专题3.2 气体实验定律实验(解析版)
2 气体实验定律

强,则A容器内的气体压强应等于外界大气压强 ,以A中气体为 研究对象
p1V 4 105 1.5 L 6 L, p1V=p0V′, V 5 p0 10
知 识 归 纳 整 合
因此A容器中剩余药液的体积为7.5 L-6 L=1.5 L. 答案:(1)18次 (2)1.5 L
单 元 质 量 评 估
2.晶体有确定熔点的原因 晶体熔化过程,当温度达到熔点时,吸收的热量全部用
知 识 体 系 构 建
来破坏空间点阵结构,增加分子势能,而分子的平均动能却
保持不变,所以晶体有固定的熔点.
3.非晶体没有确定熔点的原因 由于非晶体没有空间点阵结构,熔化时不需要去破坏空
知 识 归 纳 整 合
间点阵结构,吸收的热量主要转化为分子的动能,不断吸热,
温度就不断上升,所以非晶体没有固定的熔点.
单 元 质 量 评 估
【典例1】晶体在熔化过程中所吸收的热量,主要用于( A.破坏空间点阵结构,增加分子动能
知 识 体 系 构 建
)
B.破坏空间点阵结构,增加分子势能
C.破坏空间点阵结构,增加分子势能,同时增加分子动能
D.破坏空间点阵结构,但不增加分子势能和分子动能 【解析】选B.晶体有固定的熔点,熔化过程中吸收的热量用
从容器内抽气的过程中,容器内的气体质量不断减小, 这属于变质量问题.分析时,将每次抽气过程中抽出的气体和 剩余气体作为研究对象,质量不变,故抽气过程可看成是等
知 识 归 纳 整 合
温膨胀过程.
单 元 质 量 评 估
3.分装问题 将一个大容器里的气体分装到多个小容器中的问题也是 一个典型的变质量问题.分析这类问题时,可以把大容器中的
由于固体分子间的强大作用,使得固体分子只能在各自 的平衡位置附近振动,对固体加热,在其开始熔化之前,获 得的能量主要转化为分子的动能,使物体温度升高,当温度 升高到一定程度时,一部分分子的能量足以克服其他分子的 束缚,从而可以在其他分子间移动,固体开始熔化.
专题:气体实验定律

P10,如图甲所示。若将汽缸缓慢倒置,再次达到平衡时,上下两部分气体体
积之比为3:1,如图乙所示。设外界温度不变。已知活塞面积为S,重力加速度
大小为g,求活塞的质量m。
为200 kPa,考虑到胎压不足,司机驾驶车辆到汽车修理店充气,行驶一段路
程到汽车修理店后,胎压监测装置显示该车胎胎压为210 kPa,工作人员为该
车胎充气,充气完毕后汽车停放一段时间,胎内气体温度恢复到27℃时,胎压
监测装置显示该车胎胎压为250 kPa,已知车胎内气体体积为40 L且不考虑体
积变化,求:
差为h,以下说法中正确的是( C )
A. 当形管由图示位置开始下落时,则水银柱高度差h变小
B. 形管加速下落过程中(a=g),两部分气体的压强差比静止时大
C. 两部分气体升高到相同的温度后,两部分气体的压强差比升温前
大
D. 使A、B两部分气体降低相同的温度,则水银柱高度差h变大
2. 一竖直放置、缸壁光滑且导热的柱形汽缸内盛有一定量的氮气,被活塞分隔
物质的总量相等
同理:等温变化
P0V0 P1V1 P2V2 PnVn
等压变化
等容变化
V
(4)
P、T、ρ的关系式
P1
P2
1T1 2T2
m
原理:
nR n1 R1 n2 R2 nn动时,一车胎内气体温度为27℃,胎压监测装置显示该车胎胎压
专题:气体实验定律
理想气体状态方程
说明:(1)C=nR,与P、V、T无关
(2)
T1 = T2
p1 = p2
V1 = V2
专题提升23 应用气体实验定律解决两类问题--2025版高考总复习物理

[基础落实练]1.现有一个容积为400L的医用氧气罐,内部气体可视为理想气体,压强为15MPa,为了使用方便,用一批相同规格的小型氧气瓶(瓶内视为真空)进行分装,发现恰好能装满40个小氧气瓶,分装完成后原医用氧气罐及每个小氧气瓶内气体的压强均为3MPa,不考虑分装过程中温度的变化,则每个小氧气瓶的容积为()A.20L B.40LC.50L D.60L解析:设每个小氧气瓶的容积为V0,以医用氧气罐中所有氧气为研究对象,初态:p1=15MPa,V1=400L;末态:p2=3MPa,V2=40V0+400L;因为不考虑温度变化,由玻意耳定律有:p1V1=p2V2,代入数据得V0=40L,B正确。
答案:B2.(2021·山东卷)血压仪由加压气囊、臂带、压强计等构成,如图所示。
加压气囊可将外界空气充入臂带,压强计示数为臂带内气体的压强高于大气压的数值。
充气前臂带内气体压强为大气压强,体积为V;每次挤压气囊都能将60cm3的外界空气充入臂带中,经5次充气后,臂带内气体体积变为5V,压强计示数为150mmHg。
已知大气压强等于750mmHg,气体温度不变。
忽略细管和压强计内的气体体积,则V等于()A.30cm3B.40cm3C.50cm3D.60cm3解析:取5次充气后,臂带内所有气体为研究对象,初态压强为p0=750mmHg,体积为V0=V+5ΔV,其中ΔV=60cm3;末态压强计示数为150mmHg,则气体压强p1=p0+150 mmHg=900mmHg,体积为V1=5V,根据玻意耳定律得p0V0=p1V1,解得V=60cm3,D正确。
答案:D3.一个瓶子里装有空气,瓶上有一个小孔跟外面大气相通,原来瓶里气体的温度是7℃,如果把它加热到47℃,瓶里留下的空气的质量是原来质量的()A .18B .34C .56D .78解析:取原来瓶中气体为研究对象,初态V 1=V ,T 1=280K ,末态V 2=V +ΔV ,T 2=320K ,由盖—吕萨克定律得V 1T 1=V2T 2,又m 余m 原=V V +ΔV ,则m 余m 原=T 1T 2=78。
2023年高考物理一轮复习讲义——气体实验定律的综合应用

专题强化二十六 气体实验定律的综合应用目标要求 1.理解理想气体状态方程并会应用解题.2.掌握“玻璃管液封模型”和“汽缸活塞类模型”的处理方法.3.会处理“变质量气体模型”问题.题型一 玻璃管液封模型1.气体实验定律及理想气体状态方程 理想气体状态方程:pVT=Cp 1V 1T 1=p 2V 2T 2⎩⎪⎨⎪⎧当T 一定时,p 1V 1=p 2V 2当p 一定时,V 1T 1=V 2T 2当V 一定时,p 1T 1=p 2T22.玻璃管液封模型求液柱封闭的气体压强时,一般以液柱为研究对象分析受力、列平衡方程求解,要注意: (1)液体因重力产生的压强为p =ρgh (其中h 为液体的竖直高度); (2)不要漏掉大气压强,同时又要尽可能平衡掉某些大气的压力;(3)有时可直接应用连通器原理——连通器内静止的液体,同一液体在同一水平面上各处压强相等;(4)当液体为水银时,可灵活应用压强单位“cmHg ”,使计算过程简捷. 考向1 单独气体例1 (2019·全国卷Ⅲ·33(2))如图,一粗细均匀的细管开口向上竖直放置,管内有一段高度为2.0 cm 的水银柱,水银柱下密封了一定量的理想气体,水银柱上表面到管口的距离为2.0 cm.若将细管倒置,水银柱下表面恰好位于管口处,且无水银滴落,管内气体温度与环境温度相同.已知大气压强为76 cmHg ,环境温度为296 K.(1)求细管的长度;(2)若在倒置前,缓慢加热管内被密封的气体,直到水银柱的上表面恰好与管口平齐为止,求此时密封气体的温度.