高考物理2024届一轮复习重点训练-专题60气体实验定律的综合应用

合集下载

高考物理《气体实验定律和理想气体状态方程》真题练习含答案

高考物理《气体实验定律和理想气体状态方程》真题练习含答案

高考物理《气体实验定律和理想气体状态方程》真题练习含答案1.[2024·新课标卷](多选)如图,一定量理想气体的循环由下面4个过程组成:1→2为绝热过程(过程中气体不与外界交换热量),2→3为等压过程,3→4为绝热过程,4→1为等容过程.上述四个过程是四冲程柴油机工作循环的主要过程.下列说法正确的是() A.1→2过程中,气体内能增加B.2→3过程中,气体向外放热C.3→4过程中,气体内能不变D.4→1过程中,气体向外放热答案:AD解析:1→2为绝热过程,Q=0,气体体积减小,外界对气体做功,W>0,由热力学第一定律ΔU=Q+W可知ΔU>0,气体内能增加,A正确;2→3为等压膨胀过程,W<0,由盖­吕萨克定律可知气体温度升高,内能增加,即ΔU>0,由热力学第一定律ΔU=Q+W可知Q>0,气体从外界吸热,B错误;3→4过程为绝热过程,Q=0,气体体积增大,W<0,由热力学第一定律ΔU=Q+W可知ΔU<0,气体内能减小,C错误;4→1过程中,气体做等容变化,W=0,又压强减小,则由查理定律可知气体温度降低,内能减少,即ΔU<0,由热力学第一定律ΔU=Q+W可知Q<0,气体对外放热,D正确.2.[2023·辽宁卷]“空气充电宝”是一种通过压缩空气实现储能的装置,可在用电低谷时储存能量、用电高峰时释放能量.“空气充电宝”某个工作过程中,一定质量理想气体的p­T图像如图所示.该过程对应的p­V图像可能是()答案:B解析:根据pVT =C可得p =CVT从a 到b ,气体压强不变,温度升高,则体积变大;从b 到c ,气体压强减小,温度降低,因c 点与原点连线的斜率小于b 点与原点连线的斜率,c 点的体积大于b 点体积.故选B .3.如图所示,一长度L =30 cm 气缸固定在水平地面上,通过活塞封闭有一定质量的理想气体,活塞与缸壁的摩擦可忽略不计,活塞的截面积S =50 cm 2.活塞与水平平台上的物块A 用水平轻杆连接,A 的质量为m =20 kg ,物块与平台间的动摩擦因数μ=0.75.开始时活塞距缸底L 1=10 cm ,缸内气体压强等于外界大气压强p 0=1×105 Pa ,温度t 1=27 ℃.现对气缸内的气体缓慢加热,g =10 m /s 2,则( )A .物块A 开始移动时,气缸内的温度为35.1 ℃B .物块A 开始移动时,气缸内的温度为390 ℃C .活塞从图示位置到达气缸口的过程中气体对外做功30 JD .活塞从图示位置到达气缸口的过程中气体对外做功130 J 答案:D解析:初态气体p 1=p 0=1×105 Pa ,温度T 1=300 K ,物块A 开始移动时,p 2=p 0+μmgS=1.3×105 Pa ,根据查理定律可知p 1T 1 =p 2T 2 ,解得T 2=390 K =117 ℃,A 、B 两项错误;活塞从图示位置到达气缸口的过程中气体对外做功W =p 2S(L -L 1)=130 J ,C 项错误,D 项正确.4.如图是由汽缸、活塞柱、弹簧和上下支座构成的汽车减震装置,该装置的质量、活塞柱与汽缸摩擦均可忽略不计,汽缸导热性和气密性良好.该装置未安装到汽车上时,弹簧处于原长状态,汽缸内的气体可视为理想气体,压强为1.0×105 Pa ,封闭气体和活塞柱长度均为0.20 m .活塞柱横截面积为1.0×10-2 m 2;该装置竖直安装到汽车上后,其承载的力为3.0×103 N 时,弹簧的压缩量为0.10 m .大气压强恒为1.0×105 Pa ,环境温度不变.则该装置中弹簧的劲度系数为( )A .2×104 N /mB .4×104 N /mC .6×104 N /mD .8×104 N /m 答案:A解析:设大气压为p 0,活塞柱横截面积为S ;设装置未安装在汽车上之前,汽缸内气体压强为p 1,气体长度为l ,汽缸内气体体积为V 1;装置竖直安装在汽车上后,平衡时弹簧压缩量为x ,汽缸内气体压强为p 2,汽缸内气体体积为V 2,则依题意有p 1=p 0,V 1=lS ,V 2=(l -x)S ,对封闭气体,安装前、后等温变化,有p 1V 1=p 2V 2,设弹簧劲度系数为k ,对上支座进行受力分析,设汽车对汽缸上支座的压力为F ,由平衡条件p 2S +kx =p 0S +F ,联立并代入相应的数据,解得k =2.0×104 N /m ,A 正确,B 、C 、D 错误.5.如图所示为一定质量的理想气体等温变化p ­V 图线,A 、C 是双曲线上的两点,E 1和E 2则分别为A 、C 两点对应的气体内能,△OAB 和△OCD 的面积分别为S 1和S 2,则( )A .S 1<S 2B .S 1=S 2C .E 1>E 2D .E 1<E 2 答案:B解析:由于图为理想气体等温变化曲线,由玻意耳定律可得p A V A =p C V C ,而S 1=12p A V A ,S 2=12 p C V C ,S 1=S 2,A 项错误,B 项正确;由于图为理想气体等温变化曲线,T A =T C ,则气体内能E 1=E 2,C 、D 两项错误.6.[2024·云南大理期中考试]如图所示,在温度为17 ℃的环境下,一根竖直的轻质弹簧支撑着一倒立汽缸的活塞,使汽缸悬空且静止,此时倒立汽缸的顶部离地面的高度为h =49 cm ,已知弹簧原长l =50 cm ,劲度系数k =100 N/m ,汽缸的质量M =2 kg ,活塞的质量m =1 kg ,活塞的横截面积S =20 cm 2,若大气压强p 0=1×105 Pa ,且不随温度变化.设活塞与缸壁间无摩擦,可以在缸内自由移动,缸壁导热性良好,使缸内气体的温度保持与外界大气温度相同.(弹簧始终在弹性限度内,且不计汽缸壁及活塞的厚度)(1)求弹簧的压缩量;(2)若环境温度缓慢上升到37 ℃,求此时倒立汽缸的顶部离地面的高度. 答案:(1)0.3 m (2)51 cm解析:(1)对汽缸和活塞整体受力分析有 (M +m )g =k Δx解得Δx =(M +m )gk=0.3 m(2)由于气缸与活塞整体受力平衡,则根据上述可知,活塞离地面的高度不发生变化,升温前汽缸顶部离地面为h =49 cm活塞离地面50 cm -30 cm =20 cm故初始时,内部气体的高度为l =49 cm -20 cm =29 cm 升温过程为等压变化V 1=lS ,T 1=290 K ,V 2=l ′S ,T 2=310 K 根据V 1T 1 =V 2T 2解得l ′=31 cm故此时倒立汽缸的顶部离地面的高度h ′=h +l ′-l =51 cm7.[2024·河北省邢台市期末考试]如图所示,上端开口的内壁光滑圆柱形汽缸固定在倾角为30°的斜面上,一上端固定的轻弹簧与横截面积为40 cm 2的活塞相连接,汽缸内封闭有一定质量的理想气体.在汽缸内距缸底70 cm 处有卡环,活塞只能向上滑动.开始时活塞搁在卡环上,且弹簧处于原长,缸内气体的压强等于大气压强p 0=1.0×105 Pa ,温度为300 K .现对汽缸内的气体缓慢加热,当温度增加60 K 时,活塞恰好离开卡环,当温度增加到480 K 时,活塞移动了10 cm.重力加速度取g =10 m/s 2,求:(1)活塞的质量; (2)弹簧的劲度系数k .答案:(1)16 kg (2)800 N/m解析:(1)根据题意可知,气体温度从300 K 增加到360 K 的过程中,经历等容变化,由查理定律得p 0T 0 =p 1T 1解得p 1=1.2×105 Pa此时,活塞恰好离开卡环,可得p 1=p 0+mg sin θS解得m =16 kg(2)气体温度从360 K 增加到480 K 的过程中,由理想气体状态方程有 p 1V 1T 1 =p 2V 2T 2解得p 2=1.4×105 Pa对活塞进行受力分析可得p 0S +mg sin θ+k Δx =p 2S 解得k =800 N/m8.[2024·湖南省湘东九校联考]如图所示,活塞将左侧导热汽缸分成容积均为V 的A 、B 两部分,汽缸A 部分通过带有阀门的细管与容积为V4 、导热性良好的汽缸C 相连.开始时阀门关闭,A 、B 两部分气体的压强分别为p 0和1.5p 0.现将阀门打开,当活塞稳定时,B 的体积变为V2 ,然后再将阀门关闭.已知A 、B 、C 内为同种理想气体,细管及活塞的体积均可忽略,外界温度保持不变,活塞与汽缸之间的摩擦力不计.求:(1)阀门打开后活塞稳定时,A部分气体的压强p A;(2)活塞稳定后,C中剩余气体的质量M2与最初C中气体质量M0之比.答案:(1)2.5p0(2)527解析:(1)初始时对活塞有p0S+mg=1.5p0S得到mg=0.5p0S打开阀门后,活塞稳定时,对B气体有1.5p0·V=p B·V2对活塞有p A S+mg=p B S所以得到p A=2.5p0(2)设未打开阀门前,C气体的压强为pC0,对A、C两气体整体有p0·V+pC0·V4=p A·(3V2+V4)得到pC0=272p0所以,C中剩余气体的质量M2与最初C中气体质量M0之比M2M0=p ApC0=5 27。

