2014北京市海淀区理科数学二模试题及答案解析

合集下载

数学_2014年北京市海淀区高考数学二模试卷(理科)(含答案)

数学_2014年北京市海淀区高考数学二模试卷(理科)(含答案)

2014年北京市海淀区高考数学二模试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. sin(−150∘)的值为( ) A −12B 12C −√32 D √322. 已知命题p :“∀a >0,有e a ≥1成立”,则¬p 为( )A ∃a ≤0,有e a ≤1成立B ∃a ≤0,有e a ≥1成立C ∃a >0,有e a <1成立D ∃a >0,有e a ≤1成立3. 执行如图所示的程序框图,若输出的S 为4,则输入的x 应为( )A −2B 16C −2或8D −2或164. 在极坐标系中,圆ρ=2sinθ的圆心到极轴的距离为( ) A 1 B √2 C √3 D 25. 已知P(x, y)是不等式组{x +y −1≥0x −y +3≥0x ≤0表示的平面区域内的一点,A(1, 2),O 为坐标原点,则OA →⋅OP →的最大值( )A 2B 3C 5D 66. 一观览车的主架示意图如图所示,其中O 为轮轴的中心,距地面32m (即OM 长),巨轮的半径为30m ,AM =BP =2m ,巨轮逆时针旋转且每12分钟转动一圈.若点M 为吊舱P 的初始位置,经过t 分钟,该吊舱P 距离地面的高度为ℎ(t)m ,则ℎ(t)=( )A 30sin(π12t −π2)+30 B 30sin(π6t −π2)+30 C 30sin(π6t −π2)+32 D 30sin(π6t −π2)7. 已知等差数列{a n}单调递增且满足a1+a10=4,则a8的取值范围是()A (2, 4)B (−∞, 2)C (2, +∞)D (4, +∞)8. 已知点E、F分别是正方体ABCD−A1B1C1D1的棱AB、AA1的中点,点M、N分别是线段D1E与C1F上的点,则满足与平面ABCD平行的直线MN有()A 0条B 1条C 2条D 无数条二、填空题:本大题共6小题,每小题5分,共30分.9. 满足不等式x2−x<0的x的取值范围是________.10. 已知双曲线x2a2−y2b2=1的一条渐近线方程为y=2x,则其离心率为________.11. 已知(ax+1)5的展开式中x3的系数是10,则实数a的值是________.12. 已知斜三棱柱的三视图如图所示,该斜三棱柱的体积为________.13. 已知l1、l2是曲线C:y=1x的两条互相平行的切线,则l1与l2与的距离的最大值为________.14. 已知集合M={1, 2, 3, ..., 100},A是集合M的非空子集,把集合A中的各元素之和记作S(A).①满足S(A)=8的集合A的个数为________;②S(A)的所有不同取值的个数为________.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15. 在锐角△ABC中,a=2√7sinA且b=√21.(1)求B的大小;(2)若a=3c,求c的值.16. 如图,在三棱柱ABC−A1B1C1中,AA1⊥底面ABC,AB⊥AC,AC=AB=AA1,E、F分别是棱BC,A1A的中点,G为棱CC1上的一点,且C1F // 平面AEG.(1)求CGCC1的值;(2)求证:EG⊥A1C;(3)求二面角A1−AG−E的余弦值.17.某单位有车牌尾号为2的汽车A和尾号为6的汽车B,两车分属于两个独立业务部门.对一段时间内两辆汽车的用车记录进行统计,在非限行日,A车日出车频率0.6,B车日出车频率0.5.该地区汽车限行规定如下:现将汽车日出车频率理解为日出车概率,且A,B两车出车相互独立.(1)求该单位在星期一恰好出车一台的概率;(2)设X表示该单位在星期一与星期二两天的出车台数之和,求X的分布列及其数学期望E(X).18. 已知函数f(x)=(x−a)sinx+cosx,x∈(0, π).(1)当a=π时,求函数f(x)值域;2(2)当a>π时,求函数f(x)的单调区间.219. 已知椭圆G的离心率为√2,其短轴两端点为A(0, 1),B(0, −1).2(Ⅰ)求椭圆G的方程;(Ⅱ)若C、D是椭圆G上关于y轴对称的两个不同点,直线AC、BD与x轴分别交于点M、N.判断以MN为直径的圆是否过点A,并说明理由.20. 对于自然数数组(a, b, c),如下定义该数组的极差:三个数的最大值与最小值的差.如果(a, b, c)的极差d≥1,可实施如下操作f:若a,b,c中最大的数唯一,则把最大数减2,其余两个数各增加1;若a,b,c中最大的数有两个,则把最大数各减1,第三个数加2,此为一次操作,操作结果记为f1(a, b, c),其级差为d1.若d1≥1,则继续对f1(a, b, c)实施操作f,…,实施n次操作后的结果记为f n(a, b, c),其极差记为d n.例如:f1(1, 3, 3)= (3, 2, 2),f2(1, 3, 3)=(1, 3, 3).(1)若(a, b, c)=(1, 3, 14),求d1,d2和d2014的值;(2)已知(a, b, c)的极差为d且a<b<c,若n=1,2,3,…时,恒有d n=d,求d的所有可能取值;(3)若a,b,c是以4为公比的正整数等比数列中的任意三项,求证:存在n满足d n=0.2014年北京市海淀区高考数学二模试卷(理科)答案1. A2. C3. D4. A5. D6. B7. C8. D9. (0, 1)10. √511. 112. 213. 2√214. 6,505015. 解:(1)由正弦定理可得asinA =bsinB,∵ a=2√7sinA,b=√21,∴ sinB=bsinAa =√21sinA2√7sinA=√32,则在锐角△ABC中,B=60∘;(2)由余弦定理可得b2=a2+c2−2accosB,又a=3c,b=√21,cosB=12,∴ 21=9c2+c2−3c2,即c2=3,解得:c=√3,经检验,由cosA=b 2+c2−a22bc=2√7<0,可得A>90∘,不符合题意,则a=3c时,此三角形无解.16. (1)解:因为C1F // 平面AEG,又C1F⊂平面ACC1A1,平面ACC1A1∩平面AEG=AG,所以C1F // AG.因为F为AA1中点,且侧面ACC1A1为平行四边形,所以G为CC1中点,所以CGCC1=12.(2)证明:因为AA1⊥底面ABC,所以AA1⊥AB,AA1⊥AC,又AB⊥AC,如图,以A为原点建立空间直角坐标系A−xyz,设AB=2,则由AB=AC=AA1,得C(2, 0, 0),B(0, 2, 0),C1(2, 0, 2),A1(0, 0, 2),A(0, 0, 0),因为E,G分别是BC,CC1的中点,所以E(1, 1, 0),G(2, 0, 1).所以EG →=(1,−1,1),CA 1→=(−2,0,2), 因为EG →⋅CA 1→=(1, −1, 1)⋅(−2, 0, 2)=0. 所以EG →⊥CA 1→, 所以EG ⊥CA 1.(3)解:设平面AEG 的法向量n →=(x,y,z), 因为AE →=(1,1,0),AG →=(2,0,1), 所以{n →⋅AG →=2x +z =0˙,令x =1,得n →=(1, −1, −2).由已知得平面A 1AG 的法向量m →=(0,1,0), 所以cos <n →,m →>=√6=−√66, 由题意知二面角A 1−AG −E 为钝角, 所以二面角A 1−AG −E 的余弦值为−√66. 17. 解:(1)设A 车在星期i 出车的事件为A i ,B 车在星期i 出车的事件为B i ,i =1,2,3,4,5,则由已知可得P(A i )=0.6,P(B i )=0.5.设该单位在星期一恰好出车一台的事件为C ,则 P(C)=P(A 1B 1¯+A 1¯B 1) =P(A 1)P(B 1¯)+P(A 1¯)P(B 1)=0.6×(1−0.5)+(1−0.6)×0.5=0.5, ∴ 该单位在星期一恰好出车一台的概率为0.5.(2)X 的取值为0,1,2,3,则P(X =0)=P(A 1¯B 1¯)P(A 2¯)=0.4×0.5×0.4=0.08, P(X =1)=P(C)P(A 2¯)+P(A 1¯B 1¯)P(A 2) =0.5×0.4+0.4×0.5×0.6=0.32, P(X =2)=P(A 1B 1)P(A 2¯)+P(C)P(A 2) =0.6×0.5×0.4+0.5×0.6=0.42,P(X=3)=P(A1B1)P(A2) =0.6×0.5×0.6=0.18,∴ X的分布列为18. 解:(1)当a=π2时,f(x)=(x−π2)sinx+cosx,x∈(0, π).f′(x)=(x−π2)cosx,由f′(x)=0得x=π2,f(x),f′(x)的情况如下:所以函数f(x)的值域为(−1, 1).(2)f′(x)=(x−a)cosx,①当π2<a<π时,f(x),f′(x)的情况如下所以函数f(x)的单调增区间为(π2, a),单调减区间为(0, π2)和(a, π).②当a≥π时,f(x),f′(x)的情况如下所以函数f(x)的单调增区间为(π2, π),单调减区间为(0, π2).19. (1)∵ 椭圆G的离心率为√22,其短轴两端点为A(0, 1),B(0, −1),∴ 设椭圆G的方程为:x2a2+y2=1,(a>1).由e =√22,得e 2=a 2−1a 2=12,解得a 2=2,∴ 椭圆的标准方程为x 22+y 2=1.(2)以MN 为直径的圆是不过点A .理由如下: ∵ C 、D 是椭圆G 上关于y 轴对称的两个不同点, ∴ 设C(x 0, y 0),且x 0≠0,则D(−x 0, y 0). ∵ A(0, 1),B(0, −1),∴ 直线AC 的方程为y =y 0−1x 0x +1.令y =0,得x M =−x 0y−1,∴ M(−x 0y 0−1,0).同理直线BD 的方程为y =y 0+1−x 0x −1,令y =0,解得N(−x 0y 0+1,0).AM →=(x 01−y 0,−1),AN →=(−x 01+y 0,−1),∴ AM →⋅AN →=−x21−y 02+1,由C(x 0, y 0)在椭圆G:x 22+y 2=1上,∴ x 02=2(1−y 02),∴ AM →⋅AN →=−1≠0,∴ ∠MAN ≠90∘,∴ 以线段MN 为直径的圆不过点A .20. (1)解:由题意,d 1=10,d 2=7,d 2014=2−−−−−−−−−−−−−−−−−−−−−−−−−−−(2)解:①当d =2时,则(a, b, c)=(a, a +1, a +2)所以f 1(a, a +1, a +2)=(a +1, a +2, a),d 1=a +2−a =2,由操作规则可知,每次操作,数组中的最大数a +2变为最小数a ,最小数a 和次小数a +1分别变为次小数a +1和最大数a +2,所以数组的极差不会改变. 所以,当d =2时,d n =d(n =1, 2, 3,…)恒成立. ②当d ≥3时,则f 1(a, b, c)=(a +1, b +1, c −2)所以d 1=b +1−(a +1)=b −a <c −a =d 或d 1=c −2−(a +1)=d −3 所以总有d 1≠d .综上讨论,满足d n =d(n =1, 2, 3,…)的d 的取值仅能是2.--------------------- (3)证明:因为a ,b ,c 是以4为公比的正整数等比数列的三项, 所以a ,b ,c 是形如m ⋅4k (其中m ∈N ∗)的数,又因为4k =(3+1)k =3k +C k 1⋅3k−1+...+1 所以a ,b ,c 中每两个数的差都是3的倍数.所以(a, b, c)的极差d 0是3的倍数.------------------------------------------------ 设f i (a, b, c)=(a i , b i , c i ),不妨设a <b <c ,依据操作f 的规则,当在三元数组f i (a, b, c)(i =1, 2, 3,…x, x ∈N)中,总满足c i 是唯一最大数,a i 是最小数时,一定有a +x <b +x <c −2x ,解得x <c−b 3.所以,当i=1,2,3,…c−b3−1时,d i=c i−a i=(c i−1−2)−(a i−1+1)=d i−1−3.f c−b3(a, b, c)=(3a+c−b3, c+2b3, c+2b3),d c−b3=b−a依据操作f的规则,当在三元数组f i(a, b, c)(i=c−b3, c−b3+1,…c−b3+y, y∈N)中,总满足c i=b i是最大数,a i是最小数时,一定有3a+c−b3+2y<c+2b3−y,解得y<b−a3.所以,当i=c−b3,c−b3+1,…,c−a3−1时,d i=c i−a i=(c i−1−1)−(a i−1+2)=d i−1−3.f c−a3(a, b, c)=(a+b+c3, a+b+c3, a+b+c3),d c−a3=0所以存在n=c−a3,满足f n(a, b, c)的极差d n=0.----------------------------。

