,以及公式法解一元二次方程,弄清题意是解本题的关键.15.【答案】解:(1)AB=AC+CD,理由为:过D作DE⊥AB,如图1所示,∵AD平分∠BAC,DC⊥AC,∴CD=DE,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,∵△ABC为等腰直角三角形,∴∠B=45°,即△BDE为等腰直角三角形,∴CD=DE=EB,则AB=AE+EB=AC+CD;(2)①AB=AC+CE;证明:在线段AB上截取AH=AC,连接EH,如图2所示,∵AD平分∠BAC,∴∠CAE=∠BAE,在△ACE和△AHE中,,∴△ACE≌△AHE(SAS),∴CE=HE,∵EF垂直平分BC,∴CE=BE,又∠ABE=60°,∴△EHB是等边三角形,∴BH=HE,∴AB=AH+HB=AC+CE;②在线段AB上截取AH=AC,连接EH,作EM⊥AB于点M.如图3所示,同理可得△ACE≌△AHE,∴CE=HE,∴△EHB是等腰三角形,∴HM=BM,∴AC+AB=AH+AB=AM-HM+AM+MB=2AM,∵AC+AB=AE,∴AM=AE,在Rt△AEM中,cos∠EAM==,∴∠EAB=30°.∴∠CAB=2∠EAB=60°.【解析】(1)AB=AC+CD,理由为:过D作DE垂直于AB,利用角平分线定理得到DC=DE,进而利用HL得到三角形ACD与三角形AED全等,利用全等三角形对应边相等得到AC=AE,再由三角形ABC为等腰直角三角形得到三角形BDE为等腰直角三角形,即DE=EB,由AB=AE+EB,等量代换即可得证;(2)①AB=AC+CE,理由为:在线段AB上截取AH=AC,连接EH,由AD为角平分线得到一对角相等,再由AC=AH,AE=AE,利用SAS得到三角形ACE与三角形AHE全等,得到CE=HE,由EF垂直平分BC,得到CE=BE,根据∠ABE=60°,得到△EHB是等边三角形,进而得到BH=HE,由AB=AH+HB,等量代换即可得证;②在线段AB上截取AH=AC,连接EH,作EM⊥AB于点M.同理可得△ACE≌△AHE,得到CE=HE,进而确定出△EHB是等腰三角形,得到HM=BM,根据AC+AB=AH+AB=AM-HM+AM+MB=2AM,将已知等式AC+AB=AE,代入得:AM=AE,在Rt△AEM中,利用锐角三角函数定义求出cos∠EAM的值,进而确定出∠EAB=30°,即可得到∠CAB的度数.此题考查了全等三角形的判定与性质,线段垂直平分线定理,等腰直角三角形,以及解直角三角形,熟练掌握全等三角形的判定与性质是解本题的关键.16.【答案】解:+|-|-1+3×=4+-1+3×=3+2.【解析】本题涉及负指数幂、绝对值、0指数幂、特殊角的三角函数值等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记负指数幂、绝对值、0指数幂、特殊角的三角函数值等考点的运算.17.【答案】证明:∵BC∥DE,∴∠ACB=∠DEA,在△ABC和△DAE中,,∴△ABC≌△DAE(AAS)∴AB=DA.【解析】由BC与DE平行,利用两直线平行同位角相等得到一对角相等,再由已知一对角相等,一对边相等,利用AAS得到三角形ABC与三角形DAE全等,利用全等三角形对应边相等即可得证.此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.18.【答案】解:设该列车一等车厢和二等车厢各有x、y节,根据题意得:,解得:.答:该列车一等车厢和二等车厢各有2,4节.【解析】设该列车一等车厢和二等车厢各有x、y节,则第一个相等关系为:x+Y=6,再根据一共设有座位496个.其中每节一等车厢设座位64个,每节二等车厢设座位92个得第二个相等关系为:64x+92y=496,由此列方程组求解.此题考查的知识点是二元一次方程组的应用,解题的关键是由已知找出两个相等关系,列方程组求解.19.【答案】解:(1)∵抛物线y=x2+bx+c与y轴交于点C(0,3),∴c=3.∴y=x2+bx+3.又∵抛物线y=x2+bx+c与x轴交于点A(1,0),∴b=-4.∴y=x2-4x+3.(2)点P的坐标为(5,8)或(-1,8).【解析】(1)抛物线y=x2+bx+c与y轴交于点C(0,3),代入可得出c=3,又由抛物线y=x2+bx+c与x轴交于点A(1,0),代入又可得出b=-4,从而得出抛物线的解析式y=x2-4x+3;(2)求得对称轴为直线x=2,由点P到抛物线的对称轴的距离为3,可得出点P 的横坐标为-1或5,代入抛物线解析式即可得出点P的坐标为(5,8)或(-1,8).本题考查了抛物线和x轴的交点问题,以及抛物线的表达式的求法--待定系数法.20.【答案】解:(1)∵DB平分∠ADC,∴,又∵,∴∠AEC=∠1,∴AE∥BD,又∵AB∥EC,∴四边形AEDB是平行四边形;(2)∵DB平分∠ADC,∠ADC=60°,AB∥EC,∴∠1=∠2=∠3=30°,∴AD=AB,又∵DB⊥BC,∴∠DBC=90°,在Rt△BDC中,CD=12,∴BC=6,,在等腰△ADB中,AH⊥BD,∴DH=BH=,在Rt△ABH中,∠AHB=90°,∴AH=3,AB=6,∵四边形AEDB是平行四边形,∴,ED=AB=6,∴,∴四边形AEDH的周长为.