高考物理一轮总复习第十三章热学能力课气体实验定律的综合应用练习含解析新人教版

高考物理一轮总复习第十三章热学能力课气体实验定律的综合应用练习含解析新人教版

能力课 气体实验定律的综合应用一、选择题1.对于一定质量的理想气体,在温度不变的条件下,当它的体积减小时,下列说法正确的是( )①单位体积内分子的个数增加 ②在单位时间、单位面积上气体分子对器壁碰撞的次数增多 ③在单位时间、单位面积上气体分子对器壁的作用力不变 ④气体的压强增大A .①④B .①②④C .①③④D .①②③④解析:选B 在温度不变的条件下,当它的体积减小时,单位体积内分子的个数增加,气体分子单位时间内与单位面积器壁碰撞的次数越多,气体压强增大,故B 正确,A 、C 、D 错误.2.(多选)如图所示,一定质量的理想气体,沿状态A 、B 、C 变化,下列说法中正确的是( )A .沿A →B →C 变化,气体温度不变 B .A 、B 、C 三状态中,B 状态气体温度最高 C .A 、B 、C 三状态中,B 状态气体温度最低D .从A →B ,气体压强减小,温度升高E .从B →C ,气体密度减小,温度降低解析:选BDE 由理想气体状态方程pVT=常数可知,B 状态的pV 乘积最大,则B 状态的温度最高,A 到B 的过程是升温过程,B 到C 的过程是降温过程,体积增大,密度减小,选项B 、D 、E 正确,选项A 、C 错误.3.如图所示,U 形汽缸固定在水平地面上,用重力不计的活塞封闭着一定质量的气体,已知汽缸不漏气,活塞移动过程中与汽缸内壁无摩擦.初始时,外界大气压强为p 0,活塞紧压小挡板.现缓慢升高汽缸内气体的温度,则选项图中能反映汽缸内气体的压强p 随热力学温度T 变化的图象是( )解析:选B 当缓慢升高汽缸内气体温度时,开始一段时间气体发生等容变化,根据查理定律可知,缸内气体的压强p 与汽缸内气体的热力学温度T 成正比,在p ­T 图象中,图线是过原点的倾斜的直线;当活塞开始离开小挡板时,缸内气体的压强等于外界的大气压,气体发生等压膨胀,在p ­T 图象中,图线是平行于T 轴的直线,B 正确.二、非选择题4.(2018届宝鸡一模)如图所示,两端开口的汽缸水平固定,A 、B 是两个厚度不计的活塞,面积分别为S 1=20 cm 2,S 2=10 cm 2,它们之间用一根细杆连接,B 通过水平细绳绕过光滑的定滑轮与质量为M 的重物C 连接,静止时汽缸中的空气压强p =1.3×105Pa ,温度T =540 K ,汽缸两部分的气柱长均为L .已知大气压强p 0=1×105Pa ,取g =10 m/s 2,缸内空气可看作理想气体,不计一切摩擦.求:(1)重物C 的质量M ;(2)逐渐降低汽缸中气体的温度,活塞A 将向右缓慢移动,当活塞A 刚靠近D 处而处于平衡状态时缸内气体的温度.解析:(1)活塞整体受力处于平衡状态,则有pS 1+p 0S 2=p 0S 1+pS 2+Mg代入数据解得M =3 kg.(2)当活塞A 靠近D 处时,活塞整体受力的平衡方程没变,气体压强不变,根据气体的等压变化有S 1+S 2L T =S 2×2LT ′解得T ′=360 K. 答案:(1)3 kg (2)360 K5.(2018届鹰潭一模)如图所示,是一个连通器装置,连通器的右管半径为左管的两倍,左端封闭,封有长为30 cm 的气柱,左右两管水银面高度差为37.5 cm ,左端封闭端下60 cm 处有一细管用开关D 封闭,细管上端与大气联通,若将开关D 打开(空气能进入但水银不会入细管),稳定后会在左管内产生一段新的空气柱.已知外界大气压强p 0=75 cmHg.求:稳定后左端管内的所有气柱的总长度为多少?解析:空气进入后将左端水银柱隔为两段,上段仅30 cm ,初始状态对左端上面空气有p 1=p 0-h 1=75 cmHg -37.5 cmHg =37.5 cmHg末状态左端上面空气柱压强p 2=p 0-h 2=75 cmHg -30 cmHg =45 cmHg 由玻意耳定律p 1L 1S =p 2L 2S 解得L 2=p 1L 1p 2=37.5×3045cm =25 cm 上段水银柱上移,形成的空气柱长为5 cm ,下段水银柱下移,与右端水银柱等高 设下移的距离为x ,由于U 形管右管内径为左管内径的2倍,则右管横截面积为左管的4倍, 由等式7.5-x =x4,解得x =6 cm所以产生的空气柱总长为L =(6+5+25)cm =36 cm. 答案:36 cm6.(2019届河北四市调研)如图,横截面积相等的绝热汽缸A 与导热汽缸B 均固定于地面,由刚性杆连接的绝热活塞与两汽缸间均无摩擦,两汽缸内都装有理想气体,初始时体积均为V 0、温度为T 0且压强相等,缓慢加热A 中气体,停止加热达到稳定后,A 中气体压强变为原来的1.5倍,设环境温度始终保持不变,求汽缸A 中气体的体积V A 和温度T A .解析:设初态压强为p 0,对汽缸A 加热后A 、B 压强相等:p B p 0B 中气体始、末状态温度相等,由玻意耳定律得 p 0V 0p 0V B2V 0=V A +V B 解得V A =43V 0对A 部分气体,由理想气体状态方程得p 0V 0T 0=错误! 解得T A =2T 0.答案:43V 0 2T 07.(2018年全国卷Ⅲ)在两端封闭、粗细均匀的U 形细玻璃管内有一段水银柱,水银柱的两端各封闭有一段空气.当U 形管两端竖直朝上时,左、右两边空气柱的长度分别为l 1=18.0 cm 和l 2=12.0 cm ,左边气体的压强为12.0 cmHg.现将U 形管缓慢平放在水平桌面上,没有气体从管的一边通过水银逸入另一边.求U 形管平放时两边空气柱的长度.在整个过程中,气体温度不变.解析:设U 形管两端竖直朝上时,左、右两边气体的压强分别为p 1和p 2.U 形管水平放置时,两边气体压强相等,设为p ,此时原左、右两边空气柱长度分别变为l 1′和l 2′.由力的平衡条件有p 1=p 2+ρg (l 1-l 2)①式中ρ为水银密度,g 为重力加速度. 由玻意耳定律有p 1l 1=pl 1′② p 2l 2=pl 2′③ l 1′-l 1=l 2-l 2′④由①②③④式和题给条件得l 1′=22.5 cm l 2′=7.5 cm.答案:22.5 cm 7.5 cm8.(2019届福州质检)如图所示,开口向上竖直放置的内壁光滑绝热汽缸,汽缸下面有加热装置.开始时整个装置处于平衡状态,缸内理想气体Ⅰ、Ⅱ两部分高度均为L 0,温度均为T 0.已知活塞A 导热、B 绝热,A 、B 质量均为m 、横截面积为S ,外界大气压强为p 0保持不变,环境温度保持不变.现对气体Ⅱ缓慢加热,当A 上升h 时停止加热,求:(1)此时气体Ⅱ的温度;(2)若在活塞A 上逐渐添加铁砂,当铁砂质量等于m 时,气体Ⅰ的高度. 解析:(1)气体Ⅱ这一过程为等压变化 初状态:温度T 0、体积V 1=L 0S 末状态:温度T 、体积V 2=(L 0+h )S 根据查理定律可得V 1T 0=V 2T解得T =L 0+hL 0T 0. (2)气体Ⅰ这一过程做等温变化 初状态:压强p 1′=p 0+mg S体积V 1′=L 0S末状态:压强p 2′=p 0+2mgS体积V 2′=L 1′S由玻意耳定律得p 1′L 0S =p 2′L 1′S 解得L 1′=p 0S +mgp 0S +2mgL 0.答案:(1)L 0+h L 0T 0 (2)p 0S +mgp 0S +2mgL 0 |学霸作业|——自选一、选择题1.(多选)(2018届兰州一中月考)如图所示,密闭容器内可视为理想气体的氢气温度与外界空气的温度相同,现对该容器缓慢加热,当容器内的氢气温度高于外界空气的温度时,则( )A .氢分子的平均动能增大B .氢分子的势能增大C .氢气的内能增大D .氢气的内能可能不变E .氢气的压强增大解析:选ACE 温度是分子的平均动能的标志,氢气的温度升高,则分子的平均动能一定增大,故A 正确;氢气视为理想气体,气体分子势能忽略不计,故B 错误;密闭容器内气体的内能由分子动能决定,氢气的分子动能增大,则内能增大,故C 正确,D 错误;根据理想气体的状态方程pV T=C 可知,氢气的体积不变,温度升高则压强增大,故E 正确.2.(多选)对于一定量的稀薄气体,下列说法正确的是( ) A .压强变大时,分子热运动必然变得剧烈 B .保持压强不变时,分子热运动可能变得剧烈 C .压强变大时,分子间的平均距离必然变小 D .压强变小时,分子间的平均距离可能变小解析:选BD 根据理想气体的状态方程pV T=C 可知,当压强变大时,气体的温度不一定变大,分子热运动也不一定变得剧烈,选项A 错误;当压强不变时,气体的温度可能变大,分子热运动也可能变得剧烈,选项B 正确;当压强变大时,气体的体积不一定变小,分子间的平均距离也不一定变小,选项C 错误;当压强变小时,气体的体积可能变小,分子间的平均距离也可能变小,选项D 正确.V 与温度T 的关系图象,它由状态A 经等温过程到状态B ,再经等容过程到状态C .设A 、B 、C 状态对应的压强分别为p A 、p B 、p C ,则下列关系式中正确的是( )A .p A <pB ,p B <pC B .p A >p B ,p B =p C C .p A >p B ,p B <p CD .p A =p B ,p B >p C解析:选A 由pVT=常量,得A 到B 过程,T 不变,体积减小,则压强增大,所以p A <p B ;B 经等容过程到C ,V 不变,温度升高,则压强增大,即p B <p C ,所以A 正确.二、非选择题4.图甲是一定质量的气体由状态A 经过状态B 变为状态C 的V ­T 图象.已知气体在状态A 时的压强是1.5×105Pa.(1)说出A →B 过程中压强变化的情形,并根据图象提供的信息,计算图甲中T A 的温度值;(2)请在图乙坐标系中,作出该气体由状态A 经过状态B 变为状态C 的p ­T 图象,并在图线相应位置上标出字母A 、B 、C .如果需要计算才能确定的有关坐标值,请写出计算过程.解析:(1)从题图甲可以看出,A 与B 连线的延长线过原点,所以A →B 是一个等压变化,即p A =p B根据盖—吕萨克定律可得V A T A =V BT B所以T A =V A V BT B =,0.6)×300 K=200 K.(2)由题图甲可知,由B →C 是等容变化,根据查理定律得p B T B =p C T C所以p C =T C T B p B =400300p B =43p B =43×1.5×105 Pa =2.0×105Pa则可画出由状态A →B →C 的p ­T 图象如图所示. 答案:(1)等压变化 200 K (2)见解析5.(2018届商丘一中押题卷)如图所示,用绝热光滑活塞把汽缸内的理想气体分A 、B 两部分,初态时已知A 、B 两部分气体的热力学温度分别为330 K 和220 K ,它们的体积之比为2∶1,末态时把A 气体的温度升高70 ℃,把B 气体温度降低20 ℃,活塞可以再次达到平衡.求气体A 初态的压强p 0与末态的压强p 的比值.解析:设活塞原来处于平衡状态时A 、B 的压强相等为p 0,后来仍处于平衡状态压强相等为p .根据理想气体状态方程,对于A 有p 0V A T A =pV A ′T A ′① 对于B 有 p 0V B T B =pV B ′T B ′② 化简得V A ′V B ′=83③ 由题意设V A =2V 0,V B =V 0④ 汽缸的总体积为V =3V 0⑤ 所以可得V A ′=811V =2411V 0⑥将④⑥代入①式得p 0p =910. 答案:9106.(2018年全国卷Ⅱ)如图,一竖直放置的汽缸上端开口,汽缸壁内有卡口a 和b ,a 、b间距为h ,a 距缸底的高度为H ;活塞只能在a 、b 间移动,其下方密封有一定质量的理想气体.已知活塞质量为m ,面积为S ,厚度可忽略;活塞和汽缸壁均绝热,不计它们之间的摩擦.开始时活塞处于静止状态,上、下方气体压强均为p 0,温度均为T 0.现用电热丝缓慢加热汽缸中的气体,直至活塞刚好到达b 处.求此时汽缸内气体的温度以及在此过程中气体对外所做的功.重力加速度大小为g .解析:开始时活塞位于a 处,加热后,汽缸中的气体先经历等容过程,直至活塞开始运动,设此时汽缸中气体的温度为T 1,压强为p 1,根据查理定律有p 0T 0=p 1T 1① 根据力的平衡条件有p 1S =p 0S +mg ②联立①②式可得T 1=⎝ ⎛⎭⎪⎫1+mg p 0S T 0③ 此后,汽缸中的气体经历等压过程,直至活塞刚好到达b 处,设此时汽缸中气体的温度为T 2;活塞位于a 处和b 处时气体的体积分别为V 1和V 2.根据盖—吕萨克定律有V 1T 1=V 2T 2④ 式中V 1=SH ⑤ V 2=S (H +h )⑥联立③④⑤⑥式解得T 2=⎝ ⎛⎭⎪⎫1+h H ⎝ ⎛⎭⎪⎫1+mg p 0S T 0⑦ 从开始加热到活塞到达b 处的过程中,汽缸中的气体对外做的功为W =(p 0S +mg )h .答案:⎝ ⎛⎭⎪⎫1+h H ⎝ ⎛⎭⎪⎫1+mg p 0S T 0 (p 0S +mg )h 7.(2016年全国卷Ⅲ)一U 形玻璃管竖直放置,左端开口,右端封闭,左端上部有一光滑的轻活塞.初始时,管内汞柱及空气柱长度如图所示.用力向下缓慢推活塞,直至管内两边汞柱高度相等时为止.求此时右侧管内气体的压强和活塞向下移动的距离.已知玻璃管的横截面积处处相同;在活塞向下移动的过程中,没有发生气体泄漏;大气压强p 0=75.0 cmHg.环境温度不变.解析:设初始时,右管中空气柱的压强为p 1,长度为l 1;左管中空气柱的压强为p 2=p 0,长度为l 2.活塞被下推h 后,右管中空气柱的压强为p 1′,长度为l 1′;左管中空气柱的压强为p 2′,长度为l 2′.以cmHg 为压强单位.由题给条件得p 1=p 0+(20.0-5.00)cmHg ① l 1′=,2)))cm ②由玻意耳定律得p 1l 1=p 1′l 1′③ 联立①②③式和题给条件得p 1′=144 cmHg ④依题意p 2′=p 1′⑤l 2′=4.00 cm +,2) cm -h ⑥由玻意耳定律得p 2l 2=p 2′l 2′⑦联立④⑤⑥⑦式和题给条件得h =9.42 cm. 答案:144 cmHg 9.42 cm8.(2019届沈阳模拟)如图所示,内壁光滑的圆柱形导热汽缸固定在水平面上,汽缸内被活塞封有一定质量的理想气体,活塞横截面积为S ,质量和厚度都不计,活塞通过弹簧与汽缸底部连接在一起,弹簧处于原长,已知周围环境温度为T 0,大气压强恒为p 0,弹簧的劲度系数k =p 0Sl 0(S 为活塞横截面积),原长为l 0,一段时间后,环境温度降低,在活塞上施加一水平向右的压力,使活塞缓慢向右移动,当压力增大到某一值时保持恒定,此时活塞向右移动了l 0p 0.(1)求此时缸内气体的温度T 1;(2)对汽缸加热,使气体温度缓慢升高,当活塞移动到距汽缸底部l 0时,求此时缸内气体的温度T 2.解析:(1)汽缸内的气体,初态时:压强为p 0,体积为V 0=Sl 0,温度为T 0末态时:压强为p 1p 0,体积为V 1=S (l 0l 0) 由理想气体状态方程得p 0V 0T 0=p 1V 1T 1解得T 1T 0.(2)当活塞移动到距汽缸底部l 0时,体积为V 2Sl 0,设气体压强为p 2 由理想气体状态方程得p 0V 0T 0=p 2V 2T 2此时活塞受力平衡方程为p 0S +F -p 2S +k (l 0-l 0)=0l 0后压力F 保持恒定,活塞受力平衡 p 0S +Fp 0S -k (l 0)=0解得T 2T 0. 答案:T 0 T 09.(2017年全国卷Ⅱ)一热气球体积为V ,内部充有温度为T a 的热空气,气球外冷空气的温度为T b .已知空气在1个大气压,温度T 0时的密度为ρ0,该气球内、外的气压始终都为1个大气压,重力加速度大小为g .(1)求该热气球所受浮力的大小; (2)求该热气球内空气所受的重力;(3)设充气前热气球的质量为m 0,求充气后它还能托起的最大质量.解析:(1)设1个大气压下质量为m 的空气在温度为T 0时的体积为V 0,密度为ρ0=mV 0① 在温度为T 时的体积为V T ,密度为ρ(T )=m V T② 由盖—吕萨克定律得V 0T 0=V TT③ 联立①②③式得ρ(T )=ρ0T 0T④气球所受到的浮力为f =ρ(T b )gV ⑤联立④⑤式得f =Vgρ0T 0T b.⑥(2)气球内热空气所受的重力为G =ρ(T a )Vg ⑦联立④⑦式得G =Vg ρ0T 0T a.⑧ (3)设该气球还能托起的最大质量为m ,由力的平衡条件得mg =f -G -m 0g ⑨ 联立⑥⑧⑨式得m =Vρ0T 0⎝ ⎛⎭⎪⎫1T b -1T a -m 0. 答案:(1)Vgρ0T 0T b (2)Vgρ0T 0T a(3)Vρ0T 0⎝ ⎛⎭⎪⎫1T b -1T a -m 0。