2014年普通高等学校招生全国统一考试数学(北京卷)理 (2)

2014年普通高等学校招生全国统一考试数学(北京卷)理 (2)

2014年普通高等学校招生全国统一考试(北京卷)数学(理科)第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.(2014北京,理1)已知集合A={x|x 2-2x=0},B={0,1,2},则A ∩B=( ). A .{0} B .{0,1} C .{0,2}D .{0,1,2}答案:C解析:解x 2-2x=0,得x=0,x=2,故A={0,2},所以A ∩B={0,2},故选C . 2.(2014北京,理2)下列函数中,在区间(0,+∞)上为增函数的是( ). A .y=√x +1 B .y=(x-1)2C .y=2-xD .y=log 0.5(x+1)答案:A解析:A 项,y=√x +1为(-1,+∞)上的增函数,故在(0,+∞)上递增;B 项,y=(x-1)2在(-∞,1)上递减,在(1,+∞)上递增;C 项,y=2-x =(12)x 为R 上的减函数;D 项,y=log 0.5(x+1)为(-1,+∞)上的减函数. 故选A .3.(2014北京,理3)曲线{x =-1+cosθ,y =2+sinθ(θ为参数)的对称中心( ).A .在直线y=2x 上B .在直线y=-2x 上C .在直线y=x-1上D .在直线y=x+1上 答案:B 解析:由已知得{cosθ=x +1,sinθ=y -2,消参得(x+1)2+(y-2)2=1. 所以其对称中心为(-1,2). 显然该点在直线y=-2x 上.故选B .4.(2014北京,理4)当m=7,n=3时,执行如图所示的程序框图,输出的S 值为( ). A .7 B .42 C .210 D .840答案:C解析:开始:m=7,n=3.计算:k=7,S=1.第一次循环,此时m-n+1=7-3+1=5,显然k<5不成立,所以S=1×7=7,k=7-1=6.第二次循环,6<5不成立,所以S=7×6=42,k=6-1=5.第三次循环,5<5不成立,所以S=42×5=210,k=5-1=4.显然4<5成立,输出S的值,即输出210,故选C.5.(2014北京,理5)设{a n}是公比为q的等比数列,则“q>1”是“{a n}为递增数列”的().A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案:D解析:等比数列{a n}为递增数列的充要条件为{a1>0,q>1或{a1<0,0<q<1.故“q>1”是“{a n}为递增数列”的既不充分也不必要条件.故选D.6.(2014北京,理6)若x,y满足{x+y-2≥0,kx-y+2≥0,y≥0,且z=y-x的最小值为-4,则k的值为().A.2B.-2C.12D.-12答案:D 解析:如图,作出{x+y-2≥0,y≥0所表示的平面区域,作出目标函数取得最小值-4时对应的直线y-x=-4,即x-y-4=0.显然z的几何意义为目标函数对应直线x-y+z=0在x轴上的截距的相反数,故该直线与x轴的交点(4,0)必为可行域的顶点,又kx-y+2=0恒过点(0,2),故k=2-00-4=-12.故选D.7.(2014北京,理7)在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,√2).若S1,S2,S3分别是三棱锥D-ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,则().A.S1=S2=S3B.S2=S1且S2≠S3C.S3=S1且S3≠S2D.S3=S2且S3≠S1答案:D解析:三棱锥的各顶点在xOy坐标平面上的正投影分别为A1(2,0,0),B1(2,2,0),C1(0,2,0),D1(1,1,0).显然D1点为A1C1的中点,如图(1),正投影为Rt△A1B1C1,其面积S1=12×2×2=2.三棱锥的各顶点在yOz坐标平面上的正投影分别为A2(0,0,0),B2(0,2,0),C2(0,2,0),D2(0,1,√2).显然B2,C2重合,如图(2),正投影为△A2B2D2,其面积S2=12×2×√2=√2.三棱锥的各顶点在zOx坐标平面上的正投影分别为A3(2,0,0),B3(2,0,0),C3(0,0,0),D3(1,0,√2),由图(3)可知,正投影为△A3D3C3,其面积S3=12×2×√2=√2.综上,S2=S3,S3≠S1.故选D.图(1)图(2)图(3)8.(2014北京,理8)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有( ). A .2人 B .3人C .4人D .5人答案:B解析:用A,B,C 分别表示优秀、及格和不及格.显然,语文成绩得A 的学生最多只有一人,语文成绩得B 的也最多只有1人,得C 的也最多只有1人,所以这组学生的成绩为(AC),(BB),(CA)满足条件,故学生最多为3人.第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分. 9.(2014北京,理9)复数(1+i 1-i)2= .答案:-1解析:1+i 1-i=(1+i )2(1-i )(1+i )=2i 2=i,所以(1+i 1-i)2=i 2=-1. 10.(2014北京,理10)已知向量a ,b 满足|a |=1,b =(2,1),且λa +b =0(λ∈R ),则|λ|= . 答案:√5解析:|b |=√22+12=√5,由λa +b =0,得b =-λa ,故|b |=|-λa |=|λ||a |,所以|λ|=|b ||a |=√51=√5.11.(2014北京,理11)设双曲线C 经过点(2,2),且与y 24-x 2=1具有相同渐近线,则C 的方程为 ;渐近线方程为 .答案:x 23−y 212=1 y=±2x 解析:双曲线y 24-x 2=1的渐近线方程为y=±2x.设与双曲线y 24-x 2=1有共同渐近线的方程为y 24-x 2=λ,又(2,2)在双曲线上,故224-22=λ,解得λ=-3.故所求双曲线方程为y 24-x 2=-3,即x 23−y 212=1.所求双曲线的渐近线方程为y=±2x.12.(2014北京,理12)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n= 时,{a n }的前n 项和最大. 答案:8解析:由等差数列的性质可得a 7+a 8+a 9=3a 8>0,即a 8>0;而a 7+a 10=a 8+a 9<0,故a 9<0.所以数列{a n }的前8项和最大.13.(2014北京,理13)把5件不同产品摆成一排.若产品A 与产品B 相邻,且产品A 与产品C 不相邻,则不同的摆法有 种. 答案:36解析:产品A,B 相邻时,不同的摆法有A 22A 44=48种.而A,B 相邻,A,C 也相邻时的摆法为A 在中间,C,B 在A 的两侧,不同的摆法共有A 22A 33=12(种).故产品A 与产品B 相邻,且产品A 与产品C 不相邻的不同摆法有48-12=36(种).14.(2014北京,理14)设函数f (x )=A sin(ωx+φ)(A ,ω,φ是常数,A>0,ω>0).若f (x )在区间[π6,π2]上具有单调性,且f (π2)=f (2π3)=-f (π6),则f (x )的最小正周期为 . 答案:π解析:由f(x)在区间[π6,π2]上具有单调性,且f(π2)=-f(π6)知,f(x)有对称中心(π3,0),由f(π2)=f(23π)知f(x)有对称轴x=12(π2+23π)=712π.记f(x)的最小正周期为T,则12T≥π2−π6,即T≥23π.故712π-π3=π4=T4,解得T=π.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(本小题13分)(2014北京,理15)如图,在△ABC中,∠B=π3,AB=8,点D在BC边上,且CD=2,cos∠ADC=17.(1)求sin∠BAD;(2)求BD,AC的长.分析:(1)先利用三角形中角之间的关系可得∠BAD=∠ADC-∠B,然后即可利用两角差的正弦公式求解;(2)在△ABD 中,根据正弦定理,结合(1)即可求得BD,然后在△ABC中,直接利用余弦定理求AC即可.解:(1)在△ADC中,因为cos∠ADC=17,所以sin∠ADC=4√37.所以sin∠BAD=sin(∠ADC-∠B)=sin∠ADC cos B-cos∠ADC sin B=4√37×12−17×√32=3√314.(2)在△ABD中,由正弦定理得BD=AB·sin∠BADsin∠ADB =8×3√3144√37=3.在△ABC中,由余弦定理得AC2=AB2+BC2-2AB·BC·cos B=82+52-2×8×5×12=49.所以AC=7.16.(本小题13分)(2014):(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记x为表中10个命中次数的平均数.从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数.比较EX与x的大小.(只需写出结论)分析:(1)先根据统计表格求出投篮命中率,确定投篮命中率超过0.6的场数,然后除以总场数10即可得所求;(2)先根据统计表格分别求出主场、客场的投篮命中率超过0.6的概率,然后根据主场、客场将所求事件分为两个互斥事件,即可利用相互独立事件同时成立的概率求解;(3)根据数学期望的计算公式即可得到EX与x的大小关系.解:(1)根据投篮统计数据,在10场比赛中,李明投篮命中率超过0.6的场次有5场,分别是主场2,主场3,主场5,客场2,客场4.所以在随机选择的一场比赛中,李明的投篮命中率超过0.6的概率是0.5.