答案(1)41 cm(2)312 K解析(1)设细管的长度为L,横截面的面积为S,水银柱高度为h;初始时,设水银柱上表面到管口的距离为h1,被密封气体的体积为V,压强为p;细管倒置时,被密封气体的体积为V1,压强为p1.由玻意耳定律有pV=p1V1①由力的平衡条件有p=p0+ρgh②p1=p0-ρgh③式中,ρ、g分别为水银的密度和重力加速度的大小,p0为大气压强.由题意有V=S(L-h1-h)④V1=S(L-h)⑤由①②③④⑤式和题给条件得L=41 cm⑥(2)设气体被加热前后的温度分别为T0和T,由盖-吕萨克定律有V T0=V1T⑦由④⑤⑥⑦式和题给数据得T=312 K.考向2关联气体例2(2018·全国卷Ⅲ·33(2))如图所示,在两端封闭、粗细均匀的U形细玻璃管内有一段水银柱,水银柱的两端各封闭有一段空气.当U形管两端竖直朝上时,左、右两边空气柱的长度分别为l1=18.0 cm和l2=12.0 cm,左边气体的压强为12.0 cmHg.现将U形管缓慢平放在水平桌面上,没有气体从管的一边通过水银逸入另一边.求U形管平放时两边空气柱的长度.在整个过程中,气体温度不变.答案22.5 cm7.5 cm解析设U形管两端竖直朝上时,左、右两边气体的压强分别为p1和p2.U形管水平放置时,两边气体压强相等,设为p.此时原左、右两边气柱长度分别变为l1′和l2′.由力的平衡条件有p1=p2+ρg(l1-l2)①式中ρ为水银密度,g为重力加速度大小.由玻意耳定律有p1l1=pl1′②p2l2=pl2′③两边气柱长度的变化量大小相等l1′-l1=l2-l2′④由①②③④式和题给条件得l1′=22.5 cm⑤l2′=7.5 cm⑥题型二汽缸活塞类模型1.解题的一般思路(1)确定研究对象研究对象分两类:①热学研究对象(一定质量的理想气体);②力学研究对象(汽缸、活塞或某系统).(2)分析物理过程①对热学研究对象分析清楚初、末状态及状态变化过程,依据气体实验定律列出方程.②对力学研究对象要正确地进行受力分析,依据力学规律列出方程.(3)挖掘题目的隐含条件,如几何关系等,列出辅助方程.(4)多个方程联立求解.注意检验求解结果的合理性.2.两个或多个汽缸封闭着几部分气体,并且汽缸之间相互关联的问题,解答时应分别研究各部分气体,找出它们各自遵循的规律,并写出相应的方程,还要写出各部分气体之间压强或体积的关系式,最后联立求解. 考向1 单独气体例3 如图所示,内壁光滑的薄壁圆柱形导热汽缸开口朝下,汽缸高度为h ,横截面积为S .汽缸开口处有一厚度可忽略不计的活塞.缸内封闭了压强为2p 0的理想气体.已知此时外部环境的热力学温度为T 0,大气压强为p 0,活塞的质量为2p 0Sg,g 为重力加速度.(1)若把汽缸放置到热力学温度比外部环境低110T 0的冷库中,稳定时活塞位置不变,求稳定时封闭气体的压强;(2)若把汽缸缓缓倒置,使开口朝上,环境温度不变,求稳定时活塞到汽缸底部的距离. 答案 (1)95p 0 (2)23h解析 (1)由题意知封闭气体做等容变化,初态时热力学温度为T 0,压强为2p 0, 末态时热力学温度为T 1=910T 0,压强设为p 1.根据查理定律有2p 0T 0=p 1T 1,解得p 1=95p 0(2)封闭气体初态压强为2p 0,体积V 0=Sh ,设汽缸倒置后,气体压强为p 2,活塞到汽缸底部的距离为H , 则气体体积V 2=SH ,根据平衡条件可知p 0S +mg =p 2S 解得p 2=3p 0根据玻意耳定律有2p 0V 0=p 2V 2 解得H =23h所以稳定时活塞到汽缸底部的距离为23h .考向2 关联气体例4 (2019·全国卷Ⅱ·33(2))如图,一容器由横截面积分别为2S 和S 的两个汽缸连通而成,容器平放在水平地面上,汽缸内壁光滑.整个容器被通过刚性杆连接的两活塞分隔成三部分,分别充有氢气、空气和氮气.平衡时,氮气的压强和体积分别为p 0和V 0,氢气的体积为2V 0,空气的压强为p .现缓慢地将中部的空气全部抽出,抽气过程中氢气和氮气的温度保持不变,活塞没有到达两汽缸的连接处,求:(1)抽气前氢气的压强; (2)抽气后氢气的压强和体积.答案 (1)12(p 0+p ) (2)12p 0+14p 4(p 0+p )V 02p 0+p解析 (1)设抽气前氢气的压强为p 10,根据力的平衡条件得(p 10-p )·2S =(p 0-p )·S ① 得p 10=12(p 0+p );②(2)设抽气后氢气的压强和体积分别为p 1和V 1,氮气的压强和体积分别为p 2和V 2,根据力的平衡条件有p 2·S =p 1·2S ③抽气过程中氢气和氮气的温度保持不变, 则由玻意耳定律得p 1V 1=p 10·2V 0④ p 2V 2=p 0V 0⑤由于两活塞用刚性杆连接,故 V 1-2V 0=2(V 0-V 2)⑥ 联立②③④⑤⑥式解得 p 1=12p 0+14pV 1=4(p 0+p )V 02p 0+p.题型三变质量气体模型1.充气问题选择原有气体和即将充入的气体整体作为研究对象,就可把充气过程中气体质量变化问题转化为定质量气体问题.2.抽气问题选择每次抽气过程中抽出的气体和剩余气体整体作为研究对象,抽气过程可以看成质量不变的等温膨胀过程.3.灌气分装把大容器中的剩余气体和多个小容器中的气体整体作为研究对象,可将变质量问题转化为定质量问题.4.漏气问题选容器内剩余气体和漏出气体整体作为研究对象,便可使漏气过程中气体质量变化问题转化为定质量气体问题.考向1充气、抽气问题例5(2021·山东卷·4)血压仪由加压气囊、臂带、压强计等构成,如图所示.加压气囊可将外界空气充入臂带,压强计示数为臂带内气体的压强高于大气压强的数值,充气前臂带内气体压强为大气压强,体积为V;每次挤压气囊都能将60 cm3的外界空气充入臂带中,经5次充气后,臂带内气体体积变为5V,压强计示数为150 mmHg.已知大气压强等于750 mmHg,气体温度不变.忽略细管和压强计内的气体体积.则V等于()A.30 cm3B.40 cm3C.50 cm3D.60 cm3答案 D解析根据玻意耳定律可知p0V+5p0V0=p1×5V已知p0=750 mmHg,V0=60 cm3,p1=750 mmHg+150 mmHg=900 mmHg代入数据整理得V=60 cm3故选D.例6 2019年12月以来,新型冠状病毒疫情给世界经济带来很大影响.勤消毒是一个很关键的防疫措施.如图所示是某种防疫消毒用的喷雾消毒桶及其原理图.消毒桶的总容积为 10 L ,装入7 L 的药液后再用密封盖将消毒桶密封,与消毒桶相连的活塞式打气筒每次能压入250 cm 3的1 atm 的空气,大气压强为1 atm ,设整个过程温度保持不变,求:(1)要使消毒桶中空气的压强达到5 atm ,打气筒应打压几次?(2)在消毒桶中空气的压强达到5 atm 时,打开喷嘴使其喷雾,直到内、外气体压强相等时不再向外喷消毒液,消毒桶内是否还剩消毒液?如果剩下的话,还剩下多少体积的消毒液?如果剩不下了,喷出去的气体质量占喷消毒液前消毒桶内气体质量的多少? 