2023高考物理热学专题冲刺训练--气体实验定律的综合应用(三)--气体变质量问题

2023高考物理热学专题冲刺训练--气体实验定律的综合应用(三)--气体变质量问题

气体变质量问题一、变质量问题的求解方法二、针对练习1、一个篮球的容积是2.5 L,用打气筒给篮球打气时,每次把105 Pa的空气打进去125 cm3.如果在打气前篮球内的空气压强也是105 Pa,那么打30次以后篮球内的空气压强是多少?(设打气过程中气体温度不变)2、某双层玻璃保温杯夹层中有少量空气,温度为27 ℃时,压强为3.0×103 Pa。

(1)当夹层中空气的温度升至37 ℃,求此时夹层中空气的压强;(2)当保温杯外层出现裂隙,静置足够长时间,求夹层中增加的空气质量与原有空气质量的比值,设环境温度为27 ℃,大气压强为1.0×105 Pa。

3、用容积为ΔV 的活塞式抽气机对容积为V 0的容器中的气体抽气,如图所示.设容器中原来的气体压强为p 0,抽气过程中气体温度不变.求抽气机的活塞抽气n 次后,容器中剩余气体的压强p n 为多少?4、(2020·全国Ⅰ卷)甲、乙两个储气罐储存有同种气体(可视为理想气体)。

甲罐的容积为V ,罐中气体的压强为p ;乙罐的容积为V 2,罐中气体的压强为p 21. 现通过连接两罐的细管把甲罐中的部分气体调配到乙罐中去,两罐中气体温度相同且在调配过程中保持不变,调配后两罐中气体的压强相等. 求调配后(1)两罐中气体的压强;(2)甲罐中气体的质量与甲罐中原有气体的质量之比.5、某容积为20 L 的氧气瓶装有30 atm 的氧气,现把氧气分装到容积为5 L 的小钢瓶中, 使每个小钢瓶中氧气的压强为5 atm ,若每个小钢瓶中原有氧气压强为1 atm ,问能分装多少 瓶?(设分装过程中无漏气,且温度不变)6、容器中装有某种气体,且容器上有一小孔跟外界大气相通,原来容器内气体的温度为C o 27,如果把它加热到C o 127,从容器中逸出的空气质量是原来质量的多少倍?7、某个容器的容积是10 L,所装气体的压强是2.0×106 Pa.如果温度保持不变,把容器的开关打开以后,容器里剩下的气体是原来的百分之几?(设大气压是1.0×105 Pa)8、如图所示为某充气装置示意图。

2024届四川省南充市高三上学期一诊考试理科综合全真演练物理试题

2024届四川省南充市高三上学期一诊考试理科综合全真演练物理试题

2024届四川省南充市高三上学期一诊考试理科综合全真演练物理试题一、单项选择题(本题包含8小题,每小题4分,共32分。

在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题物体做下列运动时,加速度和速度方向的关系表述正确的是( )A.简谐运动中加速度与速度始终同向B.竖直上抛运动中加速度与速度始终同向C.匀速圆周运动中加速度方向与速度方向始终垂直D.自由落体运动中加速度与速度方向可以相同、也可以相反第(2)题为了研究大量处于能级的氢原子跃迁时的发光特点,现利用大量此种氢原子跃迁时产生的三种单色光照射同一个光电管,如图甲所示,移动滑动变阻器的滑片调节光电管两端电压,分别得到三种光照射时光电流与光电管两端电压的关系,如图乙所示,则对于a、b、c三种光,下列说法正确的是( )A.三种光的频率最大的是cB.a、b、c三种光从同一种介质射向真空中,发生全反射的临界角最大的是cC.用a光照射另外某种金属能发生光电效应,则用c光照射也一定能发生D.通过同一个单缝装置进行单缝衍射实验,中央条纹宽度a光最宽第(3)题如图,气球在水平风力作用下处于静止状态,气球受到的作用力有( )A.1个B.2个C.3个D.4个第(4)题两同学在进行投篮比赛,从同一位置先后抛出甲、乙两个篮球,结果都投进篮筐,两球空中运动的轨迹如图所示,①、②分别为甲、乙的运动轨迹,不计空气阻力,则从抛出到进框,下列说法正确的是( )A.甲的加速度小于乙的加速度B.甲在最高点的速度小于乙在最高点的速度C.两球运动时间相等D.两球平均速度相等第(5)题下列各种叙述中正确的是 ( )A.一定质量的理想气体,若体积不变,当分子热运动变得剧烈时,压强可能不变B.当液体与固体之间表现为浸润时,附着层内分子间的距离小于液体内部分子间距离C.悬浮在水里的花粉颗粒越大,撞击花粉颗粒的水分子越多,布朗运动越明显D.第二类永动机违反了热力学第二定律,也违反了能量守恒定律第(6)题关于布朗运动,下列说法正确的是( )A.颗粒越大布朗运动越剧烈B.布朗运动是液体分子的运动C.布朗运动的剧烈程度与温度无关D.布朗运动是大量液体分子频繁碰撞造成的第(7)题如图所示,水平直杆OP右端固定于竖直墙上的O点,长为L=2 m的轻绳一端固定于直杆P点,另一端固定于墙上O点正下方的Q点,OP长为d=1.2 m,重为8 N的钩码用质量不计的光滑挂钩挂在轻绳上且处于静止状态,则轻绳的弹力大小为( )A.10 N B.8 N C.6 N D.5 N第(8)题如图甲所示,水平面内虚线MN的右侧存在竖直向下的匀强磁场,现有一个闭合的金属线框以恒定速度从MN左侧沿垂直MN的方向进入匀强磁场区域,线框中的电流随时间变化的图像如图乙所示,则线框的形状可能是下图中的( )A.B.C.D.二、多项选择题(本题包含4小题,每小题4分,共16分。

适用于新高考新教材备战2025届高考物理一轮总复习第15章热学第3讲专题提升气体实验定律的综合应用

适用于新高考新教材备战2025届高考物理一轮总复习第15章热学第3讲专题提升气体实验定律的综合应用

第3讲专题提升:气体试验定律的综合应用基础对点练题组一玻璃管液柱模型1.如图所示,两端开口的U形玻璃管竖直放置,其右侧水银柱之间封住一段高h=5 cm的空气柱。

空气柱下方的水银面与玻璃管左侧水银面的高度差也为h。

已知大气压强与75 cm水银柱产生的压强相同,空气柱中的气体可视为志向气体,四周环境温度保持不变,玻璃管的导热性良好且玻璃管粗细匀整,水银的密度为ρ。

下列说法正确的是()A.右侧玻璃管中空气柱上方的水银柱高度小于5 cmB.封闭空气柱中气体的压强与70 cm水银柱产生的压强相同C.从玻璃管右侧管口缓慢注入少量水银,空气柱的压强确定变大D.从玻璃管左侧管口缓慢注入少量水银,空气柱的压强确定变大2.如图所示,内径相同,导热良好的“T”形细玻璃管上端开口,下端、右端封闭,管中用水银封闭着A、B两部分志向气体,各部分长度如图。

已知大气压强p0与76 cm水银柱产生的压强相同,设外界温度不变,重力加速度为g。

现沿管壁向竖直管缓慢灌入确定量的水银,水银的密度为ρ,B部分气体长度缩短1 cm,则灌入水银后B部分气体的压强为()A.77 cm·ρgB.86 cm·ρgC.88 cm·ρgD.90 cm·ρg题组二汽缸活塞模型3.(多选)(2024广东汕尾华中师范高校海丰附属学校校考)有人设计了一款健身器材如图所示,确定质量的志向气体密封在导热良好的容器中,容器上有刻度,容器内装有一可上下移动的活塞,活塞的面积为0.01 m2,厚度可以忽视,人们可以运用上方的把手拉动活塞达到熬炼身体的目的,已知在熬炼时,器材下方固定在地面上防止容器离开地面,活塞初始高度为30 cm,当地大气压强为1.0×105Pa,活塞、把手和连接杆的质量都可忽视,不计活塞与容器间的摩擦,外界气温不变。

下列说法正确的是()A.当用500 N的力往上拉,稳定时活塞高度为60 cmB.当用500 N的力往下压,稳定时活塞高度为15 cmC.若要使活塞稳定在120 cm高度处,则拉力应为1 000 ND.若要使活塞稳定在120 cm高度处,则拉力应为750 N4.(2024辽宁葫芦岛二模)如图甲所示,一水平固定放置的汽缸由两个粗细不同的圆柱形筒组成,汽缸中活塞Ⅰ与活塞Ⅱ之间封闭有确定量的志向气体,两活塞用长度为2L、不行伸长的轻质细线连接,活塞Ⅱ恰好位于汽缸的粗细缸连接处,此时细线拉直且无张力。

2024届四川省南充市高三上学期一诊考试理科综合全真演练物理试题(基础必刷)

2024届四川省南充市高三上学期一诊考试理科综合全真演练物理试题(基础必刷)

2024届四川省南充市高三上学期一诊考试理科综合全真演练物理试题(基础必刷)一、单项选择题(本题包含8小题,每小题4分,共32分。

在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题用一根长1m的轻质细绳将一幅质量为1kg的画框对称悬挂在墙壁上,已知绳能承受的最大张力为,为使绳不断裂,画框上两个挂钉的间距最大为(取)( )A.B.C.D.第(2)题轻质细线吊着一质量为m= 0.4kg、边长为L= 1m、匝数为N= 10的正方形线圈,其总电阻为R= 1Ω。

在线圈的中间位置以下区域分布着磁场,如图甲所示。

磁场方向垂直纸面向里,磁感应强度大小随时间变化关系如图乙所示。

则下列判断正确的是()A.线圈中的感应电流大小为1AB.线圈中感应电流的方向为逆时针C.t= 0时轻质细线的拉力等于线圈的重力D.0—6s内线圈产生的焦耳热为6J第(3)题一个由恒星A和B组成的双星系统,现在它们间的距离为L,并以两者连线上的某点为圆心做匀速圆周运动,运动周期为T。