【解析】(1)求出∠AEC=∠1,得出AE∥BD,再由AB∥EC证出四边形ABDE是平行四边形.(2)在Rt△BDC中,求出BD,再在在等腰△ADB中求出DH,AH,在Rt△ABH 中求出AB,进而求出四边形的四条边求周长.本题主要考查平行四边形的判定及性质,解题的过程中要灵活运用直角三角形来求边.21.【答案】6.7;1.5;8.64【解析】解:(1)2012年到2013年微信的人均使用时长增加了9.7-3.0=6.7分钟;(2)偶尔使用所占的百分比为1-13%-7.4%-13%-24.2%=42.4%;我国6亿微信用户中,经常使用户约为6×24.2%≈1.5亿(3)两年后,我国微信用户的规模将到达6×(1+20%)2=8.64亿,故答案为:6.7,1.5,8.64.(1)用2013年的微信使用时长减去2012年的微信使用时长即可确定答案;(2)用单位1减去其他所占的百分比即可确定偶尔使用的所占的百分比,用总量乘以经常使用的所占的百分比即可确定经常使用的用户的数量;(3)用总量乘以增长的百分比即可确定两年后的微信用户量.本题考查了扇形统计图及统计表的知识,解题的关键是仔细的读表或统计图并从中整理出进一步解题的有关信息.22.【答案】(1)证明:∵BF为⊙O的切线,∴AB⊥BF于点B.∵CD⊥AB,∴∠ABF=∠AHD=90°.∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F.(2)解:连接BD.∵AB为⊙O的直径,∴∠ADB=90°,由(1)∠ABF=90°,∴∠A=∠DBF.又∵∠A=∠C.∴∠C=∠DBF.在Rt△DBF中,,DF=6,∴BD=8.在Rt△ABD中,,∴.∴⊙O的半径为.【解析】【分析】(1)由切线的性质得AB⊥BF,因为CD⊥AB,所以CD∥BF,由平行线的性质得∠ADC=∠F,由圆周角定理得∠ABC=∠ADC,于是得证∠ABC=∠F;(2)连接BD.由直径所对的圆周角是直角得∠ADB=90°,因为∠ABF=90°,所以∠A=∠DBF,于是得∠C=∠DBF.在Rt△DBF中得BD=8.在Rt△ABD中,,,于是⊙O的半径为.本题主要考查了切线的性质以及解直角三角形,还用到圆周角定理及其推论,运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.【解答】(1)证明:∵BF为⊙O的切线,∴AB⊥BF于点B.∵CD⊥AB,∴∠ABF=∠AHD=90°.∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F.(2)解:连接BD.∵AB为⊙O的直径,∴∠ADB=90°,由(1)∠ABF=90°,∴∠A=∠DBF.又∵∠A=∠C.∴∠C=∠DBF.在Rt△DBF中,,DF=6,∴BD=8.在Rt△ABD中,,∴.∴⊙O的半径为.23.【答案】1【解析】解:(1)拼接示意图如下;(2)拼接示意图如下,设八角形的边长为a,则原正方形的边长为a+a+a=(2+)a,八角形的面积=(2+)2a2+4×a2=8+4,整理得,(8+4)a2=8+4,解得a=1,答:八角形纸板的边长为1.(1)根据图形形状,把①放在最上边,②③放在左边即可;(2)以四个较大的部分为拼成的正方形的四个角,剪开的四个小直角三角形组成一个小正方形在中间拼接即可,设八角形的边长为a,表示出原正方形的边长,再根据八角形的面积等于正方形的面积加上四个小直角三角形的面积,列出方程求解即可.本题考查了图形的拼接,读懂题目信息,仔细观察图形的形状是解题的关键.24.【答案】解:(1)∵直线l:y=kx+2(k≠0)经过(1,1),∴k=-1,∴直线l对应的函数表达式y=-x+2.∵直线l与反比例函数G1:的图象交于点A(-1,a),B(b,-1),∴a=b=3.∴A(-1,3),B(3,-1).∴m=-3.∴反比例函数G1函数表达式为.(2)①∵EA=EB,A(-1,3),B(3,-1),∴点E在直线y=x上.∵△AEB的面积为8,,∴.∴△AEB是等腰直角三角形.∴E(3,3),此时t=3×3=9②分两种情况:(ⅰ)当t>0时,∵y=-x+2,与x轴交于点F(2,0),与y轴交于点D(0,2),∴DF=2,∴DM+DN<3,∴只要y=-x+2与y2=有交点坐标即可,∴-x+2=,整理得:x2-2x+t=0,∴b2-4ac>0,∴4-4t>0,解得:t<1,则0<t<1;(ⅱ)当t<0时,当DM+DN=3,则DM=FN=,∵y=-x+2,与x轴交于点F(2,0),与y轴交于点D(0,2),∴可求出M(-,),则xy=t=-,则<<.综上,当<<或0<t<1时,反比例函数G2的图象与直线l有两个公共点M,N,且<.【解析】(1)利用待定系数法把(1,1)代入y=kx+2可得k的值,进而得到直线l对应的函数表达式;利用一次函数解析式求出a、b的值,然后再利用待定系数法求出反比例函数G1函数表达式即可;(2)由条件EA=EB,A(-1,3),B(3,-1)可得点E在直线y=x上,再根据△AEB的面积为8,,可得,进而得到E点坐标;(3)根据题意得出当t>0时,以及当t<0时,分别利用数形结合得出t的最值.此题主要考查了反比例函数综合以及等腰直角三角形的性质和根的判别式等知识,利用分类讨论以及数形结合得出是解题关键.25.