(2)设事件A 为“在随机选择的一场主场比赛中李明的投篮命中率超过0.6”,事件B 为“在随机选择的一场客场比赛中李明的投篮命中率超过0.6”,事件C 为“在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6”,则C=A B ∪A B ,A ,B 独立.根据投篮统计数据,P (A )=35,P (B )=25.P (C )=P (A B )+P (A B )=35×35+25×25=1325.所以,在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6的概率为1325. (3)EX=x .17.(本小题14分)(2014北京,理17)如图,正方形AMDE 的边长为2,B ,C 分别为AM ,MD 的中点.在五棱锥P-ABCDE 中,F 为棱PE 的中点,平面ABF 与棱PD ,PC 分别交于点G ,H. (1)求证:AB ∥FG ;(2)若PA ⊥底面ABCDE ,且PA=AE ,求直线BC 与平面ABF 所成角的大小,并求线段PH 的长.分析:(1)首先利用AM ∥ED 得到AB ∥平面PDE ,然后利用直线和平面平行的性质定理证明结论;(2)首先根据几何体的结构特征建立空间直角坐标系,求出相关点的坐标,然后求出直线BC 的方向向量和平面ABF 的法向量,利用这两个向量的夹角表示所求,再根据H 在PC 上,设出H 的坐标,然后利用平面ABF 的法向量与AH ⃗⃗⃗⃗⃗⃗ 垂直确定参数取值,进而求出H 点的坐标,最后利用坐标公式求得线段长度.(1)证明:在正方形AMDE 中,因为B 是AM 的中点,所以AB ∥DE.又因为AB ⊄平面PDE ,所以AB ∥平面PDE. 因为AB ⊂平面ABF ,且平面ABF ∩平面PDE=FG , 所以AB ∥FG.(2)解:因为PA ⊥底面ABCDE ,所以PA ⊥AB ,PA ⊥AE.如图建立空间直角坐标系A-xyz ,则A (0,0,0),B (1,0,0),C (2,1,0),P (0,0,2),F (0,1,1),BC⃗⃗⃗⃗⃗ =(1,1,0). 设平面ABF 的法向量为n =(x ,y ,z ),则{n ·AB ⃗⃗⃗⃗⃗ =0,n ·AF ⃗⃗⃗⃗⃗ =0,即{x =0,y +z =0.令z=1,则y=-1.所以n =(0,-1,1). 设直线BC 与平面ABF 所成角为α,则 sin α=|cos <n ,BC ⃗⃗⃗⃗⃗ >|=|n ·BC ⃗⃗⃗⃗⃗⃗|n ||BC ⃗⃗⃗⃗⃗⃗||=12. 因此直线BC 与平面ABF 所成角的大小为π6. 设点H 的坐标为(u ,v ,w ).因为点H 在棱PC 上,所以可设PH ⃗⃗⃗⃗⃗⃗ =λPC⃗⃗⃗⃗⃗ (0<λ<1), 即(u ,v ,w-2)=λ(2,1,-2), 所以u=2λ,v=λ,w=2-2λ.因为n 是平面ABF 的法向量,所以n ·AH⃗⃗⃗⃗⃗⃗ =0,即(0,-1,1)·(2λ,λ,2-2λ)=0,解得λ=23,所以点H 的坐标为(43,23,23). 所以PH=√(43)2+(23)2+(-43)2=2.18.(本小题13分)(2014北京,理18)已知函数f (x )=x cos x-sin x ,x ∈[0,π2]. (1)求证:f (x )≤0; (2)若a<sinxx<b 对x ∈(0,π2)恒成立,求a 的最大值与b 的最小值.分析:(1)先求出导函数f'(x ),利用导函数在(0,π2)上的符号判断f (x )在[0,π2]上的单调性,并求出其最大值,即可证得结论;(2)根据x>0,将不等式转化为整式不等式,进而转化为g (x )=sin x-cx (x ∈(0,π2))与0的大小关系,注意对参数c 的取值要分c ≤0,c ≥1和0<c<1三种情况进行分类讨论,然后利用边界值求出a 的最大值与b 的最小值. (1)证明:由f (x )=x cos x-sin x 得f'(x )=cos x-x sin x-cos x=-x sin x. 因为在区间(0,π2)上f'(x )=-x sin x<0, 所以f (x )在区间[0,π2]上单调递减. 从而f (x )≤f (0)=0. (2)解:当x>0时,“sinx x >a”等价于“sin x-ax>0”;“sinxx<b”等价于“sin x-bx<0”. 令g (x )=sin x-cx ,则g'(x )=cos x-c. 当c ≤0时,g (x )>0对任意x ∈(0,π2)恒成立. 当c ≥1时,因为对任意x ∈(0,π2),g'(x )=cos x-c<0, 所以g (x )在区间[0,π2]上单调递减. 从而g (x )<g (0)=0对任意x ∈(0,π2)恒成立. 当0<c<1时,存在唯一的x 0∈(0,π2)使得g'(x 0)=cos x 0-c=0.g (x )与g'(x )在区间(0,π2)上的情况如下:因为g (x )在区间[0,x 0]上是增函数, 所以g (x 0)>g (0)=0.进一步,“g (x )>0对任意x ∈(0,π2)恒成立”当且仅当g (π2)=1-π2c ≥0,即0<c ≤2π.综上所述,当且仅当c ≤2π时,g (x )>0对任意x ∈(0,π2)恒成立;当且仅当c ≥1时,g (x )<0对任意x ∈(0,π2)恒成立. 所以,若a<sinxx<b 对任意x ∈(0,π2)恒成立,则a 的最大值为2π,b 的最小值为1.19.(本小题14分)(2014北京,理19)已知椭圆C :x 2+2y 2=4. (1)求椭圆C 的离心率;(2)设O 为原点,若点A 在椭圆C 上,点B 在直线y=2上,且OA ⊥OB ,试判断直线AB 与圆x 2+y 2=2的位置关系,并证明你的结论.分析:(1)先把方程化为标准方程,分别求出a ,c ,即可求得离心率e ;(2)分别设出A ,B 两点的坐标,先利用OA ⊥OB 求出两点坐标之间的关系,然后根据A ,B 两点横坐标是否相等分类,分别求出原点O 到直线AB 的距离,将其与圆的半径√2进行比较,即可判断直线与圆的位置关系. 解:(1)由题意,椭圆C 的标准方程为x 24+y 22=1. 所以a 2=4,b 2=2,从而c 2=a 2-b 2=2.因此a=2,c=√2. 故椭圆C 的离心率e=c a=√22.(2)直线AB 与圆x 2+y 2=2相切.证明如下:设点A ,B 的坐标分别为(x 0,y 0),(t ,2),其中x 0≠0.因为OA ⊥OB ,所以OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =0,即tx 0+2y 0=0,解得t=-2y0x 0. 当x 0=t 时,y 0=-t 22,代入椭圆C 的方程,得t=±√2,故直线AB 的方程为x=±√2,圆心O 到直线AB 的距离d=√2,此时直线AB 与圆x 2+y 2=2相切. 当x 0≠t 时,直线AB 的方程为y-2=y 0-2x 0-t(x-t ), 即(y 0-2)x-(x 0-t )y+2x 0-ty 0=0. 圆心O 到直线AB 的距离d=00√(y 0-2)2+(x 0-t )2.又x 02+2y 02=4,t=-2y 0x 0, 故d=|2x 0+2y 02x |√x 02+y 02+4y 02x 02+4=|4+x 02x |√x 04+8x 02+162x 02=√2.此时直线AB 与圆x 2+y 2=2相切.20.(本小题13分)(2014北京,理20)对于数对序列P :(a 1,b 1),(a 2,b 2),…,(a n ,b n ),记T 1(P )=a 1+b 1,T k (P )=b k +max{T k-1(P ),a 1+a 2+…+a k }(2≤k ≤n ),其中max{T k-1(P ),a 1+a 2+…+a k }表示T k-1(P )和a 1+a 2+…+a k 两个数中最大的数. (1)对于数对序列P :(2,5),(4,1),求T 1(P ),T 2(P )的值;(2)记m 为a ,b ,c ,d 四个数中最小的数,对于由两个数对(a ,b ),(c ,d )组成的数对序列P :(a ,b ),(c ,d )和P':(c ,d ),(a ,b ),试分别对m=a 和m=d 两种情况比较T 2(P )和T 2(P')的大小;(3)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P 使T 5(P )最小,并写出T 5(P )的值.(只需写出结论)分析:(1)直接根据定义式即可求出T 1(P )和T 2(P )的值;(2)先根据定义式分别写出T 2(P )和T 2(P'),然后根据a ,b ,c ,d 中最小数的不同比较对应两个代数式的大小,即可求得T 2(P )和T 2(P')的大小关系;(3)先比较已知数据大小,然后根据定义式写出使T 5(P )最小的数对序列,依次求出T 1(P ),T 2(P ),T 3(P ),T 4(P ),T 5(P )即可. 解:(1)T 1(P )=2+5=7,T 2(P )=1+max{T 1(P ),2+4}=1+max{7,6}=8. (2)T 2(P )=max{a+b+d ,a+c+d }, T 2(P')=max{c+d+b ,c+a+b }.当m=a 时,T 2(P')=max{c+d+b ,c+a+b }=c+d+b.因为a+b+d ≤c+b+d ,且a+c+d ≤c+b+d ,所以T 2(P )≤T 2(P'). 当m=d 时,T 2(P')=max{c+d+b ,c+a+b }=c+a+b.因为a+b+d ≤c+a+b ,且a+c+d ≤c+a+b ,所以T 2(P )≤T 2(P'). 所以无论m=a 还是m=d ,T 2(P )≤T 2(P')都成立.(3)数对序列P :(4,6),(11,11),(16,11),(11,8),(5,2)的T 5(P )值最小, T 1(P )=10,T 2(P )=26,T 3(P )=42,T 4(P )=50,T 5(P )=52.。