已知恒星A的质量小于恒星B的,引力常量为G,则( )A.A的质量为B.A做圆周运动的半径比B的小C.A做圆周运动的线速度比B的大D.若恒星A、B间的距离缓慢减小,则它们转动周期缓慢变大第(4)题如图所示,为一折线,它所形成的两个角和均为,折线的右边有一匀强磁场,其方向垂直于纸面向里,一边长为的正方形导线框沿垂直于的方向以速度v向上做匀速直线运动,在时刻恰好位于图中所示的位置,以逆时针方向为导线框中电流的正方向,在下面四幅图中能够正确表示电流—时间()关系的是(时间以为单位)( )A.B.C.D.第(5)题一列简谐横波沿x轴在介质中传播,M、N是x轴上介质中的两个质点。

图甲是的该简谐横波的波形图,图乙是质点N的振动图像,时刻质点M的纵坐标为2,下列说法不正确的是( )A.该列简谐横波沿着x轴的正方向传播B.该列简谐横波的传播速度为4.0C.当时,质点N在波峰,加速度最小D.当时,质点M第一次到达波峰第(6)题电磁轨道炮发射的基本原理图如图所示,两条平行的金属导轨充当传统火炮的炮管,弹丸放置在两导轨之间,并与导轨保持良好接触,当电磁炮中通过如图虚线所示的强电流时,轨道电流在弹丸处形成垂直于轨道平面的磁场,弹丸获得很大的加速度,最终高速发射出去,下列说法正确的是( )A.电磁炮的本质是一种大功率的发电机B.若通入与图示方向相反的电流,弹丸不能发射出去C.其他条件不变的情况下,弹丸的质量越小,发射速度越大D.两导轨中的强电流(如图示)在导轨之间产生的磁场,方向竖直向下第(7)题2022年10月15日,我国成功的发射了遥感36号卫星,并顺利进入轨道,该轨道为椭圆轨道。