【答案】l3,l4;【解析】解:(1)①l3,l4;分析如下:根据题意,如图1,l1,l2与⊙O没有交点,对l3,过点O作OB⊥AC于B,∵A(0,2),C(,0),∴AO=2,C0=,∴根据勾股定理,AC=.∴根据面积相等,OB==1,∵⊙O半径为1,∴AC切⊙O于B,∴l3是⊙O的“x关联直线”.对l4,显然与⊙O有两个交点,故l4是⊙O的“x关联直线”.综上所述,l3,l4是⊙O的“x关联直线”.②;分析如下:如图2,PM与⊙O相切于B点时,M的横坐标x M最大,连接OB,则OB⊥PM,在Rt△OPB中,∵PO=2,OB=1,∴∠OPB=30°,∴OM=tan∠OPB•OP==,所以点M的横坐标x M最大值为.(2)如图3,直线PM⊙A相切于点B时,此时点M的横坐标x M最大,作PH⊥x轴于点H,连接AB,HM=x M+1,AM=x M-2,在Rt△ABM和Rt△PHM中,∵,AB=1,PH=2∴BM=HM=.在Rt△ABM中,∵AM2=AB2+BM2,∴.解得.∴点M的横坐标x M最大时,,此时M(,0),∴代入直线y=kx+k+2,解得.②当P点的位置发生变化时,AE的长度不发生改变.理由如下:如图4,⊙A的两条“x关联直线”与⊙A相切于点C,D,连接AC,AD,AP交CD于F,此时PC=PD.在△ADP和△ACP中,,∴△ADP≌△ACP∴∠CPF=∠DPF∴AP⊥BC,在Rt△ADF和Rt△ADP中,∵∠ADF=∠APD,∴sin∠ADF=sin∠APD,∴AF•AP=AD2在Rt△AEF和Rt△AOP中,∵,∴AF•AP=AE•AO∴AD2=AE•AO∵AD=1,AO=2,∴,即当P点的位置发生变化时,AE的长度不发生改变.(1)①讨论是否为关联直线最直接的方式就是画图确定圆与直线是否有交点,画图易得l1,l2无交点,非关联直线,而l4有两个交点,为关联直线,对l3近似相切,则需要求证判断,利用求证相切的常规作法,作垂线讨论圆心到直线距离是否与半径相等易得结论.②画图已知,相切时M点横坐标最大,作图利用解直角三角形,易得所求边长,即M横坐标最大值易知.(2)①类似上小问,最大值时相切,利用解三角形得到最大时M点坐标,代入直线y=kx+k+2,即可求得k.②根据题意画出图示,AE不在三角形中,不易表示,所以可以适当作辅助线,因为相切,通常都有圆心与切点的连线,如此可得垂直关系;而同时出现过P 点的两条与圆的切线,通常连接圆心与P点,如此可得全等三角形等相等关系,此时看到PA⊥CD,则AE所属的三角形与PAO相似,则可试着将其转化.本题思考的确有一定难度,利用三角函数关系可以技巧的得出AF•AP=AD2,AF•AP=AE•AO,则有AD2=AE•AO,且AD,AO都为固定值,则易知AE值亦固定.本题重点考查直线与圆相切的相关性质,并结合直角坐标系利用三角函数、解直角三角形等相关技巧计算线段长度.最后一问难度较高,不过思路方面我们要牢记要想计算边长,我们通常需要通过辅助线将此线放在与其他简单三角形全等相似的三角形中,以便可以将此线段长度转化出来,这种思路需要学生在平时的题目中多加实践,总体来说本题前面常规,后面难度偏高,学生重点加强理解.。
北京市西城区2014届高三第二次模拟考试--数学理

北京2014年高三二模数学(理)试题 郭伟峰第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知全集{0,1,2,3,4}U =,集合{0,1,2,3}A =,{2,3,4}B =,那么C U (A ∩B)A .{0,1}B .{2,3}C .{0,1,4}D .{0,1,2,3,4}2.在复平面内,复数1z 的对应点是1(1,1)Z ,2z 的对应点是2(1,1)Z -,则12z z ⋅=A .1B .2C .i -D .i3.在极坐标系中,圆心为(1,)2π,且过极点的圆的方程是A .2sin =ρθB .2sin =-ρθC .2cos =ρθD .2cos =-ρθ4.如图所示的程序框图表示求算式“235917⨯⨯⨯⨯” 之值,则判断框内可以填入A .10k ≤B .16k ≤C .22k ≤D .34k ≤5.设122a =,133b =,3log 2c =,则A .b a c <<B .a b c <<C .c b a <<D .c a b << 6.对于直线m ,n 和平面α,β,使m ⊥α成立的一个充分条件是A .m n ⊥,n ∥αB .m ∥β,⊥βαC .m ⊥β,n ⊥β,n ⊥αD .m n ⊥,n ⊥β,⊥βα7.已知正六边形ABCDEF 的边长是2,一条抛物线恰好经过该六边形的四个顶点,则抛物线的焦点到准线的距离是A B C D .8.已知函数()[]f x x x =-,其中[]x 表示不超过实数x 的最大整数.若关于x 的方程()f x kx k=+有三个不同的实根,则实数k 的取值范围是A .111[1,)(,]243--B .111(1,][,)243--C .111[,)(,1]342--D .111(,][,1)342-- 第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.右图是甲,乙两组各6名同学身高(单位:cm )数据的茎叶图.