【2014海淀二模】北京市海淀区2014届高三下学期期末练习(二模)数学文试题(扫描版,WORD答案)

【2014海淀二模】北京市海淀区2014届高三下学期期末练习(二模)数学文试题(扫描版,WORD答案)

海淀区高三年级第二学期期末练习参考答案数 学 (文科) 2014.5阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。

2.其它正确解法可以参照评分标准按相应步骤给分。

一、选择题:本大题共8小题,每小题5分,共40分.1.C2.B3.D4.B5.A6.A7.D8.B二、填空题:本大题共6小题,每小题5分,共30分.10.2 11.8 12.①② 13.2,0 14.5,3.6 {第13,14题的第一空3分,第二空2分}三、解答题: 本大题共6小题,共80分.15.解:(Ⅰ)()2cos21f x x x a =++- --------------------------4分12cos2)12x x a =++- π2sin(2)16x a =++- ---------------------------6分∴周期2ππ.2T == ----------------------------7分 (Ⅱ)令()0f x =,即π2sin(2)1=06x a ++-, ------------------------------8分则π=12sin(2)6a x -+, --------------------------------9分因为π1sin(2)16x -≤+≤, ---------------------------------11分所以π112sin(2)36x -≤-+≤, --------------------------------12分所以,若()f x 有零点,则实数a 的取值范围是[1,3]-. -----------------------------13分 16.解:(Ⅰ)上半年的鲜疏价格的月平均值大于下半年的鲜疏价格的月平均值.--------------------4分 (Ⅱ)从2012年2月到2013年1月的12个月中价格指数环比下降的月份有4月、5月、6月、9月、10月. ------------------------------------------6分设“所选两个月的价格指数均环比下降”为事件A ,--------------------------------------7分在这12个月份中任取连续两个月共有11种不同的取法,------------------------------8分 其中事件A 有(4月,5月),(5月,6月),(9月,10月),共3种情况. ---------9分∴3().11P A =-----------------------------------------10分(Ⅲ)从2012年11月开始,2012年11月,12月,2013年1月这连续3个月的价格指数方差最大.-----------------------------------------13分 17.解: (I )1A A ⊥底面ABC ,1A A ∴⊥AB , -------------------------2分AB AC ⊥,1A A AC A =,AB ∴⊥面11A ACC . --------------------------4分(II )面DEF //面1ABC ,面ABC面DEF DE =,面ABC面1ABC AB =,AB ∴//DE , ---------------------------7分在ABC ∆中E 是棱BC 的中点,D ∴是线段AC 的中点. ---------------------------8分 (III )三棱柱111ABC A B C -中1A A AC = ∴侧面11A ACC 是菱形,11AC AC ∴⊥, --------------------------------9分 由(1)可得1AB AC ⊥, 1AB AC A =,1A C ∴⊥面1ABC , --------------------------------11分1A C ∴⊥1BC . -------------------------------12分又,E F 分别为棱1,BC CC 的中点,EF ∴//1BC , ------------------------------13分1EF AC ∴⊥. ------------------------------141分18. 解:(Ⅰ)由已知可得2'()24f x x ax =++. ---------------------------------1分'(0)4f ∴=, ---------------------------------2分又(0)f b =()f x ∴在0x =处的切线方程为4y x b =+. ---------------------------------4分令321443x ax x b x b +++=+,整理得2(3)0x a x +=.0x ∴=或3x a =-, -----------------------------------5分0a ≠ 30a ∴-≠, ----------------------------------------6分()f x ∴与切线有两个不同的公共点.----------------------------------------7分(Ⅱ)()f x 在(1,1)-上有且仅有一个极值点,∴2'()24f x x ax =++在(1,1)-上有且仅有一个异号零点, ---------------------------9分由二次函数图象性质可得'(1)'(1)0f f -<, -------------------------------------10分即(52)(52)0a a -+<,解得52a >或52a <-, ----------------------------12分综上,a 的取值范围是55(,)(,)22-∞-+∞. -------------------------------13分 19.解:(Ⅰ)由已知可设椭圆G 的方程为:2221(1)x y a a+=> --------------------------------------------1分由e =,可得222112a e a -==,----------------------------------------------------------------3分解得22a =, -----------------------------------------------------------4分所以椭圆的标准方程为2212x y +=. ----------------------------------------------------5分(Ⅱ)法一:设00(,),C x y 则000(,),0D x y x -≠------------------------------------------------------6分 因为(0,1),(0,1)A B -, 所以直线BC 的方程为0011y y x x +=-, ------------------------------------------------------7分令0y =,得001M x x y =+,所以00(,0)1xM y +. ----------------------------------------------8分 所以000(,1),(,1),1x AM AD x y y =-=--+ -------------------------------------------9分所以200011x AM AD y y -⋅=-++,---------------------------------------------10分又因为2200121x y +=,代入得200002(1)111y AM AD y y y -⋅=+-=-+ --------------------11分因为011y -<<,所以0AM AD ⋅≠. -----------------------------------------------------------12分所以90MAN ∠≠, -------------------------------------------------------13分所以点A 不在以线段MN 为直径的圆上. ---------------------------------------------14分法二:设直线BC 的方程为1y kx =-,则1(,0)M k. ------------------------------------------------6分由22220,1,x y y kx ⎧+-=⎨=-⎩化简得到222(1)20x kx +--=,所以22(12)40k x kx +-=,所以12240,21kx x k ==+, -------------------------------------8分所以22222421112121k k y kx k k k -=-=-=++, 所以222421(,)2121k k C k k -++,所以222421(,)2121k k D k k --++ ----------------------------------------9分所以2221421(,1),(,1),2121k k AM AD k k k --=-=-++ ---------------------------------------------10分所以2222421210212121k AM AD k k k ---⋅=-+=≠+++, --------------------------------------12分所以90MAN ∠≠, ---------------------------------------13分所以点A 不在以线段MN 为直径的圆上. ------------------------------------14分20.解:(Ⅰ)①因为5135514S =<-,数列1,3,5,2,4-不是“Γ数列”, ---------------------------------2分②因为31113311284S =>-,又34是数列2323333,,444中的最大项 所以数列2323333,,444是“Γ数列”. ----------------------------------------------4分(Ⅱ)反证法证明:假设存在某项i a <0,则12111i i k k k i k a a a a a a S a S -+-+++++++=->.设12111max{,,,,,,,}j i i k k a a a a a a a -+-=,则12111k i i i k k j S a a a a a a a k a -+--=+++++++≤(-1),所以(1)j k k a S ->,即1kj S a k >-, 这与“Γ数列”定义矛盾,所以原结论正确. --------------------------8分 (Ⅲ)由(Ⅱ)问可知10,0b d ≥≥.①当0d =时,121m m m S Sb b b m m ====<-,符合题设; ---------------------9分 ②当0d >时,12m b b b <<<由“Γ数列”的定义可知1m m S b m ≤-,即111(1)[(1)](1)2m b m d mb m m d -+-≤+-整理得1(1)(2)2m m d b --≤(*)显然当123m b =+时,上述不等式(*)就不成立所以0d >时,对任意正整数3m ≥,1(1)(2)2m m d b --≤不可能都成立.综上讨论可知{}n b 的公差0d . --------------------------------------------------13分。

