高频小信号调谐放大器实验报告

合集下载

关于高频小信号调谐放大器的实验报告

关于高频小信号调谐放大器的实验报告

实验一高频小信号调谐放大器一、实验目的;1、掌握高频小信号调谐放大器的工作原理;2、掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算方法。

二、实验仪器;3 实验内容及步骤(电路图、设计过程、步骤);四、实验内容和步骤实验中电路部分元器件值,R2=10KΩ, R3=1KΩ, R10=2KΩ, R12=51Ω, R13=10KΩ,R24=2KΩ, R27=5.1KΩ, R28=18KΩ, R30=1.5KΩ, R31=1KΩ, R32=5.1KΩ, R33=18KΩ, R35=1.5KΩ, W3=47KΩ, W4=47KΩ,C20=1nF, C21=10nF, C23=10nF。

(一)、单级单调谐放大器1、计算选频回路的谐振频率范围如图1-8 所示,它是一个单级单调谐放大电路,输入信号由高频信号源或者振荡电路提供。

调节电位器W3 可改变放大电路的静态工作点,调节可调电容CC2 和中周T2 可改变谐振回路的幅频特性。

谐振回路的电感量L=1.8uH~2.4uH,回路总电容C=105 pF~125pF,根据公式图1-8 单级单调谐放大器实验原理图2、检查连线正确无误后,测量电源电压正常,电路中引入电压。

实验板中,注意TP9接地,TP8 接TP10;3、用万用表测三极管Q2 发射极对地的直流电压,调节可变电阻使此电压为5V。

4、用高频信号源产生频率为10.7MHz,峰峰值约400mV 的正弦信号,用示波器观察,调节电感电容的大小,适当调节静态工作点,使输出信号V o 的峰峰值V op-p 最大不失真。

记录各数据,得到谐振时的放大倍数。

5、测量该放大器的通频带、矩形系数对放大器通频带的测量有两种方式:(1) 用扫频仪直接测量;(2) 用点频法来测量,最终在坐标纸上绘出幅频特性曲线。

此处选用以扫频仪测量在放大器的频率特性曲线上读取相对放大倍数下降为0.1 处的带宽BW0.1或0.01处的带宽BW0.01。

高频小信号调谐放大器实验报告

高频小信号调谐放大器实验报告

高频小信号调谐放大器实验报告姓名:学号:班级:日期:高频小信号调谐放大器实验一、实验目的1.掌握小信号调谐放大器的基本工作原理;2.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算;3.了解高频小信号放大器动态范围的测试方法;二、实验仪器与设备高频电子线路综合实验箱;扫频仪;高频信号发生器;双踪示波器三、实验原理(一)单调谐放大器小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。

其实验单元电路如图1-1所示。

该电路由晶体管Q1、选频回路T1二部分组成。

它不仅对高频小信号放大,而且还有一定的选频作用。

本实验中输入信号的频率f S=12MHz。

基极偏置电阻R A1、R4和射极电阻R5决定晶体管的静态工作点。

可变电阻W3改变基极偏置电阻将改变晶体管的静态工作点,从而可以改变放大器的增益。

表征高频小信号调谐放大器的主要性能指标有谐振频率f0,谐振电压放大倍数A v0,放大器的通频带BW及选择性(通常用矩形系数Kr0.1来表示)等。

放大器各项性能指标及测量方法如下: 1.谐振频率放大器的调谐回路谐振时所对应的频率f 0称为放大器的谐振频率,对于图1-1所示电路(也是以下各项指标所对应电路),f 0的表达式为∑=LCf π210式中,L 为调谐回路电感线圈的电感量;∑C为调谐回路的总电容,∑C的表达式为ie oe C P C P C C2221++=∑式中, C oe 为晶体管的输出电容;C ie 为晶体管的输入电容;P 1为初级线圈抽头系数;P 2为次级线圈抽头系数。

谐振频率f 0的测量方法是:用扫频仪作为测量仪器,用扫频仪测出电路的幅频特性曲线,调变压器T 的磁芯,使电压谐振曲线的峰值出现在规定的谐振频率点f 0。

2.电压放大倍数放大器的谐振回路谐振时,所对应的电压放大倍数A V0称为调谐放大器的电压放大倍数。

A V0的表达式为Gg p g p y p p g y p p v v A ie oe fe fei V ++-=-=-=∑2221212100 式中,g Σ为谐振回路谐振时的总电导。

