数学系毕业论文范文

合集下载

大学数学论文(5篇)

大学数学论文(5篇)

大学数学论文(5篇)高校数学论文(5篇)高校数学论文范文第1篇参与全国高校生数学竞赛除了上述的必要条件之外,还需具备四个充分条件:如何稳固参与预赛的人数、制定合理有效的培训内容、师资队伍的建设以及经费来源等。

首先,如何有效地组织高校生参与竞赛,可谓是四个条件中最重要的一项,也是下一节笔者所讨论的重点;另外,作为数学竞赛的主要内容:《高等数学》是工科类同学必修的基础理论课,《数学分析》、《高等代数》、《解析几何》等课程是数学专业的专业基础课。

这些是数学竞赛得以顺当开展的基础。

第三,调动部分高校专任的数学老师组成竞赛培训团队也是一项重要的环节,笔者将会在第三节做具体的讨论。

最终是竞赛活动经费,笔者认为可以从以下三个方面获得:第一方面,每所高校都会有专项的创新活经费,可以从今项经费中申请一部分;其次方面,各赛区的主办方会拔给每个学校一些经费;第三方面,适当地向参与培训的同学收取(或变相地收取)一部分。

这些经费主要用于:参与竞赛的同学报名费、培训老师的课时费和同学竞赛时的考试相关费用等。

基于上述分析,在一般高校开展数学竞赛培训以及组织同学参与全国高校生数学竞赛是完全可行的并具有实际意义的。

2一般高校同学现状分析为了吸引、鼓舞更多的同学参加数学竞赛活动,必需先了解现在一般高校本科生的生源现状及其学习状态。

不得不承认,全国高校自扩招以来,一般高校高校生的质量普遍下降。

主要缘由有两个:一是高校的教育已由精英式转为大众式;二是随着扩招的进行,大多数优质生源进入了985或211这样的重点高校,这样就导致一般高校中的优质生源比例相对削减。

限于优质生源比例小的问题,再加上数学理论繁杂与浅显,学习起来困难重重,多数同学在学习数学时会产生犯难心情从而心生畏惧。

还有小部分的同学在进校时数学基础就比较差,(或由此产生的)学习数学的乐观性很低。

还有一部分同学认为数学无实际用途,从主观上学习数学的爱好消极。

基于以上几点缘由加上一些来自一般高校教学条件的限制,许多高校生的实际数学水平较低,所引发的直接结果就是学习成果下降、考试分数偏低、补考人数增多,更有甚者一些同学由于数学不及格而无法毕业。

数学毕业论文

数学毕业论文

数学毕业论文数学毕业论文(精选7篇)数学毕业论文篇1设计计划学是一门新兴的综合性边缘学科,它研究的是如何保证设计的优良度和高效性,以及如何指导设计的展开。

在设计需要科学计划这一概念已成为现代设计界共识的情况下,我国业界内部对设计计划学的认识与研究,还没有跟上设计发展需要的步伐。

针对我国设计教育现状,本书将就该学科的教学方面,提出一套科学的行之有效的设计计划方法。

以期为设计类学生深入理解设计,更好地掌握设计的方法提供必要的指导。

选题依据计划在今天已逐渐成为一门显学,大至国家事务,小至个人日常生活,社会各个领域都离不开计划,各类大大小小的成功项目,很大程度上都自觉或不自觉地导入,实施了相应的计划活动。

计划学的兴起是知识经济时代资源整合化的大势所趋。

而反映到艺术设计学的领域,我们可以发现,计划同样有极大的发展空间:如何设计,如何保证优良的设计,这都需要科学的调查研究,需要精准的分析定位,需要详实的设计依据,需要合理的组织安排,这些与我们通常理解的形式,风格的赋予层面的设计相异而相成的工作,就是设计计划的内容。

而如何正确进行设计计划,存在着一个方法论的问题。

在学科间的交叉融合成为当前学术主流的大环境下,设计计划应该可以打通各设计专业间的藩篱,为取得成功的设计提供行之有效的方法上的支持。

在设计先进国家,对设计计划方面已有一定程度的研究。

尤其在设计方法研究方面,已取得比较成熟的结果,出现了一些有效的方法,如技术预测法,科学类比法,系统分析设计法,创造性设计法,逻辑设计法,信号分析法,相似设计法,模拟设计法,有限元法,优化设计法,可靠性设计法,动态分析设计法,模糊设计法等。

这些方法侧重于不同的专业设计方向,而设计计划面临不同设计专业,更需要的是一种整合的灵活的解决问题的计划方法。

这就需要我们针对计划自身的学科特点,从现有的成型的方法群中进行提炼,总结出一套适应现在情况的设计计划方法来。

创新性及难度本文致力于从简明实效的角度,为设计计划人员提供易于操控,而且便于和各个专业设计师进行沟通、交流的方法。

本科数学专业毕业论文

本科数学专业毕业论文

本科数学专业毕业论文和中学数学相比较,大学数学内容多,抽象性和理论性强,很多学生对于大学数学的学习不能适应。

下面是店铺为大家整理的本科数学专业毕业论文,供大家参考。

本科数学专业毕业论文范文一:大学数学数学文化渗透思考摘要:大学教育中非常重要的一门基础学科就是数学,学好数学有利于大学生培养逻辑思维能力,提高创新意识。

在大学数学教学中渗透数学文化,能够让大学生对于数学知识有更加深刻的理解,激发大学生探究数学知识的兴趣,在学习中发现数学的乐趣,养成用严谨的态度看待周边的事物,为大学生今后步入社会做好准备。