答案 (1)48 (2)剩不下 13解析 (1)设需打压n 次,使消毒桶内空气的压强变为5 atm , 由玻意耳定律p 1(V 1+n ΔV )=p 2V 1 其中p 1=1 atm ,p 2=5 atm , V 1=10 L -7 L =3 L , ΔV =250 cm 3=0.25 L 解得n =48(次)(2)停止喷雾时,桶内气体压强变为1 atm ,此时气体体积为V 2 由玻意耳定律得 p 2V 1=p 1V 2 即5 atm ×3 L =1 atm ×V 2 解得V 2=15 L大于消毒桶的总容积10 L ,故消毒桶里不能剩下消毒液了.喷出去的气体体积ΔV =15 L -10 L =5 L 则Δm m =ΔV V 2=13.考向2 灌气分装例7 新冠疫情期间,武汉市医疗物资紧缺,需要从北方调用大批大钢瓶氧气(如图),每个钢瓶内体积为40 L,在北方时测得大钢瓶内氧气压强为1.2×107 Pa,温度为7 ℃,长途运输到武汉方舱医院检测时测得大钢瓶内氧气压强为1.26×107Pa.在方舱医院实际使用过程中,先用小钢瓶(加抽气机)缓慢分装,然后供病人使用,小钢瓶体积为10 L,分装后每个小钢瓶内氧气压强为4×105 Pa,要求大钢瓶内压强降到2×105 Pa时就停止分装.不计运输过程中和分装过程中氧气的泄漏,求:(1)在武汉检测时大钢瓶所处环境温度为多少摄氏度;(2)一个大钢瓶可分装多少小钢瓶供病人使用.答案(1)21 ℃(2)124解析(1)大钢瓶的容积一定,从北方到武汉对大钢瓶内气体,有p1T1=p2T2解得T2=294 K,故t2=21 ℃(2)在武汉时,设大钢瓶内氧气由状态p2、V2等温变化为停止分装时的状态p3、V3,则p2=1.26×107 Pa,V2=0.04 m3,p3=2×105 Pa根据p2V2=p3V3得V3=2.52 m3可用于分装小钢瓶的氧气p4=2×105 Pa,V4=(2.52-0.04) m3=2.48 m3分装成小钢瓶的氧气p5=4×105 Pa,V5=nV其中小钢瓶体积为V=0.01 m3根据p4V4=p5V5得n=124即一大钢瓶氧气可分装124小钢瓶.课时精练1.(2021·河北卷·15(2))某双层玻璃保温杯夹层中有少量空气,温度为27 ℃时,压强为3.0×103 Pa.(1)当夹层中空气的温度升至37 ℃,求此时夹层中空气的压强;(2)当保温杯外层出现裂隙,静置足够长时间,求夹层中增加的空气质量与原有空气质量的比值,设环境温度为27 ℃,大气压强为1.0×105 Pa. 答案 (1)3.1×103 Pa (2)973解析 (1)由题意可知夹层中的气体发生等容变化,根据查理定律可得p 1T 1=p 2T 2代入数据解得p 2=3.1×103 Pa(2)当保温杯外层出现裂缝后,静置足够长时间,则夹层中空气压强和大气压强相等,设夹层体积为V ,以静置后的所有空气为研究对象有p 0V =p 1V 1 解得V 1=1003V则夹层中增加空气的体积为ΔV =V 1-V =973V所以夹层中增加的空气质量与原有空气质量之比为 Δm m =ΔV V =973. 2.(2020·全国卷Ⅲ·33(2))如图,两侧粗细均匀、横截面积相等、高度均为H =18 cm 的U 形管,左管上端封闭,右管上端开口.右管中有高h 0= 4 cm 的水银柱,水银柱上表面离管口的距离l =12 cm.管底水平段的体积可忽略.环境温度为T 1=283 K .大气压强p 0=76 cmHg.(1)现从右侧端口缓慢注入水银(与原水银柱之间无气隙),恰好使水银柱下端到达右管底部.此时水银柱的高度为多少?(2)再将左管中密封气体缓慢加热,使水银柱上表面恰与右管口平齐,此时密封气体的温度为多少? 答案 见解析解析 (1)设密封气体初始体积为V 1,压强为p 1,左、右管的横截面积均为S ,密封气体先经等温压缩过程体积变为V 2,压强变为p 2,由玻意耳定律有 p 1V 1=p 2V 2①设注入水银后水银柱高度为h ,水银的密度为ρ,根据题设条件有p 1=p 0+ρgh 0② p 2=p 0+ρgh ③ V 1=(2H -l -h 0)S ④ V 2=HS ⑤联立①②③④⑤式并代入题给数据得 h ≈12.9 cm ⑥(2)密封气体再经等压膨胀过程体积变为V 3,温度变为T 2,由盖—吕萨克定律有 V 2T 1=V 3T 2⑦ 根据题设条件有V 3=(2H -h )S ⑧ 联立⑤⑥⑦⑧式并代入题给数据得 T 2≈363 K.3.(2021·全国甲卷·33(2))如图,一汽缸中由活塞封闭有一定量的理想气体,中间的隔板将气体分为A 、B 两部分;初始时,A 、B 的体积均为V ,压强均等于大气压p 0,隔板上装有压力传感器和控制装置,当隔板两边压强差超过0.5p 0时隔板就会滑动,否则隔板停止运动.气体温度始终保持不变.向右缓慢推动活塞,使B 的体积减小为V 2.(1)求A 的体积和B 的压强;(2)再使活塞向左缓慢回到初始位置,求此时A 的体积和B 的压强. 答案 (1)0.4V 2p 0 (2)(5-1)V3+54p 0 解析 (1)对B 气体分析,气体发生等温变化,根据玻意耳定律有p 0V =p B ·12V解得p B =2p 0对A 气体分析,根据玻意耳定律有p 0V =p A V A p A =p B +0.5p 0 联立解得V A =0.4V .(2)再使活塞向左缓慢回到初始位置,假设隔板不动,则A 的体积为32V ,由玻意耳定律可得 p 0V =p ′·32V 则此情况下A 的压强为p ′=23p 0<p B -0.5p 0 则隔板一定会向左运动,设稳定后气体A 的体积为V A ′、压强为p A ′,气体B 的体积为V B ′、压强为p B ′,根据玻意耳定律有p 0V =p A ′V A ′,p 0V =p B ′V B ′V A ′+V B ′=2V ,p A ′=p B ′-0.5p 0联立解得p B ′=3-54p 0(舍去),p B ′=3+54p 0 V A ′=(5-1)V .4.竖直放置的一粗细均匀的U 形细玻璃管中,两边分别灌有水银,水平部分有一空气柱,各部分长度如图所示,单位为cm.现将管的右端封闭,从左管口缓慢倒入水银,恰好使水平部分右端的水银全部进入右管中.已知大气压强p 0=75 cmHg ,环境温度不变,左管足够长.求:(1)此时右管封闭气体的压强;(2)左管中需要倒入水银柱的长度.答案 (1)90 cmHg (2)27 cm解析 (1)设玻璃管的横截面积为S ,对右管中的气体,初态:p 1=75 cmHg ,V 1=30 cm·S末态:V 2=(30 cm -5 cm)·S由玻意耳定律有:p 1V 1=p 2V 2解得:p 2=90 cmHg(2)对水平管中的空气柱,初态:p =p 0+15 cmHg =90 cmHg ,V =11 cm·S末态:p ′=p 2+20 cmHg =110 cmHg根据玻意耳定律:pV =p ′V ′解得V ′=9 cm·S ,则水平管中的空气柱长度变为9 cm ,此时原来左侧竖直管中15 cm 水银柱已有7 cm 进入到水平管中,所以左侧管中倒入水银柱的长度为110 cm -75 cm -(15-7) cm =27 cm.5.(2018·全国卷Ⅱ·33(2))如图,一竖直放置的汽缸上端开口,汽缸壁内有卡口a 和b ,a 、b 间距为h ,a 距缸底的高度为H ;活塞只能在a 、b 间移动,其下方密封有一定质量的理想气体.已知活塞质量为m ,面积为S ,厚度可忽略;活塞和汽缸壁均绝热,不计它们之间的摩擦.开始时活塞处于静止状态,上、下方气体压强均为p 0,温度均为T 0.