记甲,乙两组数据的平均数依次为x 甲和x 乙,则 x 甲______x 乙. (填入:“>”,“=”,或“<”)10.5(21)x -的展开式中3x 项的系数是______.(用数字作答)11.在△ABC 中,2BC =,AC ,3B π=,则AB =______;△ABC 的面积是______.12.如图,AB 是半圆O 的直径,P 在AB 的延长线上,PD 与半圆O 相切于点C ,AD PD ⊥.若4PC =,2PB =,则CD =______.13.在等差数列{}n a 中,25a =,1412a a +=,则n a =______;设*21()1n n b n a =∈-N ,则数列{}n b 的前n 项和n S =______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)如图,在直角坐标系xOy 中,角α的顶点是原点,始边与x 轴正半轴重合,终边交单位圆于点A ,且,)62ππ∈(α.将角α的终边按逆时针方向旋转3π,交单位圆于点B .记),(),,(2211y x B y x A .(Ⅰ)若311=x ,求2x ; (Ⅱ)分别过,A B 作x 轴的垂线,垂足依次为,C D .记△AOC 的面积为1S ,△BOD 的面积为2S .若122S S =,求角α的值.16.(本小题满分13分)某超市在节日期间进行有奖促销,凡在该超市购物满300元的顾客,将获得一次摸奖机会,规则如下:奖盒中放有除颜色外完全相同的1个红球,1个黄球,1个白球和1个黑球.顾客不放回的每次摸出1个球,若摸到黑球则停止摸奖,否则就要将奖盒中的球全部摸出才停止.规定摸到红球奖励10元,摸到白球或黄球奖励5元,摸到黑球不奖励.(Ⅰ)求1名顾客摸球3次停止摸奖的概率;(Ⅱ)记X 为1名顾客摸奖获得的奖金数额,求随机变量X 的分布列和数学期望.17.(本小题满分14分)如图1,四棱锥ABCD P -中,⊥PD 底面ABCD ,面ABCD 是直角梯形,M 为侧棱PD 上一点.该四棱锥的俯视图和侧(左)视图如图2所示.(Ⅰ)证明:⊥BC 平面PBD ;(Ⅱ)证明:AM ∥平面PBC ;(Ⅲ)线段CD 上是否存在点N ,使AM 与BN 所成角的余弦值为43?若存在,找到所有符合要求的点N ,并求CN 的长;若不存在,说明理由.18.(本小题满分13分)如图,椭圆22:1(01)y C x m m +=<<的左顶点为A ,M 是椭圆C 上异于点A 的任意一点,点P 与点A 关于点M 对称.(Ⅰ)若点P 的坐标为9(,55,求m 的值; (Ⅱ)若椭圆C 上存在点M ,使得OP OM ⊥,求m19.(本小题满分14分)已知函数322()2(2)13f x x x a x =-+-+,其中a ∈R . (Ⅰ)若2a =,求曲线()y f x =在点(1,(1))f 处的切线方程;(Ⅱ)求()f x 在区间[2,3]上的最大值和最小值.20.(本小题满分13分)已知集合1212{(,,,)|,,,n n n S x x x x x x = 是正整数1,2,3,,n 的一个排列}(2)n ≥,函数1,0,()1,0.x g x x >⎧=⎨-<⎩ 对于12(,,)n n a a a S ∈…,定义:121()()(),{2,3,,}i i i i i b g a a g a a g a a i n -=-+-++-∈ ,10b =,称i b 为i a 的满意指数.排列12,,,n b b b 为排列12,,,n a a a 的生成列;排列12,,,n a a a 为排列12,,,n b b b 的母列.(Ⅰ)当6n =时,写出排列3,5,1,4,6,2的生成列及排列0,1,2,3,4,3--的母列;(Ⅱ)证明:若12,,,n a a a 和12,,,n a a a ''' 为n S 中两个不同排列,则它们的生成列也不同; (Ⅲ)对于n S 中的排列12,,,n a a a ,定义变换τ:将排列12,,,n a a a 从左至右第一个满意指数为负数的项调至首项,其它各项顺序不变,得到一个新的排列.证明:一定可以经过有限次变换τ将排列12,,,n a a a 变换为各项满意指数均为非负数的排列.。
【2014西城二模】北京市西城区2014届高三二模试卷 英语 Word版含答案

北京市西城区2014年高三二模试卷英语2014.5第二部分:知识运用(共两节,45分)第一节单项填空(共15小题;每小题1分,共15分)从每题所给的A、B、C、D四个选项中,选出可以填入空白处的最佳选项,并在答题卡上将该项涂黑。
例:It‘s so nice to hear from her again. ________, we last met more than thirty years ago.A. What‘s moreB. That‘s to sayC. In other wordsD. Believe it or not答案是D。