关键词:大学数学;教学;渗透;数学文化一、数学文化的具体含义数学文化是指数学的思想、精神、观点、语言以及它们的形成和发展,还包含了数学家、数学史、数学教育和数学发展中的数学与社会的联系,数学与各种文化的关系等。

我国数学文化最早在孙小礼和邓东皋等人共同编写的《数学与文化》中被提及,这本书浓缩了许多数学名家的相关理论学说,记录了从自然辩证法角度对数学文化的思考。

数学不单单是一种符号或者是一种真理,其内涵包含了用数学的观点来观察周边的现实,构造数学模型,学习数学语言、图表和符合的表示,进行数学的沟通。

数学文化可以在具体的数学理念和数学思想、数学方法中揭示内涵。

数学从本质上与文学的思考方式是共通的,数学文化中的逻辑思维、形象思维、抽象思维等在文学思考方式中也有体现。

但是数学文化与其他文化相比较,也有其本身的独特性。

数学在历史发展的长河中不断改变和融合,现在已经成为世界上的一种通用语言,不再受到不同国家文化、语言的束缚,受到了各国人民的推崇和发展,数学文化利用科学的方式对人类生活中的其他文化的本质进行了深刻的揭示,是其他文化发展的基础。

二、教学中渗透数学文化的意义大学数学中综合了物理、计算机、电子等知识,教学课程包含了高等数学、线性代数、概率论与数理统计等,大学开展数学课程符合时代的发展潮流。

在大学数学教学中渗透数学文化,能够使学生在对数学进行系统化的学习之前,充分理解数学文化的内涵,发现数学文化与其他各种文化间的紧密联系,使大学生能够在数学教学的学习中提高数学学习能力,发展独立发现问题和解决问题的能力,开发大脑的潜能,树立正确的数学学习观念,通过学生深入了解数学的内容,从不同的角度对数学人文、科学方面等知识进行分析和理解。

数学专业毕业论文

数学专业毕业论文

数学专业毕业论⽂数学专业是⼤学教育中的⼀个⼀级学科,可细分为基础数学、计算数学、概率论与数理统计、应⽤数学等⼆级学科。

数学专业旨在培养掌握数学与应⽤数学科学的基本理论、基础知识和基本⽅法,能够运⽤数学知识和使⽤计算机解决若⼲实际数学问题的专门⼈才。

数学专业毕业论⽂1 新课程标准的出台,给⼩学数学课堂教学提供了更好的条件。

利⽤多媒体技术,激发⼩学⽣的数学学习兴趣,引导⼩学⽣去获取数学知识,是⼩学数学课堂教学响应教育改⾰的重要实践。

利⽤多媒体技术,优化⼩学数学课堂教学过程,给⼩学⽣呈现更加出彩的课堂活动,有利于⼩学⽣成为课堂的主⼈。

⼀、多媒体技术在⼩学数学课堂中应⽤的问题 ⼀、多媒体技术在⼩学数学课堂中应⽤的问题 1.⼩学数学多媒体课件制作质量有待提⾼ 虽然多媒体技术在⼩学数学教学中的应⽤相对普遍,但真正能够静下⼼来制作课件的教师并不多。

互联⽹技术的发展,使得⼩学数学教师可以通过互联⽹下载现成的课件,套⽤课件频率很⾼。

同⼀个课件被⽤到不同地区的不同学校,教师不同、学⽣不同、教学习惯与学习需求不同,都成为多媒体课件⽆法发挥积极作⽤的重要因素。

这样的课件会让课堂教学变得机械与僵化,更⽆法集中学⽣的注意⼒,影响教学效率的提⾼。

2.多媒体应⽤过程中忽视了学⽣主体地位 在⼩学数学教学前,教师会结合教学内容设计⾃⼰的课堂教学流程。

在利⽤多媒体设计课件时,⼤多数教师会根据⾃⼰的教学习惯与思路去设计课件,不考虑学⽣的感受。

⼀些教师在课堂中只盯着多媒体课件讲课,忽视了课堂中的师⽣互动,导致数学课堂成为教师围着屏幕转,学⽣睁着眼睛看这种局⾯的产⽣。

在这样的课堂中,学⽣没有机会与教师互动,也没有充⾜的时间去记数学笔记,成为数学课堂的旁观者。

虽然多媒体被应⽤于数学课堂中,但⼩学⽣的学习效率没有提⾼。

3.多媒体技术的应⽤普遍流于形式 多媒体是⽂字信息、图⽚信息与视频、⾳频信息的集⼤成者,利⽤多媒体技术实施教学,能够调动⼩学⽣的多个感官,提⾼⼩学⽣的数学学习兴趣。