2014海淀区高三数学二模(理)试卷分析

2014海淀区高三数学二模(理)试卷分析
第12题、三视图。自2011年三视图题目出现在第7题的位置上, 考察了四面体的表面积问题之后难度上升。预测,三视图在今 年的试卷中也许不会缺席,与体积表面积相结合的考察也成为 主流,难度应该不会明显降低。
注意题目中的条件:斜三棱柱
2、试卷的整体风格和命题背景 :
第13题、函数的切线。既考核函数知识,又兼顾两条直线平 行的知识点,体现数形结合思想。
第3题、算法。就解题方法我们可以注意到,试题希望学生用 最踏实的方法解题,没有为技巧性的方法留太大的空间。另 一方面,以往循环结构中的核心语句都有一定的背景,题目 设置存在拓展的空间,但并没有刻意为难学生。 第4题、极坐标。低调简单 ,考察了最常规的直线和圆的方 程 ,此外,参数方程和极坐标相结合也是一种可能的考察方 向,值得注意。
(3)准、快、灵的训练意识——“准”是“快”和 “灵”的必要保障,失去了“准”的支撑,“快” 和“灵”也就毫无意义,因此应注重训练培养“一 次成功”的的解题能力.
试卷讲评课要有四戒:
(1)对答案式讲评:别让“假象”蒙蔽眼睛! (2)一言堂式讲评:别因“封口”扼杀灵性! (3)就题论题式讲评:别因“时间紧”放弃变式!
第14题、集合。可以说,这道题给踏实认真的学生提供了机会, 选择了质朴的回归,没有出现新定义,没有出动态问题,也没 有刻意难为重视计算的同学。
2、试卷的整体风格和命题背景 :
第15题、解三角形。解三角形题目难度没有什么变化。值得 小心的是,解三角形与三角函数本是同根生,尤其是陷阱就 在定义域上或角的取值范围等,因此还是要保持警惕。
第7题、等差数列。等差数列的单调性由公差d决定,与一次 函数单调性由一次项系数决定刚好吻合 ,因此构造数列中的 项与公差d的函数关系是解决取值范围的通法。 第8题、立体几何。“动”与“静”是相对的,在运动变化过 程中要善于寻求或构造与之相关的一些不变因素,建立变量 与不变量的有机统一体。

北京市海淀区2014届下学期高三年级二模考试数学试卷(文科) 有答案

北京市海淀区2014届下学期高三年级二模考试数学试卷(文科)   有答案

北京市海淀区2014届下学期高三年级二模考试数学试卷(文科)【试题答案】一、选择题:本大题共8小题,每小题5分,共40分.1.C2.B3.D4.B5.A6.A7.D8.B二、填空题:本大题共6小题,每小题5分,共30分.10.2 11.8 12.①② 13.2,0 14.5,3.6{第13,14题的第一空3分,第二空2分}三、解答题: 本大题共6小题,共80分.15.解:(Ⅰ)()cos21f x x x a ++- --------------------------4分12cos2)12x x a =++- π2sin(2)16x a =++- ---------------------------6分 ∴周期2ππ.2T == ----------------------------7分 (Ⅱ)令()0f x =,即π2sin(2)1=06x a ++-, ------------------------------8分 则π=12sin(2)6a x -+, --------------------------------9分 因为π1sin(2)16x -≤+≤, ---------------------------------11分 所以π112sin(2)36x -≤-+≤, --------------------------------12分 所以,若()f x 有零点,则实数a 的取值范围是[1,3]-. -----------------------------13分 16.解:(Ⅰ)上半年的鲜疏价格的月平均值大于下半年的鲜疏价格的月平均值.--------------------4分 (Ⅱ)从2012年2月到2013年1月的12个月中价格指数环比下降的月份有4月、5月、6月、9月、10月. ------------------------------------------6分设“所选两个月的价格指数均环比下降”为事件A , --------------------------------------7分 在这12个月份中任取连续两个月共有11种不同的取法,------------------------------8分 其中事件A 有(4月,5月),(5月,6月),(9月,10月),共3种情况. ---------9分 ∴3().11P A = -----------------------------------------10分 (Ⅲ)从2012年11月开始,2012年11月,12月,2013年1月这连续3个月的价格指数方差最大.-----------------------------------------13分17.解:(I )1A A ⊥底面ABC ,1A A ∴⊥AB , -------------------------2分A B A C ⊥,1A A AC A =,AB ∴⊥面11A ACC . --------------------------4分(II )面DEF //面1ABC ,面ABC 面DEF DE =,面ABC 面1ABC AB =,AB ∴//DE , ---------------------------7分在ABC ∆中E 是棱BC 的中点,D ∴是线段AC 的中点. ---------------------------8分(III )三棱柱111ABC A B C -中1A A AC =∴侧面11A ACC 是菱形,11AC AC ∴⊥, --------------------------------9分 由(1)可得1AB A C ⊥,1A B A C A =,1AC ∴⊥面1ABC , --------------------------------11分1AC ∴⊥1BC . -------------------------------12分又,E F 分别为棱1,BC CC 的中点,EF ∴//1BC , ------------------------------13分1E F A C ∴⊥. ------------------------------14分18. 解:(Ⅰ)由已知可得2'()24f x x ax =++. ---------------------------------1分'(0)4f ∴=, ---------------------------------2分又(0)f b =()f x ∴在0x =处的切线方程为4y x b =+. ---------------------------------4分令321443x ax x b x b +++=+,整理得2(3)0x a x +=. 0x ∴=或3x a =-, -----------------------------------5分0a ≠ 30a ∴-≠, ----------------------------------------6分()f x ∴与切线有两个不同的公共点. ----------------------------------------7分(Ⅱ)()f x 在(1,1)-上有且仅有一个极值点, ∴2'()24f x x a x =++在(1,1)-上有且仅有一个异号零点, ---------------------------9分由二次函数图象性质可得'(1)'(1)0f f -<, -------------------------------------10分即(52)(52)0a a -+<,解得52a >或52a <-, ----------------------------12分 综上,a 的取值范围是55(,)(,)22-∞-+∞. -------------------------------13分19.解:(Ⅰ)由已知可设椭圆G 的方程为:2221(1)x y a a+=> --------------------------------------------1分由e =,可得222112a e a -==,----------------------------------------------------------------3分解得22a =, -----------------------------------------------------------4分 所以椭圆的标准方程为2212x y +=. ----------------------------------------------------5分(Ⅱ)法一:设00(,),C x y 则000(,),0D x y x -≠ ------------------------------------------------------6分因为(0,1),(0,1)A B -,所以直线BC 的方程为0011y y x x +=-, ------------------------------------------------------7分令0y =,得001M x x y =+,所以00(,0)1x M y +. ----------------------------------------------8分所以0000(,1),(,1),1x AM AD x y y =-=--+ -------------------------------------------9分 所以200011x AM AD y y -⋅=-++, ---------------------------------------------10分 又因为2200121x y +=,代入得200002(1)111y AM AD y y y -⋅=+-=-+ --------------------11分因为011y -<<,所以0AM AD ⋅≠. -----------------------------------------------------------12分所以90MAN ∠≠, -------------------------------------------------------13分所以点A 不在以线段MN 为直径的圆上. ---------------------------------------------14分法二:设直线BC 的方程为1y kx =-,则1(,0)M k. ------------------------------------------------6分 由22220,1,x y y kx ⎧+-=⎨=-⎩化简得到222(1)20x kx +--=,所以22(12)40k x kx +-=,所以12240,21k x x k ==+, -------------------------------------8分 所以22222421112121k k y kx k k k -=-=-=++, 所以222421(,)2121k k C k k -++,所以222421(,)2121k k D k k --++ ----------------------------------------9分 所以2221421(,1),(,1),2121k k AM AD k k k --=-=-++ ---------------------------------------------10分所以2222421210212121k AM AD k k k ---⋅=-+=≠+++, --------------------------------------12分所以90MAN ∠≠, ---------------------------------------13分所以点A 不在以线段MN 为直径的圆上. ------------------------------------14分20.解:(Ⅰ)①因为5135514S =<-,数列1,3,5,2,4-不是“Γ数列”, ---------------------------------2分 ②因为31113311284S =>-,又34是数列2323333,,444中的最大项 所以数列2323333,,444是“Γ数列”. ----------------------------------------------4分(Ⅱ)反证法证明:假设存在某项i a <0,则12111i i k k k i k a a a a a a S a S -+-+++++++=->.设12111max{,,,,,,,}j i i k k a a a a a a a -+-=,则12111k i i i k k j S a a a a a a a k a -+--=+++++++≤(-1), 所以(1)j k k a S ->,即1k j S a k >-, 这与“Γ数列”定义矛盾,所以原结论正确. --------------------------8分 (Ⅲ)由(Ⅱ)问可知10,0b d ≥≥.①当0d =时,121m m m S S b b b m m ====<-,符合题设; ---------------------9分 ②当0d >时,12m b b b <<<由“Γ数列”的定义可知1m m S b m ≤-,即111(1)[(1)](1)2m b m d mb m m d -+-≤+- 整理得1(1)(2)2m m d b --≤(*)显然当123m b =+时,上述不等式(*)就不成立所以0d >时,对任意正整数3m ≥,1(1)(2)2m m d b --≤不可能都成立. 综上讨论可知{}n b 的公差0d =. --------------------------------------------------13分。