21. — You look great!— I ______ out. Check out my muscles!A. will workB. was workingC. have been workingD. had been working22. ______ Stephon Marbury is an American, he has become a role model among Beijingbasketball fans.A. AsB. AlthoughC. WhenD. Since23. It‘s been discovered in the study ______ people are more relieved after forgiving ot hers.A. thatB. whatC. whichD. whose24. Grandpa was shocked by the news. Rarely ______ him so quiet.A. do I seeB. had I seenC. I had seenD. I saw25. The report aims to explain how these conclusions ______.A. were reachedB. had been reachedC. have reachedD. had reached26. Sometimes, ______ a patient a get-well card is better than visiting him.A. to be sentB. being sentC. having sentD. sending27. It‘s always hard to remember a name when one doesn‘t have a face to go with ______.A. himB. itC. herD. one28. It was unusual that such close neighbors ______ not know one another.A. couldB. wouldC. mustD. should29. The agent promised to keep the family members fully ______ of any developments.A. informB. informingC. informedD. being informed30. — The professor gave a really good speech.— I suggest you ______ him some specific questions about his work experience.A. have askedB. will askC. askedD. ask31. A person who has never tasted bitter won‘t know ______ sweet is.A. whichB. whatC. whenD. why32. The landlady prefers to have women in the apartment rather than men. She thinks women take______ care of things!A. wellB. goodC. betterD. best33. Based on a true story, the film shows a hero racing ______ time to get back the stolen papers.A. behindB. againstC. aboutD. at34. I‘ve made several travel plans for our vacation, but I‘ll leave it to you ______ one.A. choosingB. chosenC. to chooseD. choose35. Paris has some great museums ______ visitors can see fine works of impressionist painters.A. whereB. whichC. thatD. when第二节完形填空(共20小题;每小题1.5分,共30分)阅读下面短文,掌握其大意,从每题所给的A、B、C、D 四个选项中,选出最佳选项,并在答题卡上将该项涂黑。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市西城区2014年高三二模试卷数 学(理科) 2014.5第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|20}A x x =-<,{|}B x x a =<,若A B A =,则实数a 的取值范围是( ) (A )(,2]-∞-(B )[2,)-+∞(C )(,2]-∞(D )[2,)+∞2.在复平面内,复数2=(12i)z +对应的点位于( ) (A )第一象限 (B )第二象限 (C )第三象限(D )第四象限3.直线2y x =为双曲线2222 1(0,0)x y C a b a b-=>>:的一条渐近线,则双曲线C 的离心率是( )(A(B(C(D4.某四棱锥的三视图如图所示,记A 为此棱锥所有棱的长度的集合,则( ) (A ) 2A Î,且4A Î (BA ,且4A Î(C ) 2A Î,且A (DAA Î正(主)视图俯视图侧(左)视图5.