2024届高考一轮复习物理教案(新教材粤教版):热力学定律与能量守恒定律

2024届高考一轮复习物理教案(新教材粤教版):热力学定律与能量守恒定律

第3讲热力学定律与能量守恒定律目标要求 1.理解热力学第一定律,知道改变内能的两种方式,并能用热力学第一定律解决相关问题.2.理解热力学第二定律,知道热现象的方向性.3.知道第一类永动机和第二类永动机不可能制成.考点一热力学第一定律能量守恒定律1.改变物体内能的两种方式(1)做功;(2)传热.2.热力学第一定律(1)内容:一个热力学系统的内能变化量等于外界向它传递的热量与外界对它所做的功的和.(2)表达式:ΔU=Q+W.(3)表达式中的正、负号法则:物理量+-W外界对物体做功物体对外界做功Q物体吸收热量物体放出热量ΔU内能增加内能减少3.能量守恒定律(1)内容能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变.(2)条件性能量守恒定律是自然界的普遍规律,某一种形式的能是否守恒是有条件的.(例如:机械能守恒)(3)第一类永动机是不可能制成的,它违背了能量守恒定律.1.做功和传热改变物体内能的实质是相同的.(×)2.绝热过程中,外界压缩气体做功20J,气体的内能一定减少20J.(×)3.物体吸收热量,同时对外做功,内能可能不变.(√)1.热力学第一定律的理解(1)内能的变化常用热力学第一定律进行分析.(2)做功情况看气体的体积:体积增大,气体对外做功,W为负;体积缩小,外界对气体做功,W为正.(3)与外界绝热,则不发生传热,此时Q=0.(4)如果研究对象是理想气体,因理想气体忽略分子势能,所以当它的内能变化时,体现在分子动能的变化上,从宏观上看就是温度发生了变化.2.三种特殊情况(1)若过程是绝热的,则Q=0,W=ΔU,外界(物体)对物体(外界)做的功等于物体内能的增加(减少);(2)若过程中不做功,即W=0,则Q=ΔU,物体吸收(放出)的热量等于物体内能的增加(减少);(3)若在过程的初、末状态,物体的内能不变,即ΔU=0,则W+Q=0或W=-Q,外界(物体)对物体(外界)做的功等于物体放出(吸收)的热量.例1一定质量的理想气体在某一过程中,外界对气体做功7.0×104J,气体内能减少1.3×105J,则此过程()A.气体从外界吸收热量2.0×105JB.气体向外界放出热量2.0×105JC.气体从外界吸收热量6.0×104JD.气体向外界放出热量6.0×104J答案B解析由热力学第一定律ΔU=W+Q得Q=ΔU-W=-1.3×105J-7.0×104J=-2.0×105 J,即气体向外界放出热量2.0×105J,B正确.例2(2023·广东江门市模拟)水枪是孩子们喜爱的玩具,常见的气压式水枪储水罐示意如图.从储水罐充气口充入气体,达到一定压强后,关闭充气口,扣动扳机将阀门M打开,水即从枪口喷出.若在水不断喷出的过程中,罐内气体温度始终保持不变,则气体的内能_____(选填“变大”“变小”或“不变”),要________(选填“对外放热”或“从外吸热”).答案不变从外吸热解析气体温度不变,则气体的内能不变;气体体积增大,则气体对外做功,由热力学第一定律ΔU=W+Q,可知气体从外界吸热.考点二热力学第二定律1.热力学第二定律的两种表述(1)克劳修斯表述:热量不能自发地从低温物体传到高温物体.(2)开尔文表述:不可能从单一热库吸收热量,使之完全变成功,而不产生其他影响.或表述为“第二类永动机是不可能制成的”.2.热力学第二定律的微观意义一切自发过程总是沿着分子热运动的无序度增大的方向进行.3.第二类永动机不可能制成的原因是违背了热力学第二定律.1.可以从单一热源吸收热量,使之完全变成功.(√)2.热机中,燃气的内能可以全部变成机械能而不引起其他变化.(×)3.热量不可能从低温物体传给高温物体.(×)1.热力学第二定律的含义(1)“自发地”指明了传热等热力学宏观现象的方向性,不需要借助外界提供能量的帮助.(2)“不产生其他影响”的含义是发生的热力学宏观过程只在本系统内完成,对周围环境不产生热力学方面的影响,如吸热、放热、做功等.在产生其他影响的条件下内能可以全部转化为机械能.2.热力学第二定律的实质热力学第二定律的每一种表述,都揭示了大量分子参与的宏观过程的方向性,进而使人们认识到自然界中进行的涉及热现象的宏观过程都具有方向性.(1)高温物体热量Q 能自发传给热量Q 不能自发传给低温物体.(2)功能自发地完全转化为不能自发地完全转化为热.(3)气体体积V 1能自发膨胀到不能自发收缩到气体体积V 2(较大).3.两类永动机的比较第一类永动机第二类永动机设计要求不需要任何动力或燃料,却能不断地对外做功的机器从单一热源吸收热量,使之完全变成功,而不产生其他影响的机器不可能制违背能量守恒定律不违背能量守恒定律,违背热力学第二定律成的原因例3(多选)下列说法正确的是()A.冰箱能使热量从低温物体传递到高温物体,因此不遵循热力学第二定律B.自发的热传导是不可逆的C.可以通过给物体加热而使它运动起来,但不产生其他影响D.气体向真空膨胀具有方向性答案BD解析有外界的帮助和影响,热量可以从低温物体传递到高温物体,仍遵循热力学第二定律,A错误;由热力学第二定律可知,自发的热传导是不可逆的,B正确,不可能通过给物体加热而使它运动起来但不产生其他影响,这违背了热力学第二定律,C错误;气体可自发地向真空容器膨胀,具有方向性,D正确.考点三热力学第一定律与图像的综合应用1.气体的状态变化可由图像直接判断或结合理想气体状态方程pVT=c分析.2.气体的做功情况、内能变化及吸、放热关系可由热力学第一定律分析.(1)由体积变化分析气体做功的情况:体积膨胀,气体对外做功;气体被压缩,外界对气体做功.(2)由温度变化判断气体内能变化:温度升高,气体内能增大;温度降低,气体内能减小.(3)由热力学第一定律ΔU=W+Q判断气体是吸热还是放热.(4)在p-V图像中,图像与横轴所围面积表示气体对外界或外界对气体整个过程中所做的功.例4(2023·广东深圳市调研)一定质量的理想气体从状态a开始,经历三个过程ab、bc和ca回到原状态,其p-T图像如图所示,气体在状态________(填“a”“b”或“c”)的分子平均动能最小,在bc过程中气体体积________(填“变大”“变小”或“不变”),在ab过程中,气体对外界做功________(填“大于”“小于”或“等于”)气体吸收的热量.答案a变小小于解析气体在状态a时的温度最低,则分子平均动能最小;在bc过程中气体温度不变,压强变大,则体积变小;在ab过程中,压强不变,温度升高,内能变大,ΔU>0;体积变大,则气体对外界做功,则W<0,则根据ΔU=W+Q,可知,Q>0,即气体对外界做功小于气体吸收的热量.例5(多选)如图所示,一定质量的理想气体在状态A时压强为1.5×105Pa,经历A→B→C→A的过程,已知B→C过程中气体做功绝对值是C→A过程中气体做功绝对值的3倍,下列说法中正确的是()A.C→A的过程中外界对气体做功300JB.B→C的过程中气体对外界做功600JC.整个过程中气体从外界吸收600J的热量D.整个过程中气体从外界吸收450J的热量答案AC解析在C→A过程中,压强不变,气体体积减小,外界对气体做功,根据W CA=p·ΔV,得W CA=300J,A正确;由题知B→C过程中气体做功绝对值是C→A过程中气体做功绝对值的3倍,则B→C的过程中气体对外界做功900J,B错误;A→B→C→A,温度不变,则内能变化量ΔU=0,A→B过程,气体体积不变,做功为零;B→C的过程中气体对外界做功900J;C→A的过程中外界对气体做功300J,故W=W CA+W BC=-600J,Q=ΔU-W=600J,则整个过程中气体从外界吸收600J的热量,C正确,D错误.考点四热力学第一定律与气体实验定律的综合应用解决热力学第一定律与气体实验定律的综合问题的思维流程例6(2021·江苏卷·13)如图所示,一定质量理想气体被活塞封闭在汽缸中,活塞的面积为S ,与汽缸底部相距L ,汽缸和活塞绝热性能良好,气体的压强、热力学温度与外界大气相同,分别为p 0和T 0.现接通电热丝加热气体,一段时间后断开,活塞缓慢向右移动距离L 后停止,活塞与汽缸间的滑动摩擦力为f ,最大静摩擦力等于滑动摩擦力,整个过程中气体吸收的热量为Q ,求该过程中,(1)内能的增加量ΔU ;(2)最终温度T .答案(1)Q -(p 0S +f )L(2)2(p 0S +f )p 0ST 0解析(1)活塞缓慢移动时受力平衡,由平衡条件得p 1S =p 0S +f 气体对外界做功,则W =-p 1SL 根据热力学第一定律ΔU =Q +W 解得ΔU =Q -(p 0S +f )L .(2)活塞发生移动前,气体发生等容变化,则有p 0T 0=p1T 1,活塞向右移动L ,气体发生等压变化,则有V 1T 1=V2T ,且V 2=2V 1.解得T =2(p 0S +f )p 0S T 0.例7(2023·广东惠州市博罗中学模拟)鱼泡是鱼在水中呼吸或进食所形成的,随着鱼嘴一张一闭,鱼嘴中的黏液包裹着鱼体内的空气上浮到水面(如图),有经验的钓友能根据鱼泡判断出鱼的位置.假设鱼在水面下某深度处吐出一鱼泡,鱼泡直径为2cm ,此处水温为7℃,当鱼泡缓慢上升至水面时,鱼泡直径为3cm ,已知水面温度为27℃,大气压为1.0×105Pa ,水的密度为1.0×103kg/m 3,重力加速度g =10m/s 2,鱼泡内气体视为理想气体.(1)判断鱼在水面下的位置;(2)鱼泡在上升的过程中,是向外界放热还是从外界吸热?答案(1)21.5m(2)吸热解析(1)设水面下某深度处的鱼泡内气体压强为p 1,鱼泡半径为r 1,热力学温度为T 1,水面处鱼泡内气体压强为p 2,鱼泡半径为r 2,热力学温度为T 2鱼泡内气体的体积V=4 3πr3根据理想气体状态方程有p1V1 T1=p2V2 T2p2=p0p1=p0+ρgh联立解得h=21.5m(2)根据热力学第一定律ΔU=W+Q由于鱼泡内气体温度升高,故ΔU>0鱼泡内气体对外做功,故W<0所以Q>0故鱼泡在上升的过程中,是从外界吸热.课时精练1.(多选)下列说法正确的是()A.第一类永动机不可能制成,是因为违背了热力学第一定律B.能量耗散过程中能量不守恒C.电冰箱的制冷系统能够不断地把冰箱内的热量传到外界,违背了热力学第二定律D.能量耗散是从能量转化的角度反映出自然界中的宏观过程具有方向性答案AD解析第一类永动机不消耗能量却源源不断对外做功,违背了热力学第一定律,所以不可能制成,A正确;能量耗散过程中能量仍守恒,B错误;电冰箱的制冷系统能够不断地把冰箱内的热量传到外界,是压缩机做功的结果,不违背热力学第二定律,C错误;能量耗散从能量转化的角度反映出自然界中的宏观过程具有方向性,D正确.2.