北京市海淀区2014届高三下学期期末练习(二模)数学理试题及答案

北京市海淀区2014届高三下学期期末练习(二模)数学理试题及答案

北京市海淀区2014届高三下学期期末练习(二模) 数 学 (文科) 2014.5本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上 作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知全集为R ,集合{|1}A x x =≥,那么集合A R ð等于A.{|1}x x >B.{|1}x x >-C.{|1}x x <D.{|1}x x <- 2. 已知命题p: 210x x x ∃∈+-<R ,,则p ⌝为A. 210x x x ∃∈+->R ,B.210x x x ∀∈+-≥R ,C. 210x x x ∃∉+-≥R ,D.210x x x ∀∉+->R ,3. 下列函数中,既是偶函数又在区间0+∞(,)上单调递增的是A.3y x =B.y =C.cos y x =D.2x y =4.设2log 3a =,4log 3b =,sin90c ︒=,则A.a c b <<B.b c a <<C.c a b <<D.c b a <<5.下面给出的四个点中, 位于10,10x y x y ++>⎧⎨-+<⎩表示的平面区域内,且到直线10x y -+=点是A.(1,1)-B.(2,1)-C.(0,3)D.(1,1) 6.已知向量,和在正方形网格中的位置如图所示, 若AD AB AC μλ+=,则=+μλA. 2B. 2-C. 3D. 3-7. 如图所示,为了测量某湖泊两侧A B ,间的距离,李宁同学首先选定了与A B ,不共线的一点C ,然后给出了三种测量方案:(ABC ∆的角,,A B C 所对的边分别记为,,a b c ):① 测量,,A C b ② 测量,,a b C ③测量,,A B a 则一定能确定A B ,间距离的所有方案的序号为A.①②B. ②③C. ①③D. ①②③8. 已知点,E F 分别是正方体1111ABCD A B C D -的棱1,AB AA的中点,点,M N 分别是线段1D E 与1C F 上的点,则与平面ABCD 垂直的直线MN 有A.0条B.1条C.2条D.无数条二、填空题:本大题共6小题,每小题5分,共30分.9. 复数2+i 的模等于______.10. 若抛物线22y px =(0)p >的准线经过双曲线221x y -=的左顶点,则p =_____.11. 执行如图所示的程序框图,则输出S 的值为_______. 12. 下列函数中:①sin 2y x =-;②cos2y x =;③3sin(2)4y x π=+,其图象仅通过向左(或向右)平移就能与函数()sin 2f x x =的图象重合的是_____.(填上符合要求的函数对应的序号)13. 已知实数0a >且1a ≠,函数, 3,(), 3.x a x f x ax b x ⎧<=⎨+≥⎩若数列{}n a 满足()n a f n =*()n ∈N ,且{}n a 是等差数列,则___,____.a b ==14. 农业技术员进行某种作物的种植密度试验,把一块试验田划分为8块面积相等的区域(除了种植密度,其它影响作物生长的因素都保持一致),种植密度和单株产量统计如下:根据上表所提供信息,第_____号区域的总产量最大,该区域种植密度为_____株/2m .2单株产量(千克)区域代号1D三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15.(本小题满分13分)已知函数2()cos 2sin f x x x x a =-+,a ∈R . (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)若函数()f x 有零点,求实数a 的取值范围.16.(本小题满分13分)下图为某地区2012年1月到2013年1月鲜蔬价格指数的变化情况:记Δx =本月价格指数-上月价格指数. 规定:当Δ0x >时,称本月价格指数环比增长; 当0x ∆<时,称本月价格指数环比下降;当0x ∆=时,称本月价格指数环比持平. (Ⅰ) 比较2012年上半年与下半年鲜蔬价格指数月平均值的大小(不要求计算过程);(Ⅱ) 直接写出从2012年2月到2013年1月的12个月中价格指数环比下降..的月份. 若从这12个月中随机选择连续的两个月进行观察,求所选两个月的价格指数都.环比下降的概率; (Ⅲ) 由图判断从哪个月开始连续三个月的价格指数方差最大. (结论不要求证明)17.(本小题满分14分)如图,在三棱柱111ABC A B C -中,1AA ⊥底面ABC,11,AB AC AC AA ⊥=,E 、F 分别是棱1BC CC 、的中点.(Ⅰ)求证:AB ⊥平面AA 1 C 1C ;(Ⅱ)若线段AC 上的点D 满足平面DEF //平面1ABC ,试确定点D 的位置,并说明理由; (Ⅲ)证明:EF ⊥A 1C .18.(本小题满分13分)已知函数321()43f x x ax x b =+++,其中,a b ∈R 且0a ≠.(Ⅰ)求证:函数()f x 在点(0,(0))f 处的切线与()f x 总有两个不同的公共点; (Ⅱ)若函数()f x 在区间(1,1)-上有且仅有一个极值点,求实数a 的取值范围.19.(本小题满分14分)已知椭圆G 短轴端点分别为(0,1),(0,1)A B -. (Ⅰ)求椭圆G 的标准方程;(Ⅱ)若C ,D 是椭圆G 上关于y 轴对称的两个不同点,直线BC 与x 轴交于点M ,判断以线段MD为直径的圆是否过点A ,并说明理由.20.(本小题满分13分)给定正整数3k ≥,若项数为k 的数列{}n a 满足:对任意的1,2,,i k = ,均有ki a k S ≤-1(其中12k k S a a a =+++ ),则称数列{}n a 为“Γ数列”.(Ⅰ)判断数列1,3,5,2,4-和2323333,,444是否是“Γ数列”,并说明理由;(Ⅱ)若{}n a 为“Γ数列”,求证:0i a ≥对1,2,,i k = 恒成立;(Ⅲ)设{}n b 是公差为d 的无穷项等差数列,若对任意的正整数m ≥3,12,,,m b b b均构成“Γ数列”,求{}n b 的公差d .北京市海淀区2014届高三下学期期末练习(二模)数 学 (文科)参考答案 2014.5阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。

2014北京各区高考数学二模试题及答案解析

2014北京各区高考数学二模试题及答案解析

2014北京各区高考数学二模
试题及答案解析
2014年北京市各县区的高考二模对于测验高三考生的复习成果和接下来的高考志愿填报具有非常重要的参考价值。

本人特将一模试题进行整理汇总,以下是2014年北京各城区高考二模试题及答案汇总,供考生
参考!
北京市西城区2014年高三二模试卷
数 学(理科) 2014.5
第Ⅰ卷(选择题 共40分)
一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合
题目要求的一项.
1.已知集合{|20}A x x =-<,{|}B x x a =<,若A B A =,
则实数a 的取值范围是( ) (A )(,2]-∞-
(B )[2,)-+∞
(C )(,2]-∞
(D )[2,)+∞
2.在复平面内,复数2
=(12i)z +对应的点位于( ) (A )第一象限 (B )第二象限 (C )第三象限
(D )第四象限
3.直线2y x =为双曲线22
22 1(0,0)x y C a b a b
-=>>:的一条渐近线,则双曲线C 的离心率是( )
(A (B (C
(D。