数学系优秀毕业论文(通用12篇)

数学系优秀毕业论文(通用12篇)

数学系优秀毕业论文(通用12篇)数学系优秀毕业论文(通用12篇)难忘的大学生活将要结束,同学们毕业前都要通过最后的毕业论文,毕业论文是一种有计划的检验学生学习成果的形式,那么问题来了,毕业论文应该怎么写?下面是小编精心整理的数学系优秀毕业论文(通用12篇),欢迎大家分享。

数学系优秀毕业论文篇1摘要:《数学课程标准》指出:数学的知识、思想和方法必须由学生在现实的数学实践活动中理解和发展,而不是单纯地依靠教师的讲解去获得。

因此,教师要以学生的生活和现实问题为载体和背景,以学生的直接体验和生活信息为主要内容,把教科书中的数学知识巧妙而灵动地转化为数学活动。

关键词:应用数学;走进生活;数学活动《义务教育数学课程标准》指出:数学的知识、思想和方法必须由学生在现实的数学实践活动中理解和发展,而不是单纯地依靠教师的讲解去获得。

因此,教师要以学生的生活和现实问题为载体和背景,以学生的直接体验和生活信息为主要内容,把教科书中的数学知识巧妙而灵动地转化为数学活动。

引领学生通过自主探究、合作交流等实践活动,发现、理解、掌握数学知识,并在运用所学知识解决实际问题的过程中形成技能,提升能力。

下面结合自己的教学实践,谈几点粗浅做法与思考。

一、走进生活,应用有价值的数学知识数学来源于生活,离开了生活,数学将是一片死海,没有生活的数学是没有魅力的。

同样,生活离开了数学,那将是一个无法想象的世界。

因此,在教学中,应从学生的生活经验和已有知识出发,巧妙创设真实的生活场境,提供大量的数学信息。

这样,既让学生感受到了数学与生活的密切联系,又彰显了数学鲜活的生命力,促使学生萌生主动运用数学解决实际问题的意识。

(一)课前调查,萌发应用意识教师要善于把日常生活中遇到的问题呈现在学生面前,引领学生用数学的眼光观察生活,为数学知识的学习收集素材,让学生在生活的每个角落都感受到数学的存在,切实体会到数学渗透在我们生活的方方面面,促使学生自觉地将数学与生活联系起来,萌发应用意识。

2023最新-大学数学论文的范文 大学数学毕业论文优秀6篇

2023最新-大学数学论文的范文 大学数学毕业论文优秀6篇

大学数学论文的范文大学数学毕业论文优秀6篇最新大学数学论文的篇一本学期是初中学习的关键时期,学生成绩差距较大,教学任务非常艰巨。

因此,要完成教学任务,必须紧扣教学大纲,结合教学内容和学生实际,把握好重点、难点,努力把本学期的任务完成。

初三毕业班总复习教学时间紧,任务重,要求高,如何提高数学总复习的质量和效益,是每位毕业班数学教师必须面对的问题。

下面结合本届初三数学的实际情况,特制定本复习计划一、第一轮复习(3月10号——4月10号)第一轮复习的形式第一轮复习的目的是要“过三关”:(1)过记忆关。

必须做到记牢记准所有的公式、定理等,没有准确无误的记忆,就不可能有好的结果。

(2)过基本方法关。

如,待定系数法求二次函数解析式。

(3)过基本技能关。

如,给你一个题,你找到了它的解题方法,也就是知道了用什么办法,这时就说具备了解这个题的技能。

基本宗旨:知识系统化,练习专题化,专题规律化。

在这一阶段的教学把书中的内容进行归纳整理、组块,使之形成结构,可将代数部分分为六个单元:实数、代数式、方程、不等式、函数、统计与概率等;将几何部分分为六个单元:相交线和平行线、三角形、四边形、相似三角形、解直角三角形、圆等。

复习完每个单元进行一次单元测试,重视补缺工作。

第一轮复习应该注意的几个问题:(1)必须扎扎实实地夯实基矗今年中考试题按难:中:易=1:2:7的比例,基础分占总分(120分)的70%,因此使每个学生对初中数学知识都能达到“理解”和“掌握”的要求,在应用基础知识时能做到熟练、正确和迅速。

(2)中考有些基础题是课本上的原题或改造,必须深钻教材,绝不能脱离课本。

(3)不搞题海战术,精讲精练,举一反三、触类旁通。

“大练习量”是相对而言的,它不是盲目的大,也不是盲目的练。

而是有针对性的、典型性、层次性、切中要害的强化练习。

(4)注意气候。

第一轮复习是冬、春两季,大家都知道,冬春季是学习的黄金季节,五月份之后,天气酷热,会一定程度影响学习。

高等数学毕业论文

高等数学毕业论文

高等数学毕业论文我们的时代需要具有终身学习能力和身心健康的一代新人,这就更加要求我们的高等数学教学要以培养学生的学习能力,尤其是终身学习能力和终身数学意识为重,而自主学习能力的提高是实现此目标的重要前提。