(2022·重庆卷·15(1))2022年5月15日,我国自主研发的“极目一号”Ⅲ型浮空艇创造了海拔9032米的大气科学观测世界纪录.若在浮空艇某段上升过程中,艇内气体温度降低,体积和质量视为不变,则艇内气体(视为理想气体)()A.吸收热量B.压强增大C.内能减小D.对外做负功答案C解析由于浮空艇上升过程中体积和质量均不变,则艇内气体不做功;根据pVT=c,可知温度降低,艇内气体压强减小,气体内能减小;又根据ΔU=W+Q可知气体放出热量,故选C.3.(2022·山东卷·5)如图所示,内壁光滑的绝热汽缸内用绝热活塞封闭一定质量的理想气体,初始时汽缸开口向上放置,活塞处于静止状态,将汽缸缓慢转动90°过程中,缸内气体()A.内能增加,外界对气体做正功B.内能减小,所有分子热运动速率都减小C.温度降低,速率大的分子数占总分子数比例减少D.温度升高,速率大的分子数占总分子数比例增加答案C解析初始时汽缸开口向上,活塞处于平衡状态,汽缸内外气体对活塞的压力差与活塞的重力平衡,则有(p1-p0)S=mg,汽缸在缓慢转动的过程中,汽缸内外气体对活塞的压力差大于重力沿汽缸壁的分力,故汽缸内气体缓慢地将活塞往外推,最后汽缸水平,缸内气压等于大气压.汽缸、活塞都是绝热的,故缸内气体与外界没有发生传热,汽缸内气体通过压强作用将活塞往外推,气体对外界做功,根据热力学第一定律ΔU=Q+W可知,气体内能减小,故缸内理想气体的温度降低,分子热运动的平均速率减小,并不是所有分子热运动的速率都减小,A、B错误;气体内能减小,缸内理想气体的温度降低,速率大的分子数占总分子数的比例减小,C正确,D错误.4.(多选)(2021·天津卷·6)列车运行的平稳性与车厢的振动密切相关,车厢底部安装的空气弹簧可以有效减振,空气弹簧主要由活塞、汽缸及内封的一定质量的气体构成.上下乘客及剧烈颠簸均能引起车厢振动,上下乘客时汽缸内气体的体积变化缓慢,气体与外界有充分的热交换;剧烈颠簸时汽缸内气体的体积变化较快,气体与外界来不及热交换.若汽缸内气体视为理想气体,在气体压缩的过程中()A.上下乘客时,气体的内能不变B.上下乘客时,气体从外界吸热C.剧烈颠簸时,外界对气体做功D.剧烈颠簸时,气体的温度不变答案AC5.(2021·山东卷·2)如图所示,密封的矿泉水瓶中,距瓶口越近水的温度越高.一开口向下、导热良好的小瓶置于矿泉水瓶中,小瓶中封闭一段空气.挤压矿泉水瓶,小瓶下沉到底部;松开后,小瓶缓慢上浮,上浮过程中,小瓶内气体()A.内能减少B.对外界做正功C.增加的内能大于吸收的热量D.增加的内能等于吸收的热量答案B解析由于越接近矿泉水瓶口,水的温度越高,因此小瓶上浮的过程中,小瓶内气体的温度升高,内能增加,A错误;在小瓶上升的过程中,小瓶内气体的温度逐渐升高,压强逐渐减小,根据理想气体状态方程pVT=c,可知气体体积膨胀,对外界做正功,B正确;由A、B分析,小瓶上升时,小瓶内气体内能增加,气体对外做功,根据热力学第一定律ΔU=W+Q,由于气体对外做功,因此吸收的热量大于增加的内能,C、D错误.6.(2023·广东湛江市模拟)我们经常会在电视上看到潜水员潜入海底探索海底的奥秘,如图所示,潜水员潜水时呼出的气泡,在缓慢上升到海面的过程中体积会逐渐变大.若某气泡缓慢上升到海面的过程中未破裂,且越接近海面,海水的温度越高,大气压强恒定,视气泡内气体为理想气体.则此过程中,该气泡内的气体压强________,该气泡内的气体内能________(均选填“增大”“减小”或“不变”).答案减小增大解析随着气泡的上升,离水面的深度逐渐减小,根据p=p0+ρgh,则该气泡内的气体压强减小;气泡内气体的温度升高,则该气泡内的气体内能增大.7.(2023·广东广州市天河区检测)一定质量的理想气体的压强p与热力学温度T的关系图像如图所示,其中图线的AB段平行于纵轴,BC段平行于横轴.则从A状态到B状态,气体________(选填“吸收”或“放出”)热量,从B状态到C状态,气体分子单位时间内对容器壁单位面积的碰撞次数________(选填“增多”“不变”或“减少”),A、B、C三个状态相比,气体密度最大的是________(选填“A”“B”或“C”).答案吸收减少A解析从A 状态到B 状态,温度不变,则ΔU =0,根据pVT=c ,压强减小,体积增大,即V B >V A ,气体对外做功W <0,根据ΔU =W +Q ,则Q >0,气体吸收热量.从B 状态到C 状态,根据pV T=c ,压强不变,温度升高,体积变大,即V C >V B ,保持压强不变,气体的体积增大,气体的密度减小,气体分子单位时间内对容器壁单位面积的碰撞次数减少.根据ρ=mV ,V C >V B >V A ,则气体密度最大的是A .8.(多选)(2022·全国乙卷·33(1)改编)一定量的理想气体从状态a 经状态b 变化到状态c ,其过程如T -V 图上的两条线段所示,则气体在()A .状态a 处的压强大于状态c 处的压强B .由a 变化到b 的过程中,气体对外做功C .由b 变化到c 的过程中,气体的压强不变D .由a 变化到b 的过程中,从外界吸收的热量等于其增加的内能答案AB解析根据理想气体状态方程可知T =p C ·V ,即T -V 图像的斜率为pC,故有p a =p b >p c ,故A正确,C 错误;理想气体由a 变化到b 的过程中,因体积增大,则气体对外做功,故B 正确;理想气体由a 变化到b 的过程中,温度升高,则内能增大,由热力学第一定律有ΔU =Q +W ,而ΔU >0,W <0,则有ΔU =Q -|W |,可得Q >0,Q >ΔU ,即气体从外界吸热,且从外界吸收的热量大于其增加的内能,故D 错误.9.(多选)(2022·全国甲卷·33(1)改编)一定量的理想气体从状态a 变化到状态b ,其过程如p -T 图上从a 到b 的线段所示.在此过程中()A .气体一直对外做功B .气体的内能一直增加C .气体一直从外界吸热D .气体吸收的热量等于其内能的增加量答案BCD 解析因p -T 图像中a 到b 的线段的延长线过原点,由pV T=c ,可知从a 到b 气体的体积不变,则从a 到b 气体不对外做功,选项A 错误;因从a 到b 气体温度升高,可知气体内能增加,选项B 正确;因W =0,ΔU >0,根据热力学第一定律ΔU =W +Q 可知,气体一直从外界吸热,且气体吸收的热量等于内能增加量,选项C 、D 正确.10.(2022·江苏卷·7)如图所示,一定质量的理想气体分别经历a →b 和a →c 两个过程,其中a →b 为等温过程,状态b 、c 的体积相同,则()A .状态a 的内能大于状态bB .状态a 的温度高于状态cC .a →c 过程中气体吸收热量D .a →c 过程中外界对气体做正功答案C 解析由于a →b 的过程为等温过程,即状态a 和状态b 温度相同,分子平均动能相同,对于理想气体,状态a 的内能等于状态b 的内能,故A 错误;由于状态b 和状态c 体积相同,且p b <p c ,根据查理定律有p b T b =p c T c,可知T b <T c ,又因为T a =T b ,故T a <T c ,故B 错误;因为a →c 过程气体体积增大,气体对外界做正功,而气体温度升高,内能增加,根据ΔU =W +Q ,可知气体吸收热量,故C 正确,D 错误.11.(2023·江苏通州区月考)真空泵抽气腔与容器相连,活塞向左运动时从容器中抽气,活塞向右运动时阀门自动关闭,将进入抽气腔内的气体全部排出,示意图如图甲.设抽气过程中抽气腔与容器中的气体压强始终相等,每次抽气活塞均从抽气腔最右端移动至最左端.已知容器的容积为V 0,抽气腔的容积为nV 0,初始时刻气体压强为p 0.(1)若抽气过程中气体的温度保持不变,求第一次抽气后容器中气体的压强p ;(2)若在绝热的条件下,某次抽气过程中,气体压强p 随体积V 变化的规律如图乙,求该过程气体内能的变化量ΔU .答案(1)p 0n +1(2)-0.8np 0V 0解析(1)抽气过程等温变化,第一次抽气有p 0V 0=p (V 0+nV 0),解得p =p 0n +1.(2)该过程为绝热过程,可知Q =0,又有W =-p ΔV =-p 0+0.6p 02·(nV 0)=-0.8np 0V 0,根据热力学第一定律得ΔU =W +Q =W =-0.8np 0V 0.12.某兴趣小组设计了一温度报警装置,原理图如图.一定质量的理想气体被一上表面涂有导电物质的轻活塞密封在导热气缸内,活塞厚度不计,横截面积S =100cm 2,开始时活塞距气缸底部的高度为h =0.3m ,周围环境温度为t 0=27℃,当环境温度上升,活塞上移Δh =0.01m 时,活塞上表面与a 、b 两触点接触,报警器报警.不计一切摩擦,大气压强恒为p 0=1.0×105Pa ,求:(1)该报警装置的报警温度为多少摄氏度;(2)若上述过程气体吸收的热量为30J ,则此过程气体内能的增加量为多少.答案(1)37℃(2)20J 解析(1)气体发生等压变化,由盖—吕萨克定律有V 1T 1=V 2T 2,得hS 300K =(h +Δh )S (t 2+273)K ,代入数据解得t 2=37℃.(2)气体等压膨胀对外做功,则W =-p 0·ΔV =-p 0(S ·Δh ),代入数据得W =-10J ,由热力学第一定律得ΔU =W +Q ,代入数据得ΔU =-10J +30J =20J.13.绝热的活塞与气缸之间封闭一定质量的理想气体,气缸开口向上置于水平面上,活塞与气缸壁之间无摩擦,缸内气体的内能U P =72J ,如图甲所示.已知活塞横截面积S =5×10-4m 2,其质量为m =1kg ,大气压强p 0=1.0×105Pa ,重力加速度g =10m/s 2,如果通过电热丝给封闭气体缓慢加热,活塞由原来的P 位置移动到Q 位置,此过程封闭气体的V -T 图像如图乙所示,且知气体内能与热力学温度成正比.求:(1)封闭气体最后的体积;(2)封闭气体吸收的热量.答案(1)6×10-4m 3(2)60J 解析(1)以气体为研究对象,由于压强不变,根据盖—吕萨克定律,有V P T P =V Q T Q,解得V Q =6×10-4m 3(2)由气体的内能与热力学温度成正比有U P U Q =T P T Q解得U Q =108J活塞从P 位置缓慢移到Q 位置,活塞受力平衡,气体为等压变化,以活塞为研究对象有pS =p 0S +mg解得p =p 0+mg S =1.2×105Pa 外界对气体做功W =-p (V Q -V P )=-24J由热力学第一定律有U Q -U P =Q +W可得气体吸收的总热量为Q =60J.。