2014海淀二模

2014海淀二模

④ 天姥连天向天横
⑤ 范仲淹
势拔五岳掩赤城
化作相思泪
15. ① C(3分) ② 评分标准: 拟人(移情)手法,1分;分析诗句内容,2 分;赏析表达效果2分(诗人情感1分)。
16.A (3分) 17.答案要点:赋税收入;则为中央提供最 及时(或“较充分”)的经济援助(或 “物质保障”)。
(每点2分,共4分。意思对即可。)
其邻 / 此谓圣人也。
• 孔子说:“所谓圣人,他们的品德符合天地 之道,变通自如,能探究万事万物的终始, 使万事万物符合自然法则,依照万事万物 的自然规律来成就它们。光明如日月,教 化如神灵。下面的民众不知道他的德行, 看到他的人也不知道他就在身边。这样的 人就是圣人。”
14.
① 《左传》或《左氏春秋》《春秋左氏传》 彼竭我盈 ② 君子生非异也 ③ 悟已往之不谏 善假于物也 知来者之可追
• 19.A C (4分)
20.答案要点:
吴一品是一个有雅趣、能洞悉生活本质的名士,
他的这些特点丰富了小说的文化内涵;
他是主人公的知己,对主人公的生活态度、处
世原则、思想境界等有指点和引领作用,使主
人公的形象在变化中变得丰满; 吴一品的言行推动了故事情节的发展; 他的“知白守黑”“各是各的享受”等认识与 主人公共同揭示了文章主旨。 (意思对即可,答出任意三点即可得6分)
22.(10分)[评分标准]
(1)内容6分,想象合理,描写有点有面,有特 定氛围。表达4分,要求文通字顺,层次清楚。 (2)内容6分,情感真实,感受具体。表达4分, 要求文通字顺,层次清楚,语言得体。 (3)内容6分,理由合理、充分或深入。表达4 分,要求文通字顺,层次清楚,语言得体。
• (示例一)“世界上最遥远的距离,不是生与死, 而是我就在你身边,你却在玩手机。”这句话, 倒出了大家面对“手机低头族”的无奈。在科技 高度发达的今天,有人在虚拟世界中的朋友成千 上万,然而,在现实生活中却找不到一个说话的 人。这不能不说是高科技带来的悲哀。同样,手 机原本只是帮助人们提高沟通效率的一个工具。 如果因过于沉迷其中,让我们最高效、最直接的 面对面沟通能力发生退化,实在是得不偿失。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014北京市海淀区理科数学二模试题及答案解析2014.5本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上 作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.sin(150)-的值为A .12-B .12 C. D2.已知命题:p “0a ∀>,有e 1a≥成立”,则p ⌝为 A. 0a ∃≤,有e 1a≤成立 B. 0a ∃≤,有e 1a≥成立 C. 0a ∃>,有e 1a<成立 D. 0a ∃>,有e 1a≤成立 3. 执行如图所示的程序框图,若输出的S 为4,则输入的x 应为A.-2B.16C.-2或8D. -2或164. 在极坐标系中,圆θρsin 2=的圆心到极轴的距离为 A .1C.D. 25.已知(,)P x y 是不等式组10,30,0x y x y x +-≥⎧⎪-+≥⎨⎪≤⎩表示的平面区域内的一点,(1,2)A ,O 为坐标原点,则OA OP ⋅的最大值A.2B.3C.5D.66.一观览车的主架示意图如图所示,其中O 为轮轴的中心,距地面32m (即OM 长),巨轮的半径为30m ,AM =2BP =m ,巨轮逆时针旋转且每12分钟转动一圈.若点M 为吊舱P 的初始位置,经过t 分钟,该吊舱P 距离地面的高度为()h t m ,则()h t = A.ππ30sin()30122t -+ B.ππ30sin()3062t -+C.ππ30sin()3262t -+D.ππ30sin()62t -7.已知等差数列{}n a 单调递增且满足1104a a +=,则8a 的取值范围是A. (2,4)B. (,2)-∞C. (2,)+∞D.(4,)+∞8.已知点,E F 分别是正方体1111ABCD A B C D -的棱1,AB AA 的中点,点,M N 分别是线段1D E 与1C F 上的点,则满足与平面ABCD 平行的直线MN 有A.0条B.1条C.2条D.无数条二、填空题:本大题共6小题,每小题5分,共30分.9. 满足不等式20x x -<的x 的取值范围是________.10.已知双曲线22221x y a b-=的一条渐近线为2y x =,则双曲线的离心率为________.11.已知5(1)ax +的展开式中3x 的系数是10,则实数a 的值是12.已知斜三棱柱的三视图如图所示,该斜三棱柱的体积为______.13. 已知12,l l 是曲线1:C y x=的两条互相平行的切线,则1l 与2l 的距离的最大值为_____.14.已知集合{1,2,3,,100}M =,A 是集合M 的非空子集,把集合A 中的各元素之和记作()S A .①满足()8S A =的集合A 的个数为_____;②()S A 的所有不同取值的个数为_____.三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15.(本小题满分13分)1D D主视图俯视图在锐角ABC ∆中,a A =且b . (Ⅰ)求B 的大小;(Ⅱ)若3a c =,求c 的值.16.(本小题满分14分)如图,在三棱柱111ABC A B C -中,1AA⊥底面ABC ,AB AC ⊥,1AC AB AA ==,,E F 分别是棱BC ,1A A 的中点,G 为棱1CC 上的一点,且1C F //平面AEG . (Ⅰ)求1CG CC 的值;(Ⅱ)求证:1EG A C ⊥;(Ⅲ)求二面角1A AG E --的余弦值.17.(本小题满分13分)某单位有车牌尾号为2的汽车A 和尾号为6的汽车B ,两车分属于两个独立业务部门.对一段时间内两辆汽车的用车记录进行统计,在非限行日,A 车日出车频率0.6,B 车日出车频率0.5.该地区汽车限行规定如下:现将汽车日出车频率理解为日出车概率,且A ,B 两车出车相互独立. (Ⅰ)求该单位在星期一恰好出车一台的概率;(Ⅱ)设X 表示该单位在星期一与星期二两天的出车台数之和,求X 的分布列及其数学期望E (X ).18.(本小题满分13分)已知函数()()sin cos ,(0,)f x x a x x x π=-+∈.(Ⅰ)当π2a =时,求函数()f x 值域; (Ⅱ)当π2a >时,求函数()f x 的单调区间.19.(本小题满分14分)已知椭圆G,其短轴两端点为(0,1),(0,1)A B -. (Ⅰ)求椭圆G 的方程;(Ⅱ)若,C D 是椭圆G 上关于y 轴对称的两个不同点,直线,AC BD 与x 轴分别交于点,M N .判断1以MN 为直径的圆是否过点A ,并说明理由.20.(本小题满分13分)对于自然数数组(,,)a b c ,如下定义该数组的极差:三个数的最大值与最小值的差.如果(,,)a b c 的极差1d ≥,可实施如下操作f :若,,a b c 中最大的数唯一,则把最大数减2,其余两个数各增加1;若,,a b c 中最大的数有两个,则把最大数各减1,第三个数加2,此为一次操作,操作结果记为1(,,)f a b c ,其级差为1d .若11d ≥,则继续对1(,,)f a b c 实施操作f ,…,实施n 次操作后的结果记为(,,)n f a b c ,其极差记为n d .例如:1(1,3,3)(3,2,2)f =,2(1,3,3)(1,3,3)f =. (Ⅰ)若(,,)(1,3,14)a b c =,求12,d d 和2014d 的值; (Ⅱ)已知(,,)a b c 的极差为d 且a b c <<,若1,2,3,n =时,恒有n d d =,求d 的所有可能取值;(Ⅲ)若,,a b c 是以4为公比的正整数等比数列中的任意三项,求证:存在n 满足0n d =.数学(理科)参考答案2014.5阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。