现用电热丝缓慢加热汽缸中的气体,直至活塞刚好到达b 处.求此时汽缸内气体的温度以及在此过程中气体对外所做的功.(重力加速度大小为g )答案 ⎝⎛⎭⎫1+h H ⎝⎛⎭⎫1+mg p 0S T 0 (p 0S +mg )h 解析 开始时活塞位于a 处,加热后,汽缸中的气体先经历等容过程,直至活塞开始运动.设此时汽缸中气体的温度为T 1,压强为p 1,根据查理定律有p 0T 0=p 1T 1① 根据力的平衡条件有p 1S =p 0S +mg ②联立①②式可得T 1=⎝⎛⎭⎫1+mg p 0S T 0③ 此后,汽缸中的气体经历等压过程,直至活塞刚好到达b 处,设此时汽缸中气体的温度为T 2;活塞位于a 处和b 处时气体的体积分别为V 1和V 2.根据盖—吕萨克定律有V 1T 1=V 2T 2④ 式中V 1=SH ⑤V 2=S (H +h )⑥联立③④⑤⑥式解得T 2=⎝⎛⎭⎫1+h H ⎝⎛⎭⎫1+mg p 0S T 0⑦ 从开始加热到活塞到达b 处的过程中,汽缸中的气体对外做的功为W =(p 0S +mg )h .6.(2020·山东卷·15)中医拔罐的物理原理是利用玻璃罐内外的气压差使罐吸附在人体穴位上,进而治疗某些疾病.常见拔罐有两种,如图所示,左侧为火罐,下端开口;右侧为抽气拔罐,下端开口,上端留有抽气阀门.使用火罐时,先加热罐中气体,然后迅速按到皮肤上,自然降温后火罐内部气压低于外部大气压,使火罐紧紧吸附在皮肤上.抽气拔罐是先把罐体按在皮肤上,再通过抽气降低罐内气体压强.某次使用火罐时,罐内气体初始压强与外部大气压相同,温度为450 K ,最终降到300 K ,因皮肤凸起,内部气体体积变为罐容积的2021.若换用抽气拔罐,抽气后罐内剩余气体体积变为抽气拔罐容积的2021,罐内气压与火罐降温后的内部气压相同.罐内气体均可视为理想气体,忽略抽气过程中气体温度的变化.求应抽出气体的质量与抽气前罐内气体质量的比值.答案 13解析 设火罐内气体初始状态参量分别为p 1、T 1、V 1,温度降低后状态参量分别为p 2、T 2、V 2,罐的容积为V 0,大气压强为p 0,由题意知p 1=p 0、T 1=450 K 、V 1=V 0、T 2=300 K 、V 2=20V 021① 由理想气体状态方程有p 0V 0T 1=p 2·2021V 0T 2② 代入数据得p 2=0.7p 0③对于抽气拔罐,设初态气体状态参量分别为p 3、V 3,末态气体状态参量分别为p 4、V 4,罐的容积为V 0′,由题意知p 3=p 0、V 3=V 0′、p 4=p 2④由玻意耳定律有p 0V 0′=p 2V 4⑤联立③⑤式,代入数据得V 4=107V 0′⑥ 设抽出的气体的体积为ΔV ,由题意知ΔV =V 4-2021V 0′⑦ 故应抽出气体的质量与抽气前罐内气体质量的比值为Δm m =ΔV V 4⑧ 联立⑥⑦⑧式,代入数据得Δm m =13.。
气体实验定律

)A D
A . 两次管中气体压强相等
B . T1时管中气体压强小于T2时管中气体压强
C . T1<T2 D . T1>T2
MN A
4.对于一定质量的理想气体,可能发生的过程是 ( C)
A.压强和温度不变,体积变大 B.温度不变,压强减少,体积减少 C.体积不变,温度升高,压强增大, D.压强增大,体积增大,温度降低
• (1)等容线:一定质量的某种气体在等容变化过
程中,压强p跟热力学温度T的正比关系p-T在直
角坐标系中的图象叫做等容线.
• (2)一定质量气体的等容线p-T图象,其延长线
经过坐标原点,斜率反映体积大小,如图所示.
• (3)一定质量气体的等容线的物理意义.
• ①图线上每一个点表示气体一个确定的状 态,同一根等容线上各状态的体积相
一、等容过程
• 1.等容过程:气体在体积不变 的情况下发生的状态变化过程叫 做等容过程.
• 2.一定质量气体的等容变化
演示:
• 如图所示,研究瓶中一 定质量的气体,先使U 型管中两侧水银液面等 高,在左侧液面处标上 标记P,然后改变瓶内 气体温度(可分别放入 热水和冰水中),上下 移动A管,使左侧水银 面保持在P处(即使瓶 中气体体积不变).
• 3.盖·吕萨克定律:一定质量的某种气 体, 在压强不变的情况下,体积V与热力学温度成 正比( V T ).
可写成 V1 V2 或 V C
T1 T2
T
(1)盖·吕萨克定律是实验定律,由法国科学家 盖·吕萨克通过实验发现的.
(2)成立条件:气体质量一定,压强不变.
• (3)在 V/t=C 中的C与气体的种类、质量、压 强有关.
• (2)一定质量气体的等压线的V-T图象,其
35 热力学定律与能量守恒定律、气体实验定律的综合应用(解析版)

热力学定律与能量守恒定律、气体实验定律的综合应用一热力学第一定律与能量守恒定律1.热力学第一定律不仅反映了做功和热传递这两种改变内能的过程是等效的,而且给出了内能的变化量和做功与热传递之间的定量关系.此定律是标量式,应用时功、内能、热量的单位应统一为国际单位焦耳.2.三种特殊情况(1)若过程是绝热的,即Q=0,则W=ΔU,外界对物体做的功等于物体内能的增加量;(2)若过程中不做功,即W=0,则Q=ΔU,物体吸收的热量等于物体内能的增加量;(3)若过程的初、末状态物体的内能不变,即ΔU=0,则W+Q=0或W=-Q,外界对物体做的功等于物体放出的热量.3.改变内能的两种方式的比较4.温度、内能、热量、功的比较【例1】如图,用隔板将一绝热汽缸分成两部分,隔板左侧充有理想气体,隔板右侧与绝热活塞之间是真空.现将隔板抽开,气体会自发扩散至整个汽缸.待气体达到稳定后,缓慢推压活塞,将气体压回到原来的体积.假设整个系统不漏气.下列说法正确的是()A.气体自发扩散前后内能相同B.气体在被压缩的过程中内能增大C.在自发扩散过程中,气体对外界做功D.气体在被压缩的过程中,外界对气体做功E.气体在被压缩的过程中,气体分子的平均动能不变【答案】ABD【解析】气体向真空扩散过程中不对外做功,且又因为汽缸绝热,可知气体自发扩散前后内能相同,选项A正确,C错误;气体在被压缩的过程中活塞对气体做功,因汽缸绝热,则气体内能增大,选项B、D 正确;气体在被压缩的过程中,因气体内能增加,则温度升高,气体分子的平均动能增加,选项E错误.【变式1】.关于热力学定律,下列说法正确的是()A.气体吸热后温度一定升高B.对气体做功可以改变其内能C.理想气体等压膨胀过程一定放热D.热量不可能自发地从低温物体传到高温物体E.如果两个系统分别与状态确定的第三个系统达到热平衡,那么这两个系统彼此之间也必定达到热平衡【答案】BDE.【解析】根据热力学第一定律,气体吸热的同时若对外做功,则内能不一定增大,温度不一定升高,选项A 错误;对气体做功可以改变其内能,选项B正确;理想气体等压膨胀过程,对外做功,由理想气体状态方程可知,气体温度升高,内能增大,故气体一定吸热,选项C错误;根据热力学第二定律,热量不可能自发地从低温物体传到高温物体,选项D正确;根据热平衡定律,如果两个系统分别与状态确定的第三个系统达到热平衡,那么这两个系统彼此之间也必定达到热平衡,选项E正确.【变式2】关于内能的概念,下列说法中正确的是()A.若把氢气和氧气看作理想气体,则具有相同体积、相同质量和相同温度的氢气和氧气具有的内能不相等B.一定质量0 ℃水的分子势能比0 ℃冰的分子势能大C.