下面是店铺为大家整理的高等数学毕业论文,供大家参考。

高等数学毕业论文范文一:高职院校高等数学教学改革研究0前言高职院校的《高等数学》课程是理工类专业学生的必修课程之一,作为工具学科对这些专业的学生来说,高等数学学习直接影响到其后续专业课程的学习.但数学学科的特点及学生对数学课程的学习态度导致了很大一部分学生缺乏学习数学的兴趣.本文将针对高等数学教学的现状,重点剖析在数学教学中引入数学史的意义,旨在改善当下数学教学面临的问题.1HPM的含义将数学史融入到数学教育是由HPM最早提出的,该研究组作为一个独立的研究机构早在1972年于英国埃克赛特举办的第二届国际数学教育大会上成立,是InternationalStudyGroupontheRelationsbetweenHistoryandPeda gogyofMathematics的缩写,旨在通过将数学史融入数学教育来提高数学教育水平[1].HPM所关注的主要内容是:数学史与历史发生原理、数学与其他学科的关系、数学文化对于学生的作用、数学史与学生的认知发展、数学史与学生学习的困难、数学历史资料对于数学教学中的应用等.世界各国数学家在不同时期都相继认可了在数学教学中引入数学史对学生学习数学的作用.在19世纪末的美国,便有人将数学史作为教学工具引用到数学教学中.而且美国著名数学史家,也是历史上的第一位数学史教授卡约黎在他的著作《数学史》中曾强调了数学史对于数学教育的重大作用:“如果学习微积分的学生能够知道一些牛顿、莱布尼兹、拉格朗日等在创造这门学科中所起的作用,那么学生一定会对他们倾慕不已”.2高职院校高等数学教学的现状2.1学生现状伴随我国产业结构调整,对技术型人才的需求越来越广泛,从一定程度上促进了高职教育的快速发展.随之带来的便是高职院校的扩大招生,进而导致生源情况参差不齐.而且绝大部分高职院校的学生数学基础大都相对薄弱,在这种情况下进行高等数学的教学可想而知难度有多大.2.2学习动机高职院校的学生都是以学习某门技术为学习目的的,作为专业基础课程的高等数学几乎不被重视,学生更愿意在专业课程方面多花时间和精力,对于抽象性与逻辑性非常强的高等数学基本都是敬而远之.而且学生在刚入学时便学习高等数学,尽管任课教师会强调数学课程的重要,对其专业课程的学习起到怎样的作用,但学生更愿意相信如果数学有用,到需要时再学也是来得及的,没必要浪费时间.2.3教学现状尽管高职院校对于高等数学课程的要求是“以应用为目的,以必须够用为度”,突出“淡化理论,注重应用,联系实际,深化概念,重视创新和提高素质”.但现行的教学中绝大部分学校仍然按照传统的教学方式,采取以教师为主的填鸭式的教学方法,这本身就无法调动学生的学习积极性.另外高等数学课程本身逻辑性强,前后内容承上启下,例如微分部分内容的掌握程度决定了后续的积分、多元函数、级数等内容的学习情况.所以一旦在初学时产生厌学、怕学情绪,那将使学生完全放弃学习,从而影响其后续专业课程的学习.3HPM视角下的高等数学教学改革的意义3.1促进教师掌握完整的数学体系,提高教学质量基于HPM视角下高等数学的教学改革要求任课教师须掌握课程所涉及到的数学史内容,且注意内容的准确性和完整性.从教师角度而言,这势必增加一定的工作量,但是也促进了教师对数学史的再学习,一旦教师对数学史内容准确掌握,不但提高了教师本身的数学素养,更利于增加教师对高等数学不同知识点的内涵和背景的全面了解,以便教师能够在课堂上适时引入相应数学史的内容,提高教学质量.3.2利于激发学生的学习兴趣,改善学习态度数学教学中引入相应数学史内容,对于学生来说,这种形式的教学非常新颖,而且作为知识的扩充,不要求学生对数学史的内容完全记住,也减轻了学生的学习压力.在学生感兴趣的情况下导入教学内容,激发学生的学习兴趣,学生由被动的接受转变为主动学习,久而久之,既丰富了学生的数学知识量,又较好地完成了教学目的,更增加了学生学习的自信心和主动性.作为学生,能把自己认为较抽象的数学学好,归纳出自己的学习方法,必然会使内心受到极大鼓舞,从而彻底转变学习态度.4具体改革措施4.1课堂上营造人文氛围高等数学作为公共基础课,在课堂上教师不仅要讲授数学知识,也要有的放矢地融入人文思想.关键在于选择恰当的切入点,这点须根据具体的教学内容和相应的教学情境来决定.在课堂上教师若能对于某一数学概念提供给学生准确完整的历史材料,包括这一概念的起因、论据及最终产生的过程,这无疑将拉近学生与数学之间的距离,增强真实感,更体现出数学教学中的人文精神.教师在教学的过程中,不断渗透数学的思想、数学的文化、数学的方法,久而久之使学生愿意去学习,愿意与老师交流,主动去思考问题,那么课堂教学将会更好地的开展.4.2教师应扩充数学史知识现在高职院校的数学教师一部分是师范院校数学专业的毕业生,这部分教师在大学期间是学过数学史这门课程的,也有一部分教师是其他学校的数学专业毕业生,这部分教师可能对数学史的内容没有作为一门课程学习过.但无论是哪种情况,都没有完整系统的学习或研究过数学史.因此,任课教师非常有必要对数学史的内容加以学习、研究,这样才能在恰当的时机准确地将数学史的相关内容引入数学教学中,将其还原在当今数学教学真实的数学情境中.使得学生能够真正感受到最本真、最原始的数学发展历程,体会知识本身在发展形成过程中所面对的困难,并能总结教训,吸收经验,利于学生真正了解数学的本质.如伊夫斯的《数学史通论》、李文林的《数学史概论》、《数学发展大事记》等书都很完整地梳理了数学发展的过程.4.3依据教学内容设计教学这是基于HPM视角下的高等数学教学最为关键的一步,也是难度较大的一步.这需要任课教师在课前做好大量的准备工作,针对不同的教学内容,合理准确地融入其历史发展过程,增加关于相应数学家和数学史的介绍,让学生知道每个数学概念、性质、定理、公式的产生过程,了解数学家在发现、总结出结论的艰辛,从而激发学生学习兴趣.例如在介绍数列极限的定义时,众所周知极限的ε-N(δ)定义抽象,学生在初学高等数学时很难理解.这时教师可以介绍庄子的“一尺之棰,日取其半,万世不竭”的极限思想,还可加入刘徽的“割圆术”,可使学生直观地感受到极限的内在含义,这样不仅可以突破教学难点,还可增加学生的数学知识,提高学生的数学素养].4.4作业中融入数学史在布置作业时,教师除了布置本节课的习题外也要布置关于数学史方面的作业,例如在讲微分中值定理时,课堂上教师已对拉格朗日、柯西等数学家进行介绍,可以布置学生在课后通过查阅材料、网络,了解他们还有哪些成就,或者了解费马和罗尔相关介绍.5结语基于HPM视角下的高等数学教学不仅改善了学生对数学的学习态度,更为学生的后续专业课程的学习夯实了基础,无论教师还是学生都在改革中有所收获.但教师在教学过程中一定要注意,融入数学史教学是为了以此吸引学生的注意力,突破学习难点,切不可以讲授数学史为主,本末倒置地将高等数学的内容删减.高等数学毕业论文范文二:数学史教育高等数学论文一、在高等数学的教学中融入数学史的必要性(一)在教学过程中插入数学史教育在教学过程中,涉及一些数学相关知识的人物、历史时,可以利用课堂上的3~5分钟向学生介绍一下,提高学生学习高等数学的兴趣,将高等数学中繁杂的数学符号、计算公式和有趣的数学历史相融合,鼓励学生积极、主动参与到高等数学学习中。