2.其它正确解法可以参照评分标准按相应步骤给分。

一、选择题:本大题共8小题,每小题5分,共40分.1.A2.C3.D4.A.5.D6.B7.C8.D二、填空题:本大题共6小题,每小题5分,共30分.9.01x <<{或(0,1)}12.213.14.6,5050{本题第一空3分,第二空2分}三、解答题: 本大题共6小题,共80分.15.解:(Ⅰ)由正弦定理可得sin sin a bA B=----------------------------2分因为,a A b =所以sin sin b A B a ===---------------------------5分 在锐角ABC ∆中,60B = ---------------------------7分 (Ⅱ)由余弦定理可得2222cos b a c ac B =+- ----------------------------9分 又因为3a c =所以2222193c c c =+-,即23c =-------------------------------11分解得c =-------------------------------12分经检验,由222cos 02b c a A bc +-==<可得90A >,不符合题意,所以c =.--------------------13分 16.解:(Ⅰ)因为1//C F 平面AEG1又1C F ⊂平面11ACC A ,平面11ACC A 平面AEG AG =,所以1//C F AG . ---------------------------------3分 因为F 为1AA 中点,且侧面11ACC A 为平行四边形所以G 为1CC 中点,所以112CG CC =.------------------------4分 (Ⅱ)因为1AA ⊥底面ABC ,所以1AA AB ⊥,1AA AC ⊥, ----------------------------------5分 又AB AC ⊥,如图,以A 为原点建立空间直角坐标系A xyz -,设2AB =,则由1AB AC AA ==可得11(2,0,0),(0,2,0),(2,0,2),(0,0,2)C B C A -----------------------------6分因为,E G 分别是1,BC CC 的中点,所以(1,1,0),(2,0,1)E G . -----------------------------7分1(1,1,1)(2,0,2)0EG CA ⋅=-⋅-=.--------------------------------8分所以1EG CA ⊥,所以1EG AC ⊥. --------------------------------9分 (Ⅲ)设平面AEG 的法向量(,,)x y z =n ,则0,0,AE AG ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,20.x y x z +=⎧⎨+=⎩--------------------------10分 令1x =,则1,2y z =-=-,所以(1,1,2)=--n .--------------------------11分 由已知可得平面1A AG 的法向量(0,1,0)=m -------------------------------11分所以cos ,||||⋅<>==⋅n m n m n m --------------------------------13分 由题意知二面角1A AG E --为钝角, 所以二面角1A AG E --的余弦值为.--------------------------------14分 16.解:(Ⅰ)设A 车在星期i 出车的事件为i A ,B 车在星期i 出车的事件为i B ,1,2,3,4,5i =由已知可得()0.6,()0.5i i P A P B ==设该单位在星期一恰好出一台车的事件为C ,-------------------------------1分 因为,A B 两车是否出车相互独立,且事件1111,A B A B 互斥 ----------------2分所以111111111111()()()()()()()()P C P A B A B P A B P A B P A P B P A P B =+=+=+0.6(10.5)(10.6)0.5=⨯-+-⨯--------------------------4分0.5=所以该单位在星期一恰好出一台车的概率为0.5. --------------------------5分 {答题与设事件都没有扣1分,有一个不扣分}(Ⅱ)X 的可能取值为0,1,2,3 ----------------------------6分112(0)()()0.40.50.40.08P X P A B P A ===⨯⨯=2112(1)()()()()0.50.40.40.50.60.32P X P C P A P A B P A ==+=⨯+⨯⨯= 1122(2)()()()()0.60.50.40.50.60.42P X P A B P A P C P A ==+=⨯⨯+⨯=112(3)()()0.60.50.60.18P X P A B P A ===⨯⨯=----------------------------10分--------------11分()00.0810.3220.4230.18 1.7E X =⨯+⨯+⨯+⨯=-------------------------------13分18.解: (Ⅰ)当π2a =时,π()()sin cos ,(0,)2f x x x x x π=-+∈π'()()cos 2f x x x =- --------------------------------1分由'()0f x =得π2x = --------------------------------------2分(),'()f x f x 的情况如下--------------------------------------------------4分因为(0)1f =,(π)1f =-,所以函数()f x 的值域为(1,1)-. ---------------------------------------------------5分(Ⅱ)'()()cos f x x a x =-, ①当ππ2a <<时,(),'()f x f x 的情况如下-------------------------------------------------9分 所以函数()f x 的单调增区间为π(,)2a ,单调减区间为π(0,)2和(,π)a ②当πa ≥时,(),'()f x f x 的情况如下------------------------------------------------13分 所以函数()f x 的单调增区间为π(,π)2,单调减区间为π(0,)2. 19.解:(Ⅰ)由已知可设椭圆G 的方程为:2221(1)1x y a a +=>.-------------------------------1分 由e =,可得222112a e a -==,-----------------------------------------------------2分 解得22a =, ----------------------------------------------3分所以椭圆的标准方程为22121x y +=. ------------------------------------------4分 (Ⅱ)法一:设00(,),C x y 且00x ≠,则00(,)D x y -. ----------------------------------------5分 因为(0,1),(0,1)A B -, 所以直线AC 的方程为0011y y x x -=+. ----------------------------------------6分 令0y =,得001M x x y -=-,所以00(,0)1x M y --. ------------------------------------7分 同理直线BD 的方程为0011y y x x +=--,求得00(,0)1x N y -+.-----------------------8分0000(,1),(,1),11x x AM AN y y -=-=--+ -----------------------------------------9分所以AM AN ⋅=202011x y -+-, --------------------------------------10分由00(,)C x y 在椭圆G :2212x y +=上,所以22002(1)x y =-,-------------------11分 所以10AM AN ⋅=-≠, -----------------------------13分 所以90MAN ∠≠,所以,以线段MN 为直径的圆不过点A .------------------------------14分 法二:因为,C D 关于y 轴对称,且B 在y 轴上所以CBA DBA ∠=∠. ------------------------------------------5分 因为N 在x 轴上,又(0,1),(0,1)A B -关于x 轴对称所以NAB NBA CBA ∠=∠=∠, ------------------------------------------6分 所以//BC AN , -------------------------------------------7分 所以180NAC ACB ∠=-∠, ------------------------------------------8分 设00(,),C x y 且00x ≠,则22002(1)x y =-. ----------------------------------------9分 因为22200000003(,1)(,1)(1)02CA CB x y x y x y x ⋅=-+=--=>,----------------11分 所以90ACB ∠≠, -----------------------------------12分 所以90NAC ∠≠, ----------------------------------13分 所以,以线段MN 为直径的圆不过点A . -------------------------------14分 法三:设直线AC 的方程为1y kx =+,则1(,0)M k-, ---------------------------------5分22220,1,x y y kx ⎧+-=⎨=+⎩化简得到222(1)20x kx ++-=, 所以22(12)40k x kx ++=,所以12240,21kx x k -==+, -----------------------------6分所以22222421112121k k y kx k k k --+=+=+=++,所以222421(,)2121k k C k k --+++, ----------------------------7分 因为,C D 关于y 轴对称,所以222421(,)2121k k D k k -+++.----------------------------8分所以直线BD 的方程为22211211421k k y x k k -+++=-+,即112y x k =-.------------------10分 令0y =,得到2x k =,所以(2,0)N k . --------------------11分1(,1)(2,1)10AM AN k k⋅=--⋅-=-≠, ----------------------12分所以90MAN ∠≠, ----------------------------------13分 所以,以线段MN 为直径的圆恒过(0,2)和(0,2)-两点.--------------------------14分{法4 :转化为文科题做,考查向量AC AN ⋅的取值} 20.解:(Ⅰ)110d =,27d =,20142d =---------------------------3分 (Ⅱ)法一:①当2d =时,则(,,)(,1,2)a b c a a a =++所以1(,1,2)(1,2,)f a a a a a a ++=++,122d a a =+-=,由操作规则可知,每次操作,数组中的最大数2a +变为最小数a ,最小数a 和次 小数1a +分别变为次小数1a +和最大数2a +,所以数组的极差不会改变. 所以,当2d =时,(1,2,3,)n d d n ==恒成立. ②当3d ≥时,则1(,,)(1,1,2)f a b c a b c =++-所以11(1)d b a b a c a d =+-+=-<-=或12(1)3d c a d =--+=- 所以总有1d d ≠.综上讨论,满足(1,2,3,)n d d n ==的d 的取值仅能是2.---------------------8分 法二:因为a b c <<,所以数组(,,)a b c 的极差2d c a =-≥所以1(,,)(1,1,2)f a b c a b c =++-,若2c -为最大数,则12(1)3d c a c a d =--+=--< 若121b c a +≥->+,则1(1)(1)d b a b a c a d =+-+=-<-= 若112b a c +>+≥-,则1(1)(2)3d b c b c =+--=-+, 当3b c d -+=时,可得32b c -+≥,即1b c +≥ 由b c <可得1b c +≤ 所以1b c +=将1c b =+代入3b c c a -+=-得1b a =+所以当(,,)(,1,2)a b c a a a =++时,2n d =(1,2,3,n =)由操作规则可知,每次操作,数组中的最大数2a +变为最小数a ,最小数a 和次小 数1a +分别变为次小数1a +和最大数2a +,所以数组的极差不会改变.所以满足(1,2,3,)n d d n ==的d 的取值仅能是2. ---------------------8分 (Ⅲ)因为,,a b c 是以4为公比的正整数等比数列的三项,所以,,a b c 是形如4k m ⋅(其中*m ∈N )的数,又因为1114(31)3331k k k k k k k C C --=+=++++所以,,a b c 中每两个数的差都是3的倍数.所以(,,)a b c 的极差0d 是3的倍数.------------------------------------------------9分 法1:设(,,)(,,)i i i i f a b c a b c =,不妨设a b c <<,依据操作f 的规则,当在三元数组(,,)i f a b c (1,2,3,,i x =,x ∈N )中,总满足i c 是唯一最大数,i a 是最小数时,一定有2a x b x c x +<+<-,解得3c b x -<. 所以,当2,3,,13c b i -=-时,111(2)(1)3i i i i i id c a c a d ---=-=--+=-. 3322(,,)(,,)333c b a c b c b c b f a b c -+-++=,3c bd b a -=- 依据操作f 的规则,当在三元数组(,,)i f a b c (,1,,333c b c b c b i y ---=++,y ∈N )中,总满足i i c b =是最大数,i a 是最小数时,一定有32233a cbc b y y +-++<-,解得3b a y -<. 所以,当,1,,1333c b c b c a i ---=+-时,111(1)(2)3i i i i i id c a c a d ---=-=--+=-. 3(,,)(,,)333c a a b c a b c a b c f a b c -++++++=,30c a d -= 所以存在3c a n -=,满足(,,)n f a b c 的极差0nd =.--------------------------------13分 法2:设(,,)(,,)i i i i f a b c a b c =,则①当(,,)i i i a b c 中有唯一最大数时,不妨设i i i a b c ≤<,则1111,1,2i i i i i i a a b b c c +++=+=+=-,所以111111,3,3i i i i i i i i i i i i b a b a c a c a c b c b ++++++-=--=---=--所以,若,,i i i i i i b a c a c b ---是3的倍数,则111111,,i i i i i i b a c a c b ++++++---是3的倍数. 所以3i i b c +≤,则3i d ≥,1130i i i i c b c b ++-=--≥, 所以111i i i a b c +++≤≤所以11133i i i i i i d c a c a d +++=-=--=--------------------------------------------11分 ②当(,,)i i i a b c 中的最大数有两个时,不妨设i i i a b c <=,则 1112,1,1i i i i i i a a b b c c +++=+=-=-,所以1111113,3,i i i i i i i i i i i i b a b a c a c a c b c b ++++++-=---=---=-, 所以,若,,i i i i i i b a c a c b ---是3的倍数,则111111,,i i i i i i b a c a c b ++++++---是3的倍数. 所以3i i a b +≤,则3i d ≥,1130i i i i b a b a ++-=--≥ 所以11133i i i i i i d b a b a d +++=-=--=-.所以当3i d ≥时,数列{}i d 是公差为3的等差数列.------------------------------12分 当3i d =时,由上述分析可得10i d +=,此时1113i i i a b c a b c +++++=== 所以存在3d n =,满足(,,)n f a b c 的极差0n d =.----------------------------------13分。

相关文档
最新文档