高频小信号放大器实验报告

高频小信号放大器实验报告

实验1高频小信号放大器幅频特性曲线为:带宽:8.0*0.7=5.6Bw1=6.6-6.1=0.5MHz2、观察集电极负载对单调谐回路谐振放大器幅频特性的影响当放大器工作于放大状态下,运用上步点测法测出接通与不接通1R3的幅频特性曲线。

既令2K1置“on”,重复测量并与上步图表中数据作比较。

f/MHz 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1U/mV 1.7 1.9 2.0 2.4 2.6 3.2 3.6 4.0 5.2 5.6 5.6 5.2 4.4 3.8 3.2 2.6 2.4 2.0幅频特性曲线为:5.6*0.7=3.92;Bw2=6.65-6.1=0.55MHz3、双调谐回路谐振放大器幅频特性测量(保持输入幅度不变,改变输入信号的频率,测出与频率相对应的双调谐放大器的输出幅度,然后画出频率与幅度的关系曲线,该曲线即为双调谐回路放大器的幅频特性。

)2K2往上拨,接通2C6(80P),2K1置off。

高频信号源输出频率6.3MHZ(用频率计测量),幅度300mv,然后用铆孔线接入双调谐放大器的输入端(IN)。

2K03往下拨,使高频信号送入放大器输入端。

示波器CH1接2TP01,示波器CH2接放大器的输出(2TP02)端。

反复调整2C04、2C11使双调谐放大器输出为最大值,此时回路谐振于6.3MHZ。

按照下表改变高频信号源的频率(用频率计测量),保持高频信号源输出幅度峰——峰值为300mv(示波器CH1监视),从示波器CH2上读出与频率相对应的双调谐放大器的幅度值,并把数据填入下表中。

f/MHz 4.8 5.0 5.2 5.4 5.7 5.8 5.9 6.0 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1 U/mV 0.8 1.4 2.6 4.2 8.0 8.8 8.0 8.0 8.0 8.2 8.4 6.4 4.8 3.2 2.0 1.8 1.4 1.2 幅频特性曲线:8*0.7=5.6V;Bw3=6.55-5.5-1.05MHz4、放大器动态范围测量2K1置off,2K2置单调谐,接通2C6.高频信号源输出接双调谐放大器的输入端(IN),调整高频信号源频率为6.3MHz,幅度为100mV。

高频电子线路_小信号调谐放大器和高频功放_实验报告

高频电子线路_小信号调谐放大器和高频功放_实验报告

1-3 小信号调谐放大器一 .实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握单调谐和双调谐放大器的基本工作原理;3.掌握测量放大器幅频特性的方法;4.熟悉放大器集电极负载对单调谐和双调谐放大器幅频特性的影响;5.了解放大器动态范围的概念和测量方法。

二 . 实验内容1.采用点测法测量单调谐和双调谐放大器的幅频特性;2.用示波器测量输入、输出信号幅度,并计算放大器的放大倍数;3.用示波器观察耦合电容对双调谐回路放大器幅频特性的影响;4.用示波器观察放大器的动态范围;5.观察集电极负载对放大器幅频特性的影响。

三 .实验步骤1.实验准备在实验箱主板上插装好无线接收与小信号放大模块,插好鼠标接通实验箱上电源开关,此时模块上电源指示灯和运行指示灯闪亮。

2.单调谐回路谐振放大器幅频特性测量测量幅频特性通常有两种方法,即扫频法和点测法。

扫频法简单直观,可直接观察到单调谐放大特性曲线,但需要扫频仪。

点测法采用示波器进行测试,即保持输入信号幅度不变,改变输入信号的频率,测出与频率相对应的单调谐回路谐振放大器的输出电压幅度,然后画出频率与幅度的关系曲线,该曲线即为单调谐回路谐振放大器的幅频特性。

(1)扫频法,即用扫频仪直接测量放大器的幅频特性曲线。

利用本实验箱上的扫频仪测试的方法是:用鼠标点击显示屏,选择扫频仪,将显示屏下方的高频信号源(此时为扫频信号源)接入小信号放大的输入端(1P1), 将显示屏下方的“扫频仪”与小信号放大的输出(1P8) 相连。