设平面向量a ,b ,c 均为非零向量,则“()0⋅-=a b c ”是“=b c ”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件6.如图,阴影区域是由函数cos y x =的一段图象与x 轴围成的封闭图形,那么这个阴影区域的面积是( )(A )1(B )2(C )π2(D )π7. 在平面直角坐标系xOy 中,不等式组0,0,80x y x y ⎧⎪⎨⎪+-⎩≥≥≤所表示的平面区域是α,不等式组4100,0x y ⎧⎨⎩≤≤≤≤所表示的平面区域是β. 从区域α中随机取一点(,)P x y ,则P 为区域β内的点的概率是( ) (A )14(B )35(C )34(D )158. 设Ω为平面直角坐标系xOy 中的点集,从Ω中的任意一点P 作x 轴、y 轴的垂线,垂足分别为M ,N ,记点M 的横坐标的最大值与最小值之差为()x Ω,点N 的纵坐标的最大值与最小值之差为()y Ω.若Ω是边长为1的正方形,给出下列三个结论: ○1 ()x Ω;○2 ()()x y Ω+Ω的取值范围是[2,;○3 ()()x y Ω-Ω恒等于0.其中所有正确结论的序号是( ) (A )○1(B )○2○3(C )○1○2(D )○1○2○3第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.61()x x+的二项展开式中,常数项为______. 10. 在△ABC 中,若4a =,3b =,1cos 3A =,则sin A =_____;B =_____. 11.如图,AB 和CD 是圆O 的两条弦, AB 与CD 相交于点E ,且4CE DE ==,:4:1AE BE =,则 AE =______;ACBD=______.12.执行如图所示的程序框图,输出的a 值为______.13. 设抛物线24C y x =:的焦点为F ,M 为抛物线C 上一点,(2,2)N ,则||||MF MN +的取值范围是 .14. 已知f 是有序数对集合**{(,)|,}M x y x yN N =挝上的一个映射,正整数数对(,)x y 在映射f 下的象为实数z ,记作(,)f x y z =. 对于任意的正整数,()m n m n >,映射f 由下表给出:则(3,5)f =__________,使不等式(2,)4xf x ≤成立的x 的集合是_____________.C D. O E BA三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)在平面直角坐标系xOy中,点(cos )A θθ,(sin ,0)B θ,其中θ∈R .(Ⅰ)当2π3θ=时,求向量AB 的坐标; (Ⅱ)当π[0,]2θ∈时,求||AB 的最大值.16.(本小题满分13分)为了解某校学生的视力情况,现采用随机抽样的方式从该校的A ,B 两班中各抽5名学生进行视力检测.检测的数据如下:A 班5名学生的视力检测结果:4.3,5.1,4.6,4.1,4.9.B 班5名学生的视力检测结果:5.1,4.9,4.0,4.0,4.5.(Ⅰ)分别计算两组数据的平均数,从计算结果看,哪个班的学生视力较好? (Ⅱ)由数据判断哪个班的5名学生视力方差较大?(结论不要求证明)(Ⅲ) 现从A 班的上述5名学生中随机选取3名学生,用X 表示其中视力大于4.6的人数,求X 的分布列和数学期望.17.(本小题满分14分)如图,在三棱锥ABC P -中,PA ⊥底面ABC ,AC BC ⊥,H 为PC 的中点, M为AH 的中点,2PA AC ==,1BC =.(Ⅰ)求证:⊥AH 平面PBC ; (Ⅱ)求PM 与平面AHB 成角的正弦值; (Ⅲ)设点N 在线段PB 上,且PNPBλ=,//MN 平面ABC ,求实数λ的值.ABCPHM18.(本小题满分13分)已知函数12e ()44x f x ax x +=++,其中a ∈R .(Ⅰ)若0a =,求函数()f x 的极值;(Ⅱ)当1a >时,试确定函数()f x 的单调区间.19.(本小题满分14分)设,A B 是椭圆22: 143x y W +=上不关于坐标轴对称的两个点,直线AB 交x 轴于点M (与点,A B 不重合),O 为坐标原点.(Ⅰ)如果点M 是椭圆W 的右焦点,线段MB 的中点在y 轴上,求直线AB 的方程; (Ⅱ)设N 为x 轴上一点,且4OM ON ⋅=,直线AN 与椭圆W 的另外一个交点为C ,证明:点B 与点C 关于x 轴对称.20.(本小题满分13分)在无穷数列{}n a 中,11a =,对于任意*n ∈N ,都有*n a ∈N ,1n n a a +<. 设*m ∈N , 记使得n a m ≤成立的n 的最大值为m b .(Ⅰ)设数列{}n a 为1,3,5,7,,写出1b ,2b ,3b 的值;(Ⅱ)若{}n b 为等差数列,求出所有可能的数列{}n a ; (Ⅲ)设p a q =,12p a a a A +++=,求12q b b b +++的值.(用,,p q A 表示)北京市西城区2014年高三二模试卷参考答案及评分标准高三数学(理科) 2014.5一、选择题:本大题共8小题,每小题5分,共40分.1.D 2.B 3.A 4.D 5.B 6.B 7.C 8.D 二、填空题:本大题共6小题,每小题5分,共30分.9.20 10 π411.8 2 12.13- 13.