数学本科毕业论文

数学本科毕业论文

数学本科毕业论文数学本科毕业论文(精选15篇)数学本科毕业论文篇1一、研究背景20xx年4月出版了《普通高中数学课程标准(实验)》,根据新标准对数学本质的论述,“数学是研究空间形式和数量关系的科学,是刻画自然规律和社会规律的科学语言和有效工具。

”与这种现代理念相对应,在课程设置上,新标准将数学探究与建模列为与必修、选修课并置的部分,着重强调教学活动之外的数学探究与建模思想培养。

因此,可以说《普通高中数学课程标准》是我国中学数学应用与建模发展的一个重要里程碑,它标志着我国高中数学教育正式走向基础性与实用性相结合的现代路线。

二、数学探究与建模的课程设计根据新标准的指导精神以及高中数学教学的总体规划,本文认为高中数学探究与建模的课程设计必须符合以下几个原则:1、实用性原则作为刻画自然规律和社会规律的科学语言和有效工具,数学探究与建模课程设计必须以实用性为基本原则。

这里实用性包括两个方面的含义:其一是以日常生活中的数学问题为题材进行课程设计,勿庸质疑,这是实用性原则的最核心体现;其二是保持高中数学的承续作用,为学生未来的工作和学习提供数学探究和建模的初步训练,这要求课程设计的题材选取必须与高等教学体系和职业需求体系保持一致。

如果说,第一层含义体现了数学应用的广泛性和开放性,那么第二层含义则更多体现了数学应用的针对性。

2、适用性原则适用性原则体现的是数学训练的进阶过程,它要求高中数学探究与建模课程必须适应整个高中数学课程体系的总体规划和学生的学习能力。

首先,题材的选取不能过于专业,它必须以高中生的知识水平和知识搜寻能力为界进行设计。

这一点保证了数学探究与建模的可操作性,不至于沦为绚丽的空中楼阁或者“艰深”的天幕。

再者,题材的选取也不宜过于平淡,正如课程的名称所示,该课程设计必须注重学生学习过程中的探索性。

素质教育的一个核心思想是培养学生的探索精神和创新意识,适用性必须包容这样的指导精神,即学习的过程性和探索性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学系毕业论文范文通过对地方高校数学系学生的学习兴趣、学习方式方法、对数学教学的要求、择业观等方面的调查分析,探讨了在高等教育大众化阶段,地方高校数学系如何调整课程设置、引导学生正确认识数学学习,以及如何为学生创业提供平台等方面的问题。