按动无线接收与小信号放大模块上的编码器(1SS1),选择1K2指示灯闪亮,并旋转编码器(1SS1) 使1K2指示灯长亮,此时小信号放大为单调谐。

显示屏上显示的曲线即为单调谐幅频特性曲线,调整1W1、1W2曲线会有变化。

用扫频仪测出的单调谐放大器幅频特性曲线如下图:图1-5 扫频仪测量的幅频特性(2)点测法,其步骤如下:① 通过鼠标点击显示屏,选择实验项目中“高频原理实验”,然后再选择“小信号调谐放大电路实验”,通过选择“小信号调谐放大”后,显示屏上显示小信号调谐放大器原理电路图。

高频小信号调谐放大器实验结论

高频小信号调谐放大器实验结论

高频小信号调谐放大器实验结论高频小信号调谐放大器是一种常见的电路,在无线通信中起到了至关重要的作用。

我们进行了一系列实验,研究了这种电路的性能和特点,得出了以下结论。

首先,高频小信号调谐放大器的主要作用是放大高频小信号。

在实验中,我们使用了两个变容二极管,一个电感和一个晶体管来构建这个电路。

当输入的高频小信号经过变容二极管调谐后,经由电感和晶体管放大后输出。

其次,调谐电路的参数非常重要,对电路性能有重要影响。

我们通过改变两个变容二极管的电容值和电感器的电感值,调整电路的谐振频率,从而得到最佳的放大效果。

在调整电路参数时,我们需要注意电路共振的问题,以防止电路失稳。

第三,晶体管的选择也非常关键。

我们选择了高频放大器专用的双极晶体管,能够提供更高的放大倍数和更好的线性度。

在实验中,我们还尝试了改变晶体管的偏置电压和失谐度对电路性能的影响。

第四,我们还研究了高频小信号调谐放大器的频率响应特性。

实验结果表明,电路在其工作频率范围内,输出信号的增益随着频率的变化而变化。

我们根据实验结果绘制了频率响应曲线,从而对电路的性能有了更深刻的了解。

最后,我们还针对不同的应用场景,进行了一系列的实际测试。

实验结果表明,在不同的频段和输入信号功率下,电路的增益和性能均有不同程度的变化。

因此,在实际应用中,需要根据具体情况进行参数调整和电路优化。

总之,高频小信号调谐放大器是一种非常实用的电路,在无线通信、雷达和电视等行业有着广泛的应用。

通过本次实验,我们对这种电路的特点、性能和应用有了更深入的了解,并可以为实际应用提供指导意义。

高频小信号调谐放大器实验报告

高频小信号调谐放大器实验报告

⾼频⼩信号调谐放⼤器实验报告⾼频⼩信号调谐放⼤器实验报告⼀、实验⽬的1、熟悉单级⼩信号调谐放⼤器的⼯作原理和设计⽅法2、熟悉并联调谐回路两端并联电阻RL对于频率特性的影响,并分析回路品质因数,回路通频带以及选择性之间的关系3、理解放⼤器的传输特性,了解放⼤器电压传输曲线Vom-Vim在谐振点的测量⽅法,并了解Ic对于传输特性曲线的影响⼆、实验原理⾼频⼩信号单调谐放⼤器上图为晶体管共发射极⾼频单级⼩信号单调谐放⼤器,它不仅可以放⼤⾼频信号⽽且还具有⼀定的选频作⽤,此电路采⽤LC 并联谐振回路作为负载。

Cb为输⼊耦合电容,滤除直流信号,Rb1,Rb2,Re提供静态⼯作点,使其⼯作在放⼤区Ce是Re的旁路电容,LC构成并联谐振回路。

RL是集电极交流电阻,它影响了回路的品质因数,增益带宽。

三、实验内容与步骤(1)实验电路图:(2)静态测量短接JP2_A的3_4,选择发射结电阻Re_A = 1K,断开JP_A,使RLA不连⼊电路,车辆VBQ,VEQ,VCQ。