[3,+)∞14.8 {1,2}注:第10,11,14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:由题意,得(sin cos ,)AB θθθ=-, ……………… 2分当 2π3θ=时,2π2πsin cos sin cos 33θθ-=-=, (4)2π3θ==所以 AB =. ……………… 6分(Ⅱ)解:因为 (sin cos ,)AB θθθ=-,所以 222||(sin cos )()AB θθθ=-+ ……………… 7分21sin 22sin θθ=-+ (8)分1sin 21cos 2θθ=-+- (9)分π2)4θ=+. (10)分因为 π02θ≤≤, 所以 ππ5π2444θ+≤≤. (11)分所以当π5π244θ+=时,2||AB 取到最大值2||2(3AB =-=,…… 12分即当π2θ=时,||AB . ……………… 13分16.(本小题满分13分)(Ⅰ)解:A 班5名学生的视力平均数为A 4.3+5.1+4.6+4.1 4.9==4.65x +, (2)分B 班5名学生的视力平均数为B 5.1+4.9+4.0+4.0 4.5==4.55x +. (3)分从数据结果来看A 班学生的视力较好. (4)分(Ⅱ)解:B 班5名学生视力的方差较大. ……………… 7分(Ⅲ)解:由(Ⅰ)知,A 班的5名学生中有2名学生视力大于4.6.则X 的所有可能取值为0,1,2. ……………… 8分所以 3335C 1(0)C 10P X ===;……………… 9分213235C C 3(1)C 5P X ===; (10)分123235C C 3(2)C 10P X ===. (11)分所以随机变量X……………… 12分故1336()012105105E X =⨯+⨯+⨯=. ……………… 13分17.(本小题满分14分)(Ⅰ)证明:因为 PA ⊥底面ABC ,BC ⊂底面ABC ,所以 PA BC ⊥, ……………… 1分 又因为AC BC ⊥, PA AC A =,所以 ⊥BC 平面PAC , ……………… 2分 又因为 ⊂AH 平面PAC ,所以 BC AH ⊥. ……………… 3分因为 ,AC PA =H 是PC 中点, 所以AH PC ⊥,又因为 PCBC C =,所以 ⊥AH 平面PBC . ……………… 5分(Ⅱ)解:在平面ABC 中,过点A 作,BC AD // 因为 ⊥BC 平面PAC , 所以 ⊥AD 平面PAC ,由 PA ⊥底面ABC ,得PA ,AC ,AD 两两垂直,所以以A 为原点,AD ,AC ,AP 所在直线分别为x 轴,y 轴,z 轴如图建立空间直角坐标系,则(0,0,0)A ,(0,0,2)P ,(1,2,0)B ,(0,2,0)C ,(0,1,1)H ,11(0,,)22M . (6)分设平面AHB 的法向量为(,,)x y z =n , 因为 (0,1,1)AH =,(1,2,0)AB=,由 0,0,AH AB ⎧⋅=⎪⎨⋅=⎪⎩n n 得 0,20,y z x y +=⎧⎨+=⎩ 令1=z ,得(2,1,1)=-n . ……………… 8分 设PM 与平面AHB 成角为θ,因为 )23,21,0(-=PM ,所以sin cos ,PM PM PM θ⋅=<>==⋅n n n,即 sin θ=. (10)分(Ⅲ)解:因为 (1,2,2)PB =-,PNPB λ=,所以 (,2,2)PN λλλ=-, 又因为 13(0,,)22PM =-, 所以 13(,2,2)22MN PN PM λλλ=-=--. ……………… 12分因为 //MN 平面ABC ,平面ABC 的法向量(0,0,2)AP =, 所以 340MN AP λ⋅=-=, 解得 43=λ. ……………… 14分18.(本小题满分13分)(Ⅰ)解:函数1e ()44x f x x +=+的定义域为{|x x ∈R ,且1}x ≠-. (1)分11122e (44)4e 4e ()(44)(44)x x x x x f x x x ++++-'==++. (3)分令()0f x '=,得0x =,当x 变化时,()f x 和()f x '的变化情况如下: (5)分故()f x 的单调减区间为(,1)-∞-,(1,0)-;单调增区间为(0,)+∞. 所以当0x =时,函数()f x 有极小值e(0)4f =. ……………… 6分(Ⅱ)解:因为 1a >,所以 22244(2)(1)0ax x x a x ++=++->,所以函数()f x 的定义域为R , ……………… 7分求导,得12112222e (44)e (24)e (42)()(44)(44)x x x ax x ax x ax a f x ax x ax x +++++-++-'==++++,…… 8分令()0f x '=,得10x =,242x a=-, ……………… 9分 当 12a <<时,21x x <,当x 变化时,()f x 和()f x '的变化情况如下:故函数()f x 的单调减区间为(2,0)a -,单调增区间为(,2)a-∞-,(0,)+∞. (11)分当 2a =时,210x x ==,因为12222e ()0(244)x x f x x x +'=++≥,(当且仅当0x =时,()0f x '=) 所以函数()f x 在R 单调递增. ……………… 12分当 2a >时,21x x >,当x 变化时,()f x 和()f x '的变化情况如下:故函数()f x 的单调减区间为4(0,2)a-,单调增区间为(,0)-∞,4(2,)a-+∞. 