下面是店铺为大家推荐的数学系毕业论文,供大家参考。

数学系毕业论文范文一:平面概念的历史发展及教学策略1、研究背景与问题提出中学数学中有许多概念是不加定义的,比如“自然数”“集合”“点”“直线”“平面”等等,这些概念通常被称为“原始概念”.原始概念在数学上有着非常重要的意义,它们“不仅满足了人们在建立数学理论时必须有个出发点的需要,以此避免导致恶性循环或无穷倒退的窘境之中”,同时还“能使人们的思想从狭溢的概念内涵意义的束缚中解放出来,从而扩大了人们的视野和想象力,有可能发展出新的数学理论来”[1].在中学数学教材中,有些原始概念被直接回避,有些则采用描述性的方式去介绍。

平面这一原始概念,教材一般是从客观存在的现实模型(如平静的海面、桌面、地面等)中引出,然后引导学生理解平面的无限延展性,同时还注重强调平面的表示方式。

对于平面这个原始概念,人们的理解情况如何呢?数学教育工作者Zormbala和Tzanakis通过对51位非数学专业毕业、从事各种职业的对象(德文教师、心理学家、律师、医生等等)的调查发现,他们的理解与历史上一些数学家的理解之间存在一定的相似性。

[2]历史相似性理论源于德国生物学家海克尔(E.Haeckel,1834-1919),他指出:儿童的心理发展过程就是人类种族发展过程的重复。

从19世纪末起,越来越多人支持“数学发展的历程与学生学习的过程存在相似性”的观点,其中包括法国数学家庞加莱(H.Poincaré,1854-1912),德国数学家克莱因(F.Klein,1849-1925),匈牙利数学家拉卡托斯(katos,1922-1974)等。

[3]许多实证表明,学生对某些数学概念的认知与概念的历史发展之间具有相似性。

为研究我们的高中学生对平面概念的理解情况,确定如下两个研究问题:(1)高中生是如何理解平面概念的?(2)高中学生对平面概念的理解是否呈现出历史相似性?2、平面概念的历史发展概述追溯平面概念的历史发展,有利于我们更深刻地理解这一数学概念。

根据古希腊评注家普罗克拉斯(Proclus,公元5世纪)的记载,古希腊哲学家巴门尼德(Parmenides,公元前5世纪)将几何对象分为三类:平直的、弯曲的、平直与弯曲混合的。

对于平面,巴门尼德的观点是:平面是直线在其中可以以任意方向与其相合的表面。

[4]公元前3世纪,古希腊数学家欧几里得在《几何原本》中给出平面的定义如下[5]:“定义I.7平面是它上面的线一样地平放着的面。

”上述定义语义较为含糊,而且平面的存在性也有待通过构造的方式予以说明。

面对欧几里得留下的问题,后世许多数学家做出了努力。

[2] 古希腊数学家海伦(Heron,约公元1世纪)给出了平面诸多具有相同特征---“平”的定义:平面是直线与之完全相合的表面。

如果一条直线经过表面上的两个点,那么这条直线的任意部位都和这个表面完全相合。

德国着名数学家莱布尼茨(G.W.Leibniz,1646-1710)曾多次尝试消除欧几里得平面定义中的逻辑缺陷。

在其着作InEuclidisProta(大约1696年)和Initiarerummathematicarummetaphysica(1714年至1716年)中,莱布尼茨研究了一些基本的几何概念(如直线、平面和圆)的定义问题,并认为海伦对平面本质的描述是“重复语义的杂耍”.在给荷兰着名物理学家惠更斯(ChristiaanHuygens,1629-1695)的信中,莱布尼茨以一种全新的方式定义了平面的概念:平面是到两个已知点距离相等的点集。

在欧几里得之后,平面的构建问题一直困扰着数学家,莱布尼茨的这个定义则使之成为可能。

英国数学家辛松(R.Simpson,1687-1768)认为,过表面上任意两点的直线与这个表面完全相合,这个表面就是平面。

在18世纪至19世纪末期,大多数几何着作都认可这个定义。

实际上,辛松的这个定义和海伦的定义是一致的。

19世纪,许多着名数学家紧随莱布尼茨的步伐,其中包括德国数学家高斯(CarlFriedrichGauss,1777-1855)、匈牙利数学家W.Bolyai 及其儿子J.Bolyai.高斯将平面定义为:过直线上一定点并与这条直线垂直的所有直线的表面;而在对辛松的定义批判的同时,W.Bolyai在空间中以运动的方式给平面下了定义:在空间内,一条直线绕与其垂直的直线旋转所形成的图形;J.Bolyai则继承了其父亲的思想,并创新性地把运动和对称同时引入平面的概念中。