静态⼯作点测量静态⼯作点VBQ(V) VEQ(V) VCQ(V)实际测量值 1.90 1.20 12.06(3)动态研究1、电路连接选取RLA = 10k,Re_A=1K,将⾼频信号发⽣器Vpp设置为100mV,频率为10.7MHz,接⼊电路输⼊J1_A⽰波器探头,连接J2_A,观察2、调节电路调节CT1_A的值,当电压幅度最⼤时,转去调节⾼频⼩信号发⽣器,直⾄⽰波器显⽰输出幅值最⼤,记下f0为谐振频率3、数据测量选择RL=10k,⾼频信号发⽣器调节f0,Re_A=2K,调节输⼊电压Vi从20mV--820mV,逐点记录并填表(4)数据处理频率和相应输出电压值频率与相应的输出电压值f(MHz) 7.9 8.1 8.3 8.5 8.7 8.9 9.1 9.3 9.5Vo(V)RL_A= 10K Ω 0.78 0.93 1.07 1.22 1.51 1.91 2.46 3.33 4.08RL_A= 2K Ω 0.655 0.724 0.792 0.892 0.989 1.104 1.206 1.297 1.35 RL_A= 470Ω0.370.378 0.390.398 0.406 0.410.414 0.418 0.41f(MHz) 9.79.910.110.310.510.710.911.1Vo(V)RL_A= 10K Ω 3.68 2.84 2.2 1.77 1.45 1.3 1.1 0.98 RL_A= 2K Ω 1.4 1.351.281.19 1.11 1.01 0.95 0.88 RL_A= 470Ω0.422 0.418 0.410.40.40.390.40.3900.511.522.533.544.57.588.599.51010.51111.5频率与相应的输出电压值RL_A=10KRL_A=2KRL_A=0.47K输⼊电压和相应输出电压值输⼊电压与相应的输出电压值Vi(mV) 20 70 120 170 220 270 320 370 420Vo(V)RL_A= 10K Ω 0.579 1.71 2.35 2.71 2.93 3.13 3.26 3.4 3.55 RL_A= 10K Ω 1.2 3.3 4.5 5.1 5.5 5.9 6.16.46.6 RL_A= 10K Ω2.01 5.89 8.01 9.13 9.86 10.4 10.94 11.5 11.8Vi(mV) 470520 570 620 670 720 770 820Vo(V)Re_A= 2K Ω 3.67 3.78 3.9 4.01 4.11 4.25 4.34 4.46 Re_A= 1K Ω 6.9 7.2 7.4 7.6 7.8 8 8.2 8.4 RL_A= 510Ω12.112.312.612.812.912.912.913.0四、课后思考题1、引起⼩信号谐振放⼤器不稳定的原因:主要是集电极内部反馈电容,使输出电压反馈到输⼊端如果实验中出现⾃激现象,消除的⽅法:A 、中和法B 、失配法024*********100200300400500600700800900输⼊电压与相应的输出电压值Re_A=2KRe_A=1KRe_A=0.51K2、负载电阻和三极管β值负载电阻RL增加时电压增益减⼩通频带增⼤。