物体吸收热量后,内能一定增加D.一定质量的100 ℃的水吸收热量后变成100 ℃的水蒸气,则吸收的热量大于增加的内能E.做功和热传递是不等价的【答案】ABD【解析】具有相同体积、相同质量和相同温度的氢气和氧气,分子平均动能相等,氢气分子数较多,内能较大,所以具有相同体积、相同质量和相同温度的氢气和氧气具有的内能不相等,选项A正确;一定质量0 ℃水和0 ℃冰的温度相同,分子平均动能相同,由于0 ℃的冰需要吸收热量才能融化为0 ℃的水,温度不变,分子平均动能不变,根据能量守恒定律,一定质量0 ℃水的分子势能比0 ℃冰的分子势能大,选项B正确;根据热力学第一定律,物体吸收热量后,若对外做功,则内能不一定增加,选项C错误;一定质量的100 ℃的水吸收热量后变成100 ℃的水蒸气,由于体积增大,对外做功,根据热力学第一定律,吸收的热量等于对外做功和增加的内能之和,所以吸收的热量大于增加的内能,选项D正确;在改变内能时,做功和热传递是等价的,选项E错误.二热力学第二定律的理解1.对热力学第二定律关键词的理解在热力学第二定律的表述中,“自发地”“不产生其他影响”的涵义.(1)“自发地”指明了热传递等热力学宏观现象的方向性,不需要借助外界提供能量的帮助.(2)“不产生其他影响”的涵义是发生的热力学宏观过程只在本系统内完成,对周围环境不产生热力学方面的影响.如吸热、放热、做功等.2.热力学第二定律的实质自然界中进行的涉及热现象的宏观过程都具有方向性.如(1)高温物体热量Q能自发传给热量Q不能自发传给低温物体.(2)功能自发地完全转化为不能自发地且不能完全转化为热.(3)气体体积V1能自发地膨胀到不能自发地收缩到气体体积V2(较大).(4)不同气体A和B能自发地混合成不能自发地分离成混合气体AB.3.两类永动机的比较分类第一类永动机第二类永动机设计要求不需要任何动力或燃料,却能不断地对外做功的机器从单一热源吸收热量,使之完全变成功,而不产生其他影响的机器不可能制成的原因违背能量守恒定律不违背能量守恒定律,但违背热力学第二定律【例2】下列关于热现象的描述不正确的是()A.根据热力学定律,热机的效率不可能达到100%B.做功和热传递都是通过能量转化的方式改变系统内能的C.温度是描述热运动的物理量,一个系统与另一个系统达到热平衡时两系统温度相同D.物体由大量分子组成,其单个分子的运动是无规则的,大量分子的运动也是无规则的E.空调机作为制冷机使用时,将热量从温度较低的室内送到温度较高的室外,所以制冷机的工作不遵守热力学第二定律【答案】BDE【解析】.根据热力学第二定律可知,热机不可能从单一热源吸收热量全部用来做功而不引起其他变化,因此,热机的效率不可能达到100%,选项A正确;做功是通过能量转化改变系统的内能,热传递是通过能量的转移改变系统的内能,选项B错误;温度是表示热运动的物理量,热传递过程中达到热平衡时,温度相同,选项C正确;单个分子的运动是无规则的,大量分子的运动表现出统计规律,选项D错误;由热力学第二定律知,热量不可能从低温物体传到高温物体而不产生其他影响,空调机作为制冷机使用时,消耗电能,将热量从温度较低的室内送到温度较高的室外,选项E错误.【变式1】关于热力学定律,下列说法正确的是()A.为了增加物体的内能,必须对物体做功或向它传递热量B.对某物体做功,必定会使该物体的内能增加C.可以从单一热源吸收热量,使之完全变为功D.不可能使热量从低温物体传向高温物体E.功转变为热的实际宏观过程是不可逆过程【答案】ACE【解析】内能的改变可以通过做功或热传递进行,故A对;对某物体做功,若物体向外放热,则物体的内能不一定增加,B错;在引起其他变化的情况下,从单一热源吸收热量可以将其全部变为功,C对;在引起其他变化的情况下,可以将热量从低温物体传向高温物体,D错;涉及热现象的宏观过程都具有方向性,故E对.【变式2】.下列说法正确的是()A.压缩气体总能使气体的温度升高B.能量耗散过程中能量是守恒的C.第一类永动机不可能制成,是因为违背了能量守恒定律D.第二类永动机不违背能量守恒定律,但违背了热力学第一定律E.能量耗散过程从能量转化的角度反映了自然界中的宏观过程具有方向性【答案】BCE【解析】内能的变化取决于做功和热传递两个方面,压缩气体并不一定能使气体温度升高,选项A错误;由能量守恒定律可知,选项B正确;第一类永动机是指不消耗能量却可以不断向外做功的机器,违背了能量守恒定律,选项C正确;第二类永动机不违背能量守恒定律,但违背了热力学第二定律,选项D错误;由热力学第二定律可知,选项E正确.三封闭气体多过程的问题多过程问题的处理技巧研究对象(一定质量的气体)发生了多种不同性质的变化,表现出“多过程”现象.对于“多过程”现象,则要确定每个有效的“子过程”及其性质,选用合适的实验定律,并充分应用各“子过程”间的有效关联.解答时,特别注意变化过程可能的“临界点”,找出临界点对应的状态参量,在“临界点”的前、后可以形成不同的“子过程”.汽缸封闭气体问题【例3】(2018·高考全国卷Ⅱ)如图,一竖直放置的汽缸上端开口,汽缸壁内有卡口a和b,a、b间距为h,a 距缸底的高度为H;活塞只能在a、b间移动,其下方密封有一定质量的理想气体.已知活塞质量为m,面积为S,厚度可忽略;活塞和汽缸壁均绝热,不计它们之间的摩擦.开始时活塞处于静止状态,上、下方气体压强均为p0,温度均为T0.现用电热丝缓慢加热汽缸中的气体,直至活塞刚好到达b处.求此时汽缸内气体的温度以及在此过程中气体对外所做的功.重力加速度大小为g.【答案】(1+hH)(1+mgp0S)T0(p0S+mg)h【解析】开始时活塞位于a处,加热后,汽缸中的气体先经历等容过程,直至活塞开始运动.设此时汽缸中气体的温度为T1,压强为p1,根据查理定律有p0 T0=p1 T1①根据力的平衡条件有p1S=p0S+mg②联立①②式可得T1=(1+mgp0S)T0③此后,汽缸中的气体经历等压过程,直至活塞刚好到达b处,设此时汽缸中气体的温度为T2;活塞位于a 处和b处时气体的体积分别为V1和V2.根据盖—吕萨克定律有V1 T1=V2 T2④式中V1=SH⑤V2=S(H+h)⑥联立③④⑤⑥式解得T2=(1+hH)(1+mgp0S)T0⑦从开始加热到活塞到达b处的过程中,汽缸中的气体对外做的功为W=(p0S+mg)h⑧【变式】.(2019·河南南阳一中模拟)如图所示,两个壁厚可忽略的导热良好的圆柱形金属筒A和B套在一起,底部到顶部的高度为20 cm,两者横截面积相等,光滑接触且不漏气.将A系于天花板上,用手托住B,使它们内部密封的气体强与外界大气压相同,均为1.1×105 Pa,然后缓慢松手,让B下沉,当B下沉了2 cm 时,停止下沉并处于静止状态.求:(1)此时金属筒内气体的压强;(2)若当时的温度为24 ℃,欲使下沉后的套筒恢复到下沉前的位置,应将温度变为几摄氏度? 【答案】(1)1.0×105 Pa (2)-3 ℃【解析】(1)设金属筒横截面积为S cm 2,p 1=1.1×105 Pa ,V 1=20S cm 3,V 2=22S cm 3 根据玻意耳定律,p 1V 1= p 2V 2,p 2=p 1V 1V 2=1.1×105×20S22SPa =1.0×105 Pa(2)V 2=22S cm 3,T 2=297 K ,V 3=20S cm 3,根据盖—吕萨克定律得到,V 2T 2=V 3T 3,T 3=V 3T 2V 2 =20S ×29722S K =270K ,t =(270-273)℃=-3 ℃. 