19世纪末,几何学有了飞跃性的发展,德国数学家希尔伯特(DavidHilbert,1862-1943)于1899年发表了他的名着《几何基础》。

在这本经典着作中,希尔伯特仍把“点”“直线”“平面”作为基本对象不加定义,并把“点在直线上”“点在平面上”“一点在另两点之间”“线段的合同(相等)”“角的合同(相等)”作为不加定义的基本对象之间的关系,称为基本关系,对它们也不加以说明或解释。

三个基本对象和五个基本关系统称为基本概念,这些基本概念受五组、共20条公理的制约。

除了这八个基本概念以外的任何几何对象、名词、术语、关系等等,都必须加以严格定义。

[5]综上所述,在希尔伯特之前,人们主要从直观经验(先是局限于二维平面内而后是在三维空间中)来探究平面概念的本质,并试图在三维空间中构造出平面来;希尔伯特之后,人们普遍接受了平面概念的逻辑本质,自此“平面”不再是需要定义的孤立的数学对象,它的全部意义存在于一组具有逻辑一致性的公理体系中。

3、研究方法采用实证研究方法,通过问卷调查,对学生的解答进行定量与定性分析。

3.1样本被试来自沪、滇两地三所中学,从高二年级随机选取六个班级,共278人,其中男生153名,女生125名,收回有效问卷共270份,其中上海173份,云南97份。

3.2工具测试卷由Zormbala&Tzanakis所用问题改编而成,共含2道题,分别为:(1)你认为什么是平面?(2)请你作出一个平面。

测试时间为15分钟。

测试的主要目的是为了了解学生对平面概念的理解情况,并由此分析学生对平面概念的理解是否与概念的发展过程具有历史相似性。

4、结果与分析从整体情况来看,测试结果反映了学生对平面概念的理解情况,以下是对测试结果的逐题分析。

4.1学生对测试题1的回答情况测试结果:回答分为3类,分别是第1类:通过描述平面的与“水平”无关的性质;第2类:通过描述平面“水平”的性质或者通过举例描述的方式;第3类:通过描述点、线与平面的位置关系。

对结果的分析:可以看出所有学生对平面概念的理解都处于直观水平,没有学生认为“平面”是不需要定义的概念。

大部分学生从实际生活中的例子或者从“平面”的字面涵义来说明什么是平面,尽管他们知道平面上的点、直线与平面之间的关系,但并未从这个角度来回答;仅有不到四分之一的学生通过点、线与平面的位置关系来说明什么是平面(其中的一种解答如图1),他们的理解与历史上数学家欧几里得、海伦以及辛松的理解类似,这其中还有4名学生动态地理解直线与平面的关系(其中的一种解答如图2),这与历史上数学家W.Bolyai的理解类似。

对结果的分析:可以看出绝大部分学生受教材的影响,把“平面的表示”与“平面”本身相混淆,因而把平行四边形当作平面;有3名学生表示平面是无法作出的(其中的一种解答如图3),体现了对平面概念理解的深刻性。

5、结论与建议平面一直被广大的师生认为是一个极其基本和简单的几何概念,往往容易被忽视。

通过以上的数据统计分析以及对学生具体答卷的分析,我们可以发现学生对这个基本几何概念的掌握不容乐观,并得出以下两个主要结论:(1)绝大部分的高中生对平面概念的理解处于直观水平;(2)部分高中生对于平面概念的理解与历史上的数学家存在一定的相似性。

上述结论说明我们的现行教材和课堂教学还需要进一步完善。

对此,给出具体建议如下:(1)平面是立体几何的基本概念,在现阶段的高中教学中一般是从实物的形态抽象出平面的概念,在此过程中教师要尽量注意引导和带动学生发现几何中的平面与具体实物之间的区别,特别是平面的表示与平面本身之间的区别。

这实际上就是要渗透数学的特点:研究对象虽然是从现实世界抽象出来的,但抽象出来之后便存在人类的理想世界中。

(2)在平面概念的教学过程中,可以从点、线、面之间的位置关系,帮助学生从不同角度深入理解这个概念。

(3)由于部分高中生在平面的概念理解方面与历史上的数学家存在一定的相似性,因此,在教学过程中,教师可以通过学习一些数学的历史与文化,提前预期学生对于数学概念理解的困难,并针对这些困难相应得加强指导。