高频小信号调谐放大器实验报告

高频小信号调谐放大器实验报告

高频小信号调谐放大器实验报告一、实验目的。

本实验旨在通过搭建高频小信号调谐放大器电路,了解调谐放大器的工作原理,掌握其特性参数的测量方法,并通过实验数据分析和计算,验证理论知识。

二、实验仪器与设备。

1. 信号发生器。

2. 示波器。

3. 电压表。

4. 电流表。

5. 电阻箱。

6. 电容箱。

7. 电感箱。

8. 双踪示波器。

三、实验原理。

高频小信号调谐放大器是一种能够对特定频率的信号进行放大的放大器。

其主要由电容、电感和晶体管等器件组成。

在电路中,通过调节电容和电感的数值,可以实现对特定频率信号的放大。

四、实验步骤。

1. 按照实验电路图连接电路,注意接线的正确性。

2. 打开信号发生器和示波器,调节信号发生器的频率和幅度,观察示波器上的波形。

3. 通过改变电容和电感的数值,调节电路的共振频率,观察输出波形的变化。

4. 测量电路中各个元件的电压、电流等参数,并记录实验数据。

5. 根据实验数据,计算电路的增益、带宽等特性参数。

五、实验数据与分析。

在实验中,我们通过改变电容和电感的数值,成功调节了电路的共振频率,观察到输出波形的变化。

通过测量和计算,得到了电路的增益、带宽等特性参数,并与理论数值进行了对比分析。

六、实验结果与讨论。

根据实验数据分析,我们得出了电路的增益、带宽等特性参数,并与理论数值进行了对比。

通过对比分析,我们发现实验数据与理论计算结果基本吻合,验证了调谐放大器的工作原理和特性。

七、实验总结。

通过本次实验,我们深入了解了高频小信号调谐放大器的工作原理和特性参数的测量方法,掌握了调谐放大器的实际应用技巧。

实验结果与理论计算基本吻合,证明了实验的有效性和准确性。

八、参考文献。

1. 《电子电路分析与设计》,张三,XX出版社,2010年。

2. 《电子电路实验指导》,李四,XX出版社,2015年。

以上为高频小信号调谐放大器实验报告内容,谢谢阅读。

小信号调谐放大器实验报告

小信号调谐放大器实验报告

一、实验目的本次实验旨在通过搭建和调试小信号调谐放大器电路,深入了解调谐放大器的工作原理和设计方法,掌握其特性参数的测量方法,并通过实验数据分析放大器的性能,为后续高频电子线路设计打下基础。

二、实验原理小信号调谐放大器是一种高频放大器,其主要功能是对高频小信号进行线性放大。

其工作原理是利用LC并联谐振回路作为晶体管的集电极负载,通过调节谐振频率来实现对特定频率信号的放大。

实验中,我们采用共发射极接法的晶体管高频小信号调谐放大器。

晶体管的静态工作点由电阻RB1、RB2及RE决定。

放大器在高频情况下的等效电路如图1所示,其中晶体管的4个y参数分别为输入导纳yie、输出导纳yoe、正向传输导纳yfe和反向传输导纳yre。

图1 高频小信号调谐放大器等效电路三、实验仪器与设备1. 高频信号发生器:用于产生不同频率和幅度的正弦波信号。

2. 双踪示波器:用于观察放大器输入、输出信号的波形和幅度。

3. 万用表:用于测量电路中电阻、电容等元件的参数。

4. 扫频仪(可选):用于测试放大器的幅频特性曲线。

四、实验步骤1. 搭建小信号调谐放大器电路,连接好实验仪器。

2. 调整谐振回路的电容和电感,使放大器工作在谐振频率附近。

3. 使用高频信号发生器输入不同频率和幅度的正弦波信号,观察放大器输入、输出信号的波形和幅度。

4. 使用示波器测量放大器的电压放大倍数、通频带和矩形系数等性能指标。

5. 使用扫频仪测试放大器的幅频特性曲线,进一步分析放大器的性能。

五、实验结果与分析1. 电压放大倍数通过实验,我们得到了放大器的电压放大倍数Avo,其值约为30dB。

这说明放大器对输入信号有较好的放大作用。

2. 通频带放大器的通频带BW0.7为2MHz,说明放大器对频率为2MHz的信号有较好的放大效果。

3. 矩形系数放大器的矩形系数Kr0.1为1.2,说明放大器对信号的选择性较好。

4. 幅频特性曲线通过扫频仪测试,我们得到了放大器的幅频特性曲线,如图2所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高频小信号调谐放大器实验报告姓名:学号:班级:日期:高频小信号调谐放大器实验一、实验目的1. 掌握小信号调谐放大器的基本工作原理;2. 掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算;3. 了解高频小信号放大器动态范围的测试方法;二、实验仪器与设备高频电子线路综合实验箱; 扫频仪; 高频信号发生器; 双踪示波器三、实验原理(一)单调谐放大器小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。

其实验单元电路如图1-1所示。

该电路由晶体管Q 1、选频回路T 1二部分组成。

它不仅对高频小信号放大,而且还有一定的选频作用。

本实验中输入信号的频率f S =12MHz 。

基极偏置电阻R A1、R 4和射极电阻R 5决定晶体管的静态工作点。

可变电阻W 3改变基极偏置电阻将改变晶体管的静态工作点,从而可以改变放大器的增益。

表征高频小信号调谐放大器的主要性能指标有谐振频率f 0,谐振电压放大倍数A v0,放大器的通频带BW 及选择性(通常用矩形系数K r0.1来表示)等。

放大器各项性能指标及测量方法如下: 1.谐振频率放大器的调谐回路谐振时所对应的频率f 0称为放大器的谐振频率,对于图1-1所示电路(也是以下各项指标所对应电路),f 0的表达式为∑=LCf π210式中,L 为调谐回路电感线圈的电感量;∑C为调谐回路的总电容,∑C的表达式为ie oe C P C P C C2221++=∑式中, C oe 为晶体管的输出电容;C ie 为晶体管的输入电容;P 1为初级线圈抽头系数;P 2为次级线圈抽头系数。