2024届高考物理知识点复习:气体实验定律的综合应用(解析版)

2024届高考物理知识点复习:气体实验定律的综合应用(解析版)

气体实验定律的综合应用目录题型一 气体实验定律的理解和应用 题型二 应用气体实验定律解决“三类模型”问题 类型1 “玻璃管液封”模型 类型2 “汽缸活塞类”模型类型3 变质量气体模型题型三 热力学第一定律与气体实验定律的综合应用题型一气体实验定律的理解和应用1理想气体状态方程与气体实验定律的关系p 1V 1T 1=p 2V 2T 2温度不变:p 1V 1=p 2V 2(玻意耳定律)体积不变:p 1T 1=p 2T 2(查理定律)压强不变:V 1T 1=V 2T 2(盖-吕萨克定律)2两个重要的推论(1)查理定律的推论:Δp =p 1T 1ΔT (2)盖-吕萨克定律的推论:ΔV =V 1T 1ΔT 3利用气体实验定律解决问题的基本思路1(2023·广东深圳·校考模拟预测)为方便抽取密封药瓶里的药液,护士一般先用注射器注入少量气体到药瓶里后再抽取药液,如图所示,某种药瓶的容积为0.9mL ,内装有0.5mL 的药液,瓶内气体压强为1.0×105Pa ,护士把注射器内横截面积为0.3cm 2、长度为0.4cm 、压强为1.0×105Pa 的气体注入药瓶,若瓶内外温度相同且保持不变,气体视为理想气体。

(1)注入气体后与注入气体前相比,瓶内封闭气体的总内能如何变化?请简述原因。

(2)求此时药瓶内气体的压强。

【答案】(1)总内能增加,原因见解析;(2)p1=1.3×105Pa【详解】(1)注入气体后与注入气体前相比,瓶内封闭气体的总内能增加;注入气体后,瓶内封闭气体的分子总数增加,温度保持不变故分子平均动能保持不变,因此注入气体后瓶内封闭气体的总内能增加。

(2)以注入后的所有气体为研究对象,由题意可知瓶内气体发生等温变化,设瓶内气体体积为V1,有V1=0.9mL-0.5mL=0.4mL=0.4cm3注射器内气体体积为V2,有V2=0.3×0.4cm3=0.12cm3根据玻意耳定律有p0V1+V2=p1V1代入数据解得p1=1.3×105Pa2.(2023·山东·模拟预测)某同学利用实验室闲置的1m长的玻璃管和一个标称4.5L的导热金属容器做了一个简易温度计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题60气体实验定律的综合应用一、单项选择题1.如图,把一粗细均匀的玻璃管开口端插入到水银中,如果当时大气压强为一个标准大气压(标准大气压强为76cmHg),管内外水银面高度差为20cm,则管内气体的压强为()A.56cmHgB.76cmHgC.86cmHgD.96cmHg2.如图所示,在U型管的封闭端A内有一部分气体,管中标斜线部分均为水银,则A内气体的压强p应为下述关系式中是()A.p=h2B.p=p0-h2C.p=p0-h1-h2D.p=p0+h13.如图所示,一定质量的理想气体被质量为m的活塞封闭在竖直放置的导热汽缸内(活塞与汽缸间的摩擦不计),下列操作可使理想气体压强变大的是()A.缓慢升高环境温度B.将整体倒置,汽缸开口向下C.用力推汽缸,让整体向上加速运动D.汽缸自由下落4.如图所示,两端开口的玻璃管插入汞槽内,在管中有一段空气柱被汞柱封住。