参考文献:[1]杜树芳.谈数学原始概念的赋意性[J].大连教育学院学报.1995,(1-2):87-89.[2]Zormbala,K.,Tzanakis,C.Theconceptoftheplaneingeometry :elementsofthehistoricalevolutioninherentinmodernviews[J].Med iterraneanJournalforResearchinMathematicsEducation,2004,3(1-2):37-61.[3]赵瑶瑶,张小明.关于历史相似性理论的讨论[J].数学教育学报.2008,17(4):53.[4]Proclus.ACommentaryontheFirstBookofEuclid'sEle-ments(2ndPrintedition)[M].GlennR.Morrowtrans-late.Princeton:PrincetonUniversityPress.1992.[5](古希腊)欧几里得.几何原本(第2版)[M].兰纪正,朱恩宽,译.西安:陕西科学技术出版社,2003.数学系毕业论文范文二:中国古代及近现代数学发展史探究1、中国古代数学的发展史1.1起源与早期发展.数学是研究数和形的科学,是中国古代科学中一门重要的学科.中国数学发展的萌芽期可以追溯到先秦时期,最早的记数法在殷墟出土的甲骨文卜辞中可以找到记数的文字.如独立的记数符号一到十,百、千、万,最大的数字为三万,还有十进制的记数法.在春秋时期出现中国最古老的计算工具---算筹,使用算筹进行计算称为筹算,中国古代数学的最大特点就是建立在筹算基础之上.古代的算筹多为竹子制成的同样长短和粗细的小棍子,用算筹记数有纵、横两种方式,个位用纵式,十位用横式,以此类推,并以空位表示零.这与西方及阿拉伯数学是明显不同的.在几何学方面,在《史记·夏本记》中记录到夏禹治水时已使用了规、矩、准、绳等作图和测量工具,勾股定理中的“勾三股四弦五”已被发现.1.2中国数学体系的形成与奠基时期.这一时期包括秦汉、魏晋、南北朝,共400年间的数学发展历史.中国古代的数学体系形成在秦汉时期,随着数学知识的不断系统化、理论化,相应的数学专书也陆续出现,如西汉初的《算数书》、西汉末年的《周髀算经》、东汉初年的《九章算术》以及南北朝时期的《孙子算经》、《夏侯阳算经》、《张丘建算经》等一系列算学着作.《周髀算经》编纂于西汉末年,提出勾股定理的特例及普遍形式以及测太阳高、远的陈子测日法;《九章算术》成书于东汉初年,以问题形式编写,分属于方田、粟米、衰分、少广、商功、均输、盈不足、方程和勾股九章,特点在于注重理论联系实际,形成了以筹算为中心的数学体系.中国数学在魏晋时期有了较大的发展,其中赵爽和刘徽的工作被认为是中国古代数学理论体系的开端.赵爽证明了数学定理和公式,详尽注释了《周髀算经》,其中一段530余字的“勾股圆方图”注文是数学史上极有价值的文献.刘徽的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产.在南北朝时期数学的发展依然蓬勃,出现了《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学着作.最具代表性的着作是祖冲之、祖父子撰写的《缀术》,圆周率精确到小数点后六位,推导出球体体积的正确公式,发展了二次与三次方程的解法.1.3中国古代数学发展的盛衰时期.宋、元两代是中国古代数学空前繁荣,硕果累累的全盛时期.出现了一批着名的数学家和数学着作,其中最具代表性的数学家是秦九韶和杨辉.秦九韶在其着作的《数学九章》中创造了“大衍求1术”(整数论中的一次同余式求解法),被称为“中国剩余定理”,在近代数学和现代电子计算设计中起到重要的作用.他所论的“正负开方术”(数学高次方程根法),被称为“秦九韶程序”.现在世界各国从小学、中学、大学的数学课程,几乎都接触到他的定理、定律、解题原则.杨辉,中国南宋时期杰出的数学家和数学教育家,他在1261年所着的《详解九章算法》一书中,给出了二项式系数在三角形中的一种几何排列,这个三角形数表称为杨辉三角.“杨辉三角”在西方又称为“帕斯卡三角形”,但杨辉比帕斯卡早400多年发现.随后从十四世纪中叶明王朝建立到明末的1582年,数学除了珠算外出现全面衰弱的局面.明代最大的成就是珠算的普及,出现了许多珠算读本,珠算理论已成系统,标志着从筹算到珠算转变的完成.在现代计算机出现之前,珠算盘是世界上简便而有效的计算工具.但由于珠算流行,筹算几乎绝迹,建立在筹算基础上的古代数学也逐渐失传,数学出现长期停滞.2、中国近现代数学的发展史中国近现代数学发展时期是指从20世纪初至今的一段时间,开始于清末民初的大批留学生的回国后,各地大学的数学教育有了明显的起色,很多回国人员后成为着名的数学家和数学教育家,在世界都具有重要的影响,为中国近现代数学发展做出了重要贡献,这些着名的数学家及其贡献主要有:2.1陈景润及其代表作.陈景润是世界着名解析数论学家之一.1966年,陈景润攻克了世界着名数学难题“哥德巴赫猜想”中的(1+2),在哥德巴赫猜想的研究上居世界领先地位,距摘取这颗数论皇冠上的明珠(1+1)只是一步之遥,于1978年和1982年两次收到国际数学家大会的邀请,在其他数论问题的成就在世界领域也是遥遥领先的.2.2华罗庚及其贡献.华罗庚是近代世界着名的中国数学家,对数学的贡献是多方面的.在数论、矩阵几何学、典型群、自守函数论、多个复变函数论、偏微分方程及高维数值积分等领域都做出了卓越的贡献.他解决了高斯完整三角和的估计,推进华林问题、塔里问题的结果,在圆法与三角和估计法方面的结果长期居世界领先地位,着作有《堆垒素数论》、《数论导引》、《典型域上的多元复变量函数论》及合着《数论在近似分析中的应用》。

相关文档
最新文档