活塞封闭气体问题【例4】如图所示为一竖直放置的导热性能良好的玻璃管,玻璃管下端封闭,上端开口.现在管口下方某位 置放一密封性良好质量和厚度均可忽略不计的薄板,封闭一定质量的理想气体,此时封闭气体的温度为T 0, 封闭气柱长度为l 0=10 cm.现在薄板上放置3个质量为m 的物体,系统平衡时,封闭气柱的长度变为l 1=5 cm , 现使封闭气体的温度缓慢升高60 ℃,系统再次平衡时封闭气柱的长度为l 2=6 cm ;然后取走2个质量为m 的物体,再次使封闭气体的温度缓慢升高40 ℃,系统第三次平衡时,封闭气柱的长度为l 3.(已知上述过程 中薄板没有离开玻璃管)求:(1)开始时封闭气体的温度t 应为多少?(2)系统第三次平衡时,封闭气柱的长度l 3为多少?【答案】 (1)27 ℃ (2)10 cm【解析】 (1)气体初始状态:体积为V 0=l 0S ,压强为p 0,温度为T 0 将质量为3m 的物体放在薄板上,则体积V 1=l 1S ,温度T 1=T 0 压强为:p 1=p 0+3mgS气体经等温变化,得:p 0V 0=p 1V 1 则p 1=2p 0由以上各式解得p 0=3mgS当气体温度升高60 ℃时,温度为:T 2=T 0+60 K ,体积为:V 2=l 2S 由于该过程为等压变化,则:V 1T 1=V 2T 2代入数据解得:T 0=300 K 则t =(300-273) ℃=27 ℃(2)取走质量为2m 的物体,继续加热使气体的温度再升高40 ℃后,最终气柱的高度为l 3,体积V 3=l 3S ,压强p 3=p 0+mg S =43p 0,温度T 3=400 K则由理想气体状态方程有p 0V 0T 0=p 3V 3T 3代入数据解得:l 3=10 cm.【变式】(2019·宁夏五中联考)一足够高的内壁光滑的导热汽缸竖直地浸放在盛有冰水混合物的水槽中,用 不计质量的活塞封闭了一定质量的理想气体,活塞的面积为1.5×10-3 m 2,如图所示,开始时气体的体积为 3.0×10-3 m 3,现缓慢地在活塞上倒上一定质量的细沙,最后活塞静止时气体的体积恰好变为原来的三分之 一.设大气压强为1.0×105 Pa.重力加速度g 取10 m/s 2,求:(1)最后汽缸内气体的压强为多少?(2)最终倒在活塞上细沙的总质量为多少千克?【答案】(1)3.0×105 Pa (2)30 kg【解析】(1)汽缸内气体的温度保持不变,根据玻意耳定律可知p 1V 1=p 2V 2 代入数据解得p 2=p 1V 1V 2=3.0×105 Pa ;(2)活塞受力分析如图所示根据力的平衡条件:p 2S =p 0S +mg ,代入数据解得:m =p 2-p 0Sg=30 kg. 四 关联气体的状态变化问题 多系统问题的处理技巧多个系统相互联系的一定质量气体问题,往往以压强建立起系统间的关系,各系统独立进行状态分析,要确定每个研究对象的变化性质,分别应用相应的实验定律,并充分应用各研究对象之间的压强、体积、温度等量的有效关联.若活塞可自由移动,一般要根据活塞平衡确定两部分气体的压强关系. 活塞封闭气体的问题【例5】(2018·高考全国卷Ⅱ)如图,容积为V 的汽缸由导热材料制成,面积为S 的活塞将汽缸分成容积相等 的上下两部分,汽缸上部通过细管与装有某种液体的容器相连,细管上有一阀门K.开始时,K 关闭,汽缸 内上下两部分气体的压强均为p 0.现将K 打开,容器内的液体缓慢地流入汽缸,当流入的液体体积为V8时,将K 关闭,活塞平衡时其下方气体的体积减小了V6.不计活塞的质量和体积,外界温度保持不变,重力加速度大小为g .求流入汽缸内液体的质量.【答案】 15p 0S26g【解析】设活塞再次平衡后,活塞上方气体的体积为V 1,压强为p 1;下方气体的体积为V 2,压强为p 2.在活塞下移的过程中,活塞上、下方气体的温度均保持不变,由玻意耳定律得 p 0V2=p 1V 1① p 0V2=p 2V 2② 由已知条件得 V 1=V 2+V 6-V 8=1324V ③V 2=V 2-V 6=V 3④设活塞上方液体的质量为m ,由力的平衡条件得 p 2S =p 1S +mg ⑤联立以上各式得m =15p 0S26g ⑥水银柱封闭气体的问题【例6】(2018·高考全国卷Ⅱ )在两端封闭、粗细均匀的U 形细玻璃管内有一段水银柱,水银柱的两端各封 闭有一段空气.当U 形管两端竖直朝上时,左、右两边空气柱的长度分别为l 1=18.0 cm 和l 2=12.0 cm ,左 边气体的压强为12.0 cmHg.现将U 形管缓慢平放在水平桌面上,没有气体从管的一边通过水银逸入另一 边.求U 形管平放时两边空气柱的长度.在整个过程中,气体温度不变.【答案】22.5 cm 7.5 cm【解析】设U 形管两端竖直朝上时,左、右两边气体的压强分别为p 1和p 2.U 形管水平放置时,两边气体 压强相等,设为p .此时原左、右两边气柱长度分别变为l 1′和l 2′.由力的平衡条件有p 1=p 2+ρg (l 1-l 2)①式中ρ为水银密度,g 为重力加速度大小.由玻意耳定律有p 1l 1=pl 1′②p 2l 2=pl 2′③两边气柱长度的变化量大小相等l 1′-l 1=l 2-l 2′④由①②③④式和题给条件得l 1′=22.5 cm ⑤l 2′=7.5 cm ⑥五 变质量问题分析气体变质量问题时,可以通过巧妙地选择合适的研究对象,使变质量问题转化为气体质量一定的问题,然后利用理想气体状态方程求解. 充气问题设想将充进容器内的气体用一个无形的弹性口袋收集起来,那么,当我们取容器和口袋内的全部气体为研究对象时,这些气体的状态不管怎样变化,其质量总是不变的,这样我们就将变质量的问题转化成质量一定的问题了.【例7】一个篮球的容积是2.5 L ,用打气筒给篮球打气时,每次把105 Pa 的空气打进去125 cm 3. 如果在打气前篮球内的空气压强也是105 Pa ,那么打30次以后篮球内的空气压强是多少?(设打气过程中气体温度不变)【答案】 2.5×105 Pa【解析】 设V 2为篮球的容积,V 1为30次所充空气的体积及篮球的容积之和,则V 1=V 2+n ΔV =2.5 L +30×0.125 L =6.25 L由于整个过程中空气质量不变,温度不变,可用玻意耳定律求解,即有p 1V 1=p 2V 2解得p 2=p 1V 1V 2=105×6.252.5Pa =2.5×105 Pa. 抽气问题在用抽气筒对容器抽气的过程中,对每一次抽气而言,气体质量发生变化,解决该类变质量问题的方法与充气问题类似:假设把每次抽出的气体包含在气体变化的始末状态中,即用等效法把变质量问题转化为恒定质量的问题.【例8】用容积为ΔV 的活塞式抽气机对容积为V 0的容器中的气体抽气,如图所示.设容器中原来的气体压强为p 0,抽气过程中气体温度不变.求抽气机的活塞抽气n 次后,容器中剩余气体的压强p n 为多少?【答案】 (V 0V 0+ΔV )n p 0【解析】 当活塞下压时,阀门a 关闭,b 打开,抽气机汽缸中ΔV 体积的气体排出,容器中气体压强降为p 1.