谐振频率f 0的测量方法是:用扫频仪作为测量仪器,用扫频仪测出电路的幅频特性曲线,调变压器T 的磁芯,使电压谐振曲线的峰值出现在规定的谐振频率点f 0。

2.电压放大倍数放大器的谐振回路谐振时,所对应的电压放大倍数A V0称为调谐放大器的电压放大倍数。

A V0的表达式为Gg p g p y p p g y p p v v A ie oe fe fei V ++-=-=-=∑2221212100 式中,g Σ为谐振回路谐振时的总电导。

要注意的是y fe 本身也是一个复数,所以谐振时输出电压V 0与输入电压V i 相位差不是180o 而是为(180o + Φfe )。

A V0的测量方法是:在谐振回路已处于谐振状态时,用高频电压表测量图1-1中R L 两端的电压V 0及输入信号V i 的大小,则电压放大倍数A V0由下式计算:A V0 = V 0 / V i 或 A V0 = 20 lg (V 0 /V i ) dB 3.通频带由于谐振回路的选频作用,当工作频率偏离谐振频率时,放大器的电压放大倍数下降,习惯上称电压放大倍数A V 下降到谐振电压放大倍数A V0的0.707倍时所对应的频率偏移称为放大器的通频带BW ,其表达式为BW = 2△f 0.7 = fo/Q L式中,Q L 为谐振回路的有载品质因数。

分析表明,放大器的谐振电压放大倍数A V0与通频带BW 的关系为∑=⋅C y BW A fe V π20上式说明,当晶体管选定即y fe 确定,且回路总电容C Σ为定值时,谐振电压放大倍数A V0与通频带BW 的乘积为一常数。

这与低频放大器中的增益带宽积为一常数的概念是相同的。

通频带BW 的测量方法:是通过测量放大器的谐振曲线来求通频带。

测量方法可以是扫频法,也可以是逐点法。

逐点法的测量步骤是:先调谐放大器的谐振回路使其谐振,记下此时的谐振频率f 0及电压放大倍数A V0然后改变高频信号发生器的频率(保持其输出电压V S 不变),并测出对应的电压放大倍数A V0。

由于回路失谐后电压放大倍数下降,所以放大器的谐振曲线如图1-2所示。

可得: 7.02f f f BW L H ∆=-=通频带越宽放大器的电压放大倍数越小。

要想得到一定宽度的通频宽,同时又能提高放大器的电压增益,除了选用y fe 较大的晶体管外,还应尽量减小调谐回路的总电容量C Σ。

如果放大器只用来放大来自接收天线的某一固定频率的微弱信号,则可减小通频带,尽量提高放大器的增益。

4.选择性——矩形系数调谐放大器的选择性可用谐振曲线的矩形系数K v0.1时来表示,如图1-2所示的谐振曲线,矩形系数K v0.1为电压放大倍数下降到0.1 A V0时对应的频率偏移与电压放大倍数下降到0.707 A V0时对应的频率偏移之比,即K v0.1 = 2△f 0.1/ 2△f 0.7 = 2△f 0.1/BW上式表明,矩形系数K v0.1越小,谐振曲线的形状越接近矩形,选择性越好,反之亦然。

一般单级调谐放大器的选择性较差(矩形系数K v0.1远大于1),为提高放大器的选择性,通常采用多级单调谐回路的谐振放大器。

可以通过测量调谐放大器的谐振曲线来求矩形系数K v0.1。

(二)双调谐放大器双调谐放大器具有频带较宽、选择性较好的优点。

双调谐回路谐振放大器是将单调谐回路放大器的单调谐回路该用双调谐回路。

其原理基本相同。

1.电压增益为gy p p v v A fei V 22100-=-=2. 通频带BW= 2△f0.7 = 2fo/Q L3.选择性——矩形系数100K v0.1 = 2△f0.1/ 2△f0.7 =41四、实验步骤(一)单调谐小信号放大器单元电路实验打开小信号调谐放大器的电源开关,并观察工作指示灯是否点亮,红灯为+12V电源指示灯,绿灯为-12V电源指示灯。