当管内气体温度升高时,图中所示的高度h1和h2变化情况是()A.h1不变,h2变大B.h1不变,h2变小C.h1变大,h2不变D.h1变小,h2不变5.如图甲所示,内壁光滑的绝热汽缸竖直立于地面上,绝热活塞将一定质量的气体封闭在汽缸中,活塞静止时处于A位置;现将一重物轻轻地放在活塞上,活塞最终静止在如图乙所示的B位置;设分子之间除相互碰撞以外的作用力可忽略不计,则活塞在B位置时与活塞在A位置时相比较()A .气体的压强可能相同B .气体的内能可能相同C .单位体积内的气体分子数一定增多D .每个气体分子的速率一定增大 6.如图,竖直放置的均匀等臂U 型导热玻璃管两端封闭,管内水银封有A 、B 两段气柱,左管水银面高于右管水银面,高度差为h ,稳定时A 、B 气柱的压强分别为p A 和p B ,则( )A .若环境温度升高,p A 增大,pB 减小B .若环境温度降低,稳定后AB 气柱的压强比值增大C .若环境温度升高,稳定后AB 气柱压强变化△p A 一定小于△p BD .若环境温度降低,稳定后A 处液面高度变化△h 可能大于2h 7.如图所示,在固定的汽缸A 和B 中分别用活塞封闭一定质量的理想气体,面积之比为S A :S B =1:2.两活塞以穿过B 的底部的刚性细杆相连,可沿水平方向无摩擦滑动.两个汽缸都不漏气.初始时,A 、B 中气体的体积皆为V 0,温度皆为T 0=300K.A 中气体压强p A =1.5p 0,p 0是汽缸外的大气压强.现对A 加热,使其中气体的压强升到 p A = 2.0p 0,同时保持B 中气体的温度不变.则此时A 中气体温度( )A .400 KB .450 KC .500 KD .600 K8.如图所示,一粗细均匀的U 型玻璃管开口向上竖直放置,左、右两管都封有一定质量的理想气体A 、B ,水银面a 、b 间的高度差为h 1,水银柱cd 的长度为h 2,且21h h ,a 面与c 面恰处于同一高度。

若在右管开口端取出少量水银,系统重新达到平衡,则( )A .A 气体的压强大于外界大气压强B .B 气体的压强变化量大于A 气体的压强变化量C .水银面c 上升的高度小于水银面a 下降的高度D .水银面a 、b 间新的高度差小于右管上段新水银柱的长度9.A 、B 汽缸的水平长度为20cm ,截面积均为10cm 2,C 是可在汽缸内无摩擦滑动的、体积不计的活塞,D 为阀门,整个装置均由导热材料制成且环境温度恒定,开始阀门关闭,A 内有压强p A = 4.0 × 105Pa 的氮气,B 内有压强p B = 2.0 × 105Pa 的氧气,阀门打开后,活塞C 向右移动,最后达到平衡。

下列说法正确的有( )A .平衡后A 汽缸的压强为3.0 × 105PaB .活塞C 向右移动了10cmC .A 汽缸内气体要对外做功,同时放出热量D .若B 汽缸抽成真空,打开阀门D ,A 汽缸中气体要对外做功,要从外界吸热10.图中甲为气压升降椅,乙为其核心部件模型简图。

活塞与椅面的总质量为m ,活塞横截面积为S ,气缸内封闭一定质量的理想气体,稳定时气柱长度为L ,该气缸导热性能良好,忽略一切摩擦。

某同学盘 坐上椅面,稳定后缸内气柱长为2L ,已知大气压强为0p ,室内温度为0T ,重力加速度为g ,则( )A .该同学的质量为0p S gB .该同学坐稳后,封闭气体的压强增大、温度升高C .该同学坐稳后,室内气温缓慢上升至01.1T ,每个气体分子的动能都增大D .该同学坐稳后,室内气温缓慢上升至01.1T ,该过程缸内气体对外界做功为()00.1p S mg L +11.青铜龙虎尊出土于四川省广汉市三星堆一号祭祀坑,器肩上所铸高浮雕的三龙呈蠕动游弋状,龙头由器肩伸出,龙角为高柱状造型,龙眼浑圆,身饰菱形重环纹。

展出单位为防止文物因氧化而受损,需抽出存放文物的展柜中的空气,充入惰性气体,形成低氧环境。

如图所示为用活塞式抽气筒从存放龙虎尊的展柜内抽出空气的示意图。

已知展柜容积为0V ,龙虎尊材料的总体积为05V ,开始时展柜内空气压强为0p ,抽气筒每次抽出空气的体积相同;抽气一次后,展柜内压强传感器显示内部压强为045p ;假设抽气的过程中气体的温度不变。

第n 次抽气前,展柜内剩余空气压强p 及剩余空气和开始时空气的质量之比K ( )A .04()5n p p = B .05()4n p p = C .14()5n K -= D .15()4n K -=二、多项选择题 12.如图所示,在某固定绝热容器中,左侧装有一定量的某种气体,右侧为真空,某时刻把隔板抽掉,让左侧气体自由膨胀到右侧直至达到新的平衡,在达到新的平衡过程有( ) A .气体对外做功,内能减小 B .气体对外做功,温度降低C .气体不做功,内能不变D .气体温度不变,压强减小13.如图所示汽缸内用活塞封闭一定质量的理想气体,汽缸和活塞是绝热的,汽缸固定不动,一条细线左端连接在活塞上,另一端跨过定滑轮后吊着一个装沙的小桶,开始时活塞静止,某时刻开始小桶中的沙缓慢漏出的过程中,不计活塞与汽缸的摩擦,则下列说法正确的说法是( )A .汽缸内的活塞向左运动B .汽缸内气体的内能增大C .汽缸内气体的压强增大D .汽缸内气体的分子平均动能不变14.如图所示,一个内壁光滑与外界不发生热传递的汽缸固定在地面上,缸内活塞下方封闭着一定量的气体(不计分子间的作用力),活塞与外界也不发生热传递,若突然用竖直向上的力F 将活塞向上拉一些,缸内封闭着的气体( )A .分子平均动能不变B .单位时间内缸壁单位面积上受到气体分子碰撞的次数减少C .分子数密度减小D .单个分子对缸壁的平均撞击力减小E .若活塞重力不计,拉力F 对活塞做的功等于缸内气体的内能改变量15.一定质量的理想气体经历了如图所示的a b c a →→→循环,已知该气体在状态a 时温度为0300K T =、压强为50 1.010Pa p =⨯、体积为0 1.0L V =,在状态b 时温度为0T 、体积为02V ,在状态c 时体积为02V ,由状态b 到状态c 气体吸收的热量为100J Q =,下列说法中正确的是( )A .气体在状态c 的温度是900KB .气体由状态b 到状态c 吸收的热量等于增加的内能C .气体由状态c 到状态a 气体对外界做功D .气体由状态c 到状态a 气体放出的热量为200J16.如图所示,某医用氧气生产工厂要将氧气瓶甲中氧气分装到瓶乙中,两瓶的容积相同,阀门K 打开前瓶乙已经抽成真空。

现将阀门K 打开,当两瓶内氧气的压强相等时再关闭阀门。

两氧气瓶、阀门及连接管都看作绝热,瓶中的氧气看作是理想气体,不计连接管的容积。

对此次分装过程,以下说法正确的是( )A .分装完毕后甲瓶中的氧气的压强为分装前的12B .分装完毕后,氧气分子热运动的平均速率不变C .分装完毕后,甲乙两瓶内氧气的总内能减小D .氧气自发地从甲瓶向乙瓶的流动过程是不可逆的17.如图甲所示,活塞将一定质量的理想气体封闭在气缸里。

设法让气缸中的气体经历A →B →C →D 的变化,气体的压强与摄氏温度的关系如图乙中实线所示。

图中O 为坐标原点,A 在p 轴上,//AB DC ,//BC AO ,//AD t 轴,BA 的延长线经过()273.15C,0°-,CD 的延长线经过O 。

关于气体各个阶段的情况,下列说法正确的是( )A .A →B 和C →D 气体都做等容变化B .从C 到D ,气体的分子数密度逐渐减小C .从B 到C ,气体从外界吸收热量D .从A 到D 全过程,外界对气体做正功18.如图甲所示,一台四冲程内燃机,活塞在压缩冲程某段时间内移动的距离为0.1m ,这段过程活塞对气体的压力逐渐增大,其做的功相等于2⨯103N 的恒力使活塞移动相同距离所做的功如图乙所示。

内燃机工作时汽缸温度高于环境温度,该过程中压缩气体传递给汽缸的热量为30J 。

燃烧后的高压气体对活塞做功,气体推动活塞移动0.1m ,其做的功相等于9⨯103N 的恒力使活塞移动相同距离所做的功如图丙所示,该做功冲程气体传递给气缸的热量为30J ,则( )A .压缩冲程气体内能的变化量为230JB .压缩冲程气体内能的变化量为170JC .做功冲程气体内能的变化量为-930JD .做功冲程气体内能的变化量为-900J19.如下图,是以状态a 为起始点、在两个恒温热源之间工作的卡诺逆循环过程(制冷机)的p V -图像,虚线1T 、2T 为等温线。

该循环是由两个等温过程和两个绝热过程组成,该过程以理想气体为工作物质,工作物质与低温热源或高温热源交换热量的过程为等温过程,脱离热源后的过程为绝热过程。

下列说法正确的是( )A .a b →过程气体压强减小完全是由于气体的温度降低导致的B .一个循环过程完成后,气体对外放出热量C .d a →过程向低温热源释放的热量等于b c →过程从高温热源吸收的热量D .a b →过程气体对外做的功等于c d →过程外界对气体做的功三、解答题20.现用一限压阀控制储气瓶内的压强,原定出厂的10L 储气瓶中压强为80p ,现利用一400L 、压强为04p 、储气质量为520kg 的储气罐及灌气装置给储气瓶灌气。

此时储气瓶内可看作真空,且当储气罐内气体压强低于0.50p 时,灌气装置无法进行工作,不考虑温度变化。

(1)最多可灌满几个储气瓶。

(2)某厂家在给储气瓶灌气时,为节省成本,将原定于80p 的储气瓶改为60p ,由此每个灌满的储气瓶少了多少kg 的气体。

21.两端封闭、粗细均匀的U 形细玻璃管竖直放置,内有一段水银柱,水银柱的两端各封闭有一段空左、右两边空气柱的长度分别为l 1=20.0cm 和l 2=18.0cm ,左边气体的压强为18.0cmHg 。

相关文档
最新文档