活塞第二次上提(即抽第二次气),容器中气体压强降为p 2,根据玻意耳定律,对于第一次抽气,有p 0V 0=p 1(V 0+ΔV ),解得p 1=V 0V 0+ΔV p 0,对于第二次抽气,有p 1V 0=p 2(V 0+ΔV ),解得p 2=(V 0V 0+ΔV )2p 0,以此类推,第n 次抽气后容器中气体压强降为p n =(V 0V 0+ΔV )n p 0. 灌气问题将一个大容器里的气体分装到多个小容器中的问题也是一种典型的变质量问题,分析这类问题时,可以把大容器中的气体和多个小容器中的气体作为一个整体来进行研究,即可将变质量问题转化为质量一定的问题.【例9】某容积为20 L 的氧气瓶装有30 atm 的氧气,现把氧气分装到容积为5 L 的小钢瓶中,使每个小钢瓶中氧气的压强为5 atm ,若每个小钢瓶中原有氧气压强为1 atm ,问能分装多少瓶?(设分装过程中无漏气,且温度不变)【答案】 25【解析】 设最多能分装n 个小钢瓶,并选取氧气瓶中的氧气和n 个小钢瓶中的氧气整体为研究对象.因为分装过程中温度不变,故遵循玻意耳定律.分装前整体的状态:p 1=30 atm ,V 1=20 L ;p 2=1 atm ,V 2=5n L.分装后整体的状态:p 1′=5 atm ,V 1=20 L ;p 2′=5 atm ,V 2=5n L根据玻意耳定律,有p 1V 1+p 2V 2=p 1′V 1+p 2′V 2代入数据解得n =25(瓶).漏气问题容器漏气过程中容器内的气体的质量不断发生变化,属于变质量问题,不能直接用理想气体状态方程求解.如果选容器内原有气体为研究对象,便可使问题变成质量一定的气体状态变化问题,这时可用理想气体状态方程求解.【例10】某个容器的容积是10 L ,所装气体的压强是2.0×106 Pa.如果温度保持不变,把容器的开关打开以后,容器里剩下的气体是原来的百分之几?(设大气压是1.0×105 Pa)【答案】 5%【解析】 以原来气体为研究对象,设原来的气体体积为V 1,膨胀后气体的体积为V 2.如图所示.初状态:p 1=2.0×106 Pa ,V 1=10 L末状态:p 2=1.0×105 Pa ,V 2=?由玻意耳定律得p 1V 1=p 2V 2,解得V 2=p 1V 1p 2=200 L V 1V 2=10200×100%=5%,即容器里剩下的气体是原来的5%. 六 热力学第一定律与图象的综合应用判断理想气体内能变化的两种方法(1)一定质量的理想气体,内能的变化完全由温度变化决定,温度升高,内能增大.(2)若吸、放热和做功情况已知,可由热力学第一定律ΔU =W +Q 来确定.【例11】(2018·高考全国卷Ⅱ)如图,一定质量的理想气体从状态a 开始,经历过程①、②、③、④到达状态e .对此气体,下列说法正确的是 ( )A .过程①中气体的压强逐渐减小B .过程②中气体对外界做正功C .过程④中气体从外界吸收了热量D .状态c 、d 的内能相等E .状态d 的压强比状态b 的压强小【答案】 BDE【解析】 过程①为等容变化,根据查理定律有p a T a =p b T b,因为温度逐渐增加,则气体的压强逐渐增加,故选项A 错误;过程②气体体积增加,则气体对外界做正功,故选项B 正确;过程④中为体积不变,则气体对外界不做功,外界对气体也不做功,即W =0,理想气体的温度降低,则内能减少,即ΔU <0,根据热力学第一定律ΔU =W +Q 可知Q <0,则气体向外界放出了热量,故选项C 错误;状态c 、d 的温度相等,则分子平均动能相等,理想气体没有分子势能,则内能相等,故选项D 正确;连接Ob 、Od ,根据pV T =C 得T V=p C,Ob 斜率大于Od 斜率,则状态d 的压强比状态b 的压强小,故选项E 正确. 【变式】(2018·高考全国卷Ⅱ)如图,一定量的理想气体从状态a 变化到状态b ,其过程如p V 图中从a 到b 的直线所示.在此过程中 ( )A .气体温度一直降低B .气体内能一直增加C .气体一直对外做功D .气体一直从外界吸热E .气体吸收的热量一直全部用于对外做功【答案】BCD【解析】在p V 图中理想气体的等温线是双曲线的一支,而且离坐标轴越远温度越高,故从a 到b 温度升高,A 错;一定质量的理想气体的内能由温度决定,温度越高,内能越大,B 对;气体体积膨胀,对外做功,C 对;根据热力学第一定律ΔU =Q +W ,得Q =ΔU -W ,由于ΔU >0、W <0,故Q >0,气体吸热,D 对;由Q =ΔU -W 可知,气体吸收的热量一部分用来对外做功,一部分用来增加气体的内能,E 错.七 热力学第一定律与气体实验定律的综合应用解决热力学定律与气体实验定律综合问题的思路【例12】(2019·河北保定模拟)一定质量的理想气体,其内能跟温度成正比.在初始状态A 时,体积为V 0,压强为p 0,温度为T 0,已知此时其内能为U 0.该理想气体从状态A 经由一系列变化, 最终还回到原来状态A ,其变化过程的p T 图线如图所示,其中CA 延长线过坐标原点,BA在同一竖直线上.求:(1)状态B 的体积;(2)状态C 的体积;(3)从状态B 经由状态C ,最终回到状态A 的过程中,气体与外界交换的热量是多少?【答案】 (1)V 03(2)V 0 (3)气体吸收热量2p 0V 0 【解析】 (1)由题图可知,从状态A 到状态B 为等温变化过程,状态B 时气体压强为p 1=3p 0,设体积为V 1,由玻意耳定律得p 0V 0=p 1V 1,解得V 1=V 03. (2)由题图可知,从状态B 到状态C 为等压变化过程,状态C 时气体温度为T 2=3T 0,设体积为V 2,由盖-吕萨克定律得V 1T 0=V 2T 2,解得V 2=V 0. (3)由状态B 经状态C 回到状态A ,外界对气体做的总功为W ,从状态B 到状态C ,设外界对气体做功为W BC ,W BC =p 2(V 1-V 2),联立解得W BC =-2p 0V 0;从状态C 回到状态A ,由图线知为等容过程,外界对气体不做功,所以W =W BC =-2p 0V 0;从状态B 经状态C 回到状态A ,内能增加量为U =0,气体从外界吸收的热量为Q ,内能增加量为U ,由热力学第一定律得U =Q +W ,解得Q =2p 0V 0,即气体从外界吸收热量2p 0V 0.【变式】我国“蛟龙”号深海探测船载人下潜超过七千米,再创载人深潜新纪录.在某次深潜实验中,“蛟龙”号探测到990 m 深处的海水温度为280 K .某同学利用该数据来研究气体状态随海水深度的变化.如图所示, 导热良好的汽缸内封闭一定质量的气体,不计活塞的质量和摩擦,汽缸所处海平面的温度T 0=300 K ,压强 p 0=1 atm ,封闭气体的体积V 0=3 m 3,如果将该汽缸下潜至990 m 深处,此过程中封闭气体可视为理想气 体.(1)下潜过程中封闭气体______(填“吸热”或“放热”),传递的热量______(填“大于”或“小于”)外界对气体所做的功.(2)求990 m 深处封闭气体的体积(1 atm 相当于10 m 深的海水产生的压强).【答案】(1)放热 大于 (2)2.8×10-2 m 3【解析】(1)下潜过程中温度降低,则ΔU <0,气体体积减小,则W >0,由ΔU =Q +W 知,Q <0,放热,且|Q |>W .(2)当汽缸下潜至990 m 时,设封闭气体的压强为p ,温度为T ,体积为V ,由题意可知p =100 atm 根据理想气体状态方程得p 0V 0T 0=pV T代入数据得V =2.8×10-2 m 3.【题型演练】1.(2019·四川达州模拟)下列说法正确的是( ) A .布朗运动就是分子的无规则运动B .热力学温度是国际单位制中7个基本物理量之一C .热量能够自发地从高温物体传到低温物体,但不能自发地从低温物体传到高温物体D .做功和热传递都是通过能量转化的方式改变系统内能的E .温度是描述热运动的物理量,一个系统与另一个系统达到热平衡时两系统温度相同【答案】BCE【解析】布朗运动是悬浮在液体或气体中的小颗粒的无规则运动,是由液体分子的无规则运动而引起的,不是固体分子的无规则运动,也不是液体分子的无规则运动,故A 错误;热力学温度是国际单位制中7个基本物理量之一,故B 正确;根据热力学第二定律可知,热量能够自发地从高温物体传到低温物体,但不能自发地从低温物体传到高温物体,故C 正确;做功是通过能量转化的方式改变系统内能的,热传递是能。