综上,当 12a <<时,()f x 的单调减区间为4(2,0)a -,单调增区间为4(,2)a-∞-,(0,)+∞;当 2a =时,函数()f x 在R 单调递增;当 2a >时,函数()f x 的单调减区间为4(0,2)a-;单调增区间为(,0)-∞,4(2,)a-+∞. ……………… 13分19.(本小题满分14分)(Ⅰ)解:椭圆W 的右焦点为(1,0)M , ……………… 1分因为线段MB 的中点在y 轴上,所以点B 的横坐标为1-, 因为点B 在椭圆W 上,将1x =-代入椭圆W 的方程,得点B 的坐标为3(1,)2-±. ……………… 3分所以直线AB (即MB )的方程为3430x y --=或3430x y +-=.…………… 5分(Ⅱ)证明:设点B 关于x 轴的对称点为1B (在椭圆W 上),要证点B 与点C 关于x 轴对称, 只要证点1B 与点C 重合,.又因为直线AN 与椭圆W 的交点为C (与点A 不重合),所以只要证明点A ,N ,1B 三点共线. ……………… 7分以下给出证明:由题意,设直线AB 的方程为(0)y kx m k =+≠,11(,)A x y ,22(,)B x y ,则122(,)B x y -.由 223412,,x y y kx m ⎧+=⎨=+⎩得 222(34)84120k x kmx m +++-=, ……………… 9分所以 222(8)4(34)(412)0km k m ∆=-+->,122834kmx x k +=-+,212241234m x x k -=+. (10)分在y kx m =+中,令0y =,得点M 的坐标为(,0)mk-, 由4OM ON ⋅=,得点N 的坐标为4(,0)km-, ……………… 11分设直线NA ,1NB 的斜率分别为NA k ,1NB k ,则 1211122121212444444()()NA NB k kx y y x y y y y m m k k k k k k x x x x m m m m+⨯++⨯--=-=++++ ,………12分 因为 21112244k kx y y x y y m m+⨯++⨯21112244()()()()k kx kx m kx m x kx m kx m m m=+++⨯++++⨯2121242()()8k kx x m x x k m=++++2222412482()()()83434m k kmk m k k m k-=⨯++-+++ 22323824832243234m k k m k k k k k---++=+ 0=, (13)分所以 10NA NB k k -=, 所以点A ,N ,1B 三点共线,即点B 与点C 关于x 轴对称. (14)分20.(本小题满分13分)(Ⅰ)解:11b =,21b =,32b =. ……………… 3分(Ⅱ)解:由题意,得1231n a a a a =<<<<<,结合条件*n a ∈N ,得n n a ≥. ……………… 4分又因为使得n a m ≤成立的n 的最大值为m b ,使得1n a m +≤成立的n 的最大值为1m b +,所以11b =,*1()m m b b m +∈N ≤. ……………… 5分设2 a k =,则 2k ≥. 假设2k >,即2 >2a k =,则当2n ≥时,2n a >;当3n ≥时,1n k a +≥. 所以21b =,2k b =. 因为{}n b 为等差数列, 所以公差210d b b =-=, 所以1n b =,其中*n ∈N . 这与2(2)k b k =>矛盾,所以22a =. ……………… 6分又因为123n a a a a <<<<<,所以22b =,由{}n b 为等差数列,得n b n =,其中*n ∈N . (7)分因为使得n a m ≤成立的n 的最大值为m b , 所以n n a ≤,由n n a ≥,得n n a =. ……………… 8分(Ⅲ)解:设2 (1)a k k =>,因为123n a a a a <<<<<,所以1211k b b b -====,且2k b =,所以数列{}n b 中等于1的项有1k -个,即21a a -个; ……………… 9分设3 ()a l l k =>, 则112l k k b b b -+====, 且3l b =,所以数列{}n b 中等于2的项有l k -个,即32a a -个; ……………… 10分……以此类推,数列{}n b 中等于1p -的项有1p p a a --个. ……………… 11分所以1221321(1())))2((p q p b b b a a a a a p a p -++=-+--+-+++121(1)p p a a p a a p -=-----++121()p p p pa p a a a a -=+-++++(1)p q A =+-.即12(1)q q A b b b p ++++=-. (13)分。