(以后实验步骤中不再强调打开实验模块电源开关步骤)1、调整晶体管的静态工作点:在不加输入信号时用万用表(直流电压测量档)测量电阻R4两端的电压(即V BQ)和R5两端的电压(即V EQ),调整可调电阻W3,使V eQ=4.8V,记下此时的V BQ、V EQ,并计算出此时的I EQ=V EQ /R5(R5=470Ω)。

V BQ = 5.4V,V EQ = 4.8V ,I EQ=V EQ /R5=10.2mA2、高频信号发生器输出频率为12MHz,峰-峰值约为100mV以上的高频信号。

将信号输入J4口。

3、调谐放大器的谐振回路使其谐振在输入信号的频率点上:将示波器探头连接在调谐放大器的输出端即TH2上,调节示波器直到能观察到输出信号的波形,再调节中周磁芯使示波器上的信号幅度最大,此时放大器即被调谐到输入信号的频率点上。

在调谐放大器对输入信号已经谐振的情况下,用示波器分别观测输入和输出信号的幅度大小,则A v0即为输出信号与输入信号幅度之比。

幅度TH1 :50mV TH2 : 1.23VA v0 =1.23/0.05=24.64、测量放大器通频带对放大器通频带的测量有两种方式,其一是用频率特性测试仪(即扫频仪)直接测量;其二则是用点频法来测量:即用高频信号源作扫频源,然后用示波器来测量各个频率信号的输出幅度,最终描绘出通频带特性,具体方法如下:通过调节放大器输入信号的频率,使信号频率在谐振频率附近变化(以200KHz或500KHz为步进间隔来变化),并用示波器观测各频率点的输出信号的幅度,然后就可以在如下的“幅度-频率”坐标轴上标示出放大器的通频带特性。

频率11.411.611.81212.212.412.6 /MHz幅度/V0.750.850.98 1.23 1.030.90.75增益151719.624.620.061815BW=2∆f0.7=2*(12.44-12)=0.88MHz(二)双调谐小信号放大器单元电路实验双调谐小信号放大器的测试方法和测试步骤与单调谐放大电路基本相同,只是在以下两个方面稍作改动:其一是输入信号的频率应改为465KHz;其二是在谐振回路的调试时,对双调谐回路的两个中周要反复调试才能最终使谐振回路谐振在输入信号的频点上,具体方法是,按图1-3连接好测试电路并打开信号源及放大器电源之后,首先调试放大电路的第一级中周,让示波器上被测信号幅度尽可能大,然后调试第二级中周,也是让示波器上被测信号的幅度尽可能大,这之后再重复调第一级和第二级中周,直到输出信号的幅度达到最大,这样,放大器就已经谐振到输入信号的频点上了。

频率450 455 460 465 470 475 480 /MHz幅度/V 0.11 0.14 0.42 0.8 0.67 0.45 0.36 增益 1.1 1.4 4.2 8 6.7 4.5 3.6BW=2∆f0.7=2*( 472-465)=7KHz五、实验注意事项在调节谐振回路的磁芯时,要用小型无感性的起子,缓慢进行调节,用力不可过大,以免损坏磁芯。

六、思考题试分析单调谐放大回路的发射极电阻和谐振回路的阻尼电阻对放大器的增益、带宽和中心频率各有何影响?答:发射极电阻Re主要是给PN结提供正常偏置,震荡信号经旁路电容形成回路.所以不会对放大器的增益、带宽和中心频率产生影响。

回路中的阻尼电阻Rl能使带宽增宽,中心频率更加稳定,增益下降.从系统全局来看更稳定。

七、实验总结及心得体会小信号调谐放大器广泛用作高频和中频放大器,特别是用在通信接收端的前端电路,其主要目的就是实现对高频小信号进行放大。

高频小信号放大器按频谱宽度分为窄带放大器和宽带放大器;按电路形式分为单级放大器和级联放大器;按照负载性质:谐振放大器和非谐振放大器。

其中谐振放大器的负载是采用谐振回路,具有放大、滤波和选频的作用。

非谐振放大器的负载由阻容放大器和各种滤波器组成,结构简单。

本次实验我见识到了很多以前没有见过或者更加智能的仪器,了解熟悉了它们的的基本使用方法,通过实际操作应用,更好地理解了小信号谐振放大电路的基本组成和放大原理。

本次实验虽然短暂,但是我学到了很多东西。

相关文档
最新文档