气体定律实验报告

气体定律实验报告气体定律实验报告引言:气体是我们生活中不可或缺的一部分,而了解气体的性质和行为对于许多科学领域都至关重要。
气体定律是研究气体行为的基本原理,通过实验来验证这些定律可以帮助我们更好地理解气体的特性。
本实验旨在通过对气体定律的实验验证,探究气体的压强、体积和温度之间的关系。
实验一:气体压强与体积的关系实验目的:通过改变气体的体积,观察气体压强的变化,验证气体定律中的波义尔定律。
实验步骤:1. 将气体收集瓶置于水槽中,保证瓶口完全浸没在水中。
2. 使用滴管向气体收集瓶中注入适量的气体,同时记录下气体收集瓶中的水位。
3. 使用活塞缓慢地压缩或释放气体,每次压缩或释放后记录下气体收集瓶中的水位。
4. 根据实验数据计算气体压强与体积的比值。
实验结果与分析:通过实验观察和数据计算,我们可以得出气体压强与体积成反比的结论。
当压缩气体时,体积减小,压强增大;当释放气体时,体积增大,压强减小。
这符合波义尔定律的预期结果。
实验二:气体压强与温度的关系实验目的:通过改变气体的温度,观察气体压强的变化,验证气体定律中的查理定律。
实验步骤:1. 将气体收集瓶置于恒温水槽中,保持温度恒定。
2. 使用滴管向气体收集瓶中注入适量的气体,同时记录下气体收集瓶中的水位。
3. 将气体收集瓶放入不同温度的水槽中,记录下气体收集瓶中的水位。
4. 根据实验数据计算气体压强与温度的比值。
实验结果与分析:通过实验观察和数据计算,我们可以得出气体压强与温度成正比的结论。
当温度升高时,气体分子的平均动能增加,撞击容器壁的频率增加,从而导致压强的增加。
这符合查理定律的预期结果。
实验三:气体体积与温度的关系实验目的:通过改变气体的温度,观察气体体积的变化,验证气体定律中的盖-吕萨克定律。
实验步骤:1. 将气体收集瓶置于恒温水槽中,保持温度恒定。
2. 使用滴管向气体收集瓶中注入适量的气体,同时记录下气体收集瓶中的水位。
3. 将气体收集瓶放入不同温度的水槽中,记录下气体收集瓶中的水位。
气体实验定律

气体实验定律一、气体实验定律1.玻意耳定律(1)内容: 一定质量的气体, 在温度不变的情况下, 它的压强跟体积成反比;或者说压强跟体积的乘积是不变的。
玻意耳定律是实验定律, 不论什么气体, 只要符合压强不太大(和大气压比较)、温度不太低(和室温比较)的条件, 都近似地符合这个定律。
(2)数学表达式: p1V1=p2V2或pV=恒量(3)等温线(P-V图像如图):2.查理定律(1)内容: 体积不变时, 一定质量气体的压强与热力学温度成正比。
查理定律是个实验定律。
不论什么气体, 只要符合压强不太大(和大气压比较)、温度不太低(和室温比较)的条件, 都近似地符合这个定律。
(2)数学表达式:(3)等容线(P-T图像):2.盖·吕萨克定律(1)内容: 压强不变时, 一定质量气体的体积与热力学温度成正比。
盖·吕萨克定律是个实验定律。
不论什么气体, 只要符合压强不太大(和大气压比较)、温度不太低(和室温比较)的条件, 都近似地符合这个定律。
(2)数学表达式:(3)等压线(V-T图像):【典型例题】例 1.一个气泡从水底升到水面时, 它的体积增大为原来的3倍, 设水的密度为ρ=1×103kg/m3, 大气压强p0=1.01×105Pa, 水底与水面的温度差不计, 求水的深度. 取g=10m/s2.例2.要求瓶内氢气在500℃时的压强不超过1atm, 则在20℃下对瓶子充气时, 瓶内压强最多为多少?瓶子的热膨胀不计.例 3.内壁光滑的导热气缸竖直浸放在盛有冰水混合物的水槽中, 用不计质量的活塞封闭压强为1.0×l05Pa、体积为2.0×l0-3m3的理想气体. 现在活塞上方缓缓倒上沙子, 使封闭气体的体积变为原来的一半, 然后将气缸移出水槽, 缓慢加热, 使气体温度变为127℃.(1)求气缸内气体的最终体积;(2)在p-V图上画出整个过程中气缸内气体的状态变化. (大气压强为1.0×l05Pa)【反馈练习】1.两个半球壳拼成的球形容器内部已抽成真空, 球形容器的半径为R, 大气压强为p, 使两个半球壳沿图中箭头方向互相分离, 应施加的力F至少为[]A.4πR2pB.2πR2pC.πR2pD.πR2p2、一个气泡从水面下40m深处升到水面上, 假定水的温度一定, 大气压强为76cmHg, 则气泡升到水面时的体积约为原来的[]A.3倍B.4倍C.5倍D.5.5倍3、密闭容器中装有某种理想气体, 当温度从t1=50℃升到t2=100℃时, 气体的压强从p1变化到p2, 则[]A.p2/p1=2B.p2/p1=1/2C.p2/p1=1D.1<p2/p1<24、一定质量的气体, 处于平衡状态I, 现设法使其温度降低而压强增大, 达到平衡状态II, 则[ ]A.状态I时气体的密度比状态II时的大B.状态I时分子的平均动能比状态lI时的入C.状态I时分子间的平均距离比状态II时的大D.状态I时每个分子的动能都比状态II时的分子的平均动能大5、竖直的玻璃管, 封闭端在上, 开口端在下, 中间有一段水银, 若把玻璃管稍倾斜一些, 但保持温度不变, 则:[ ]A.封闭在管内的气体压强增大B、封闭在管内的气体体积增大C.封闭在管内的气体体积减小D.封闭在管内的气体体积不变6.如图所示, 两端开口的U形玻璃管中, 左右两侧各有一段水银柱, 水银部分封闭着一段空气, 己知右侧水银还有一段水平部分, 则:(1)若向右侧管中再滴入少许水银, 封闭气体的压强将.(2)若向左侧管中再滴入少许水银, 封闭气体的压强将, 右侧水银的水平部分长度变7、(1)下图中甲、乙均匀玻璃管中被水银封闭的气体压强分别为P1.P2.P3, 己知大气压为76cmHg, hl=2cm, h2=3cm, 求P1、P2、P3各为多少?(2)如图设气缸的质量为M, 横截面为S, 活塞的质量为m, 当气缸搁于地上时, 里面气体的压强为____. 当通过活塞手柄提起气缸时, 被封闭的气体的压强为____. (已知大气压强为p0)8、盛有氧气的钢瓶, 在室内(17℃)测得瓶内氧气的压强是9.31×106Pa当把钢瓶搬到温度是-13℃的室外时, 测得瓶内氧气的压强变为8.15×106Pa. 试问钢瓶是否漏气?为什么?9、如图所示, 截面积S=0.01m2的气缸内有一定质量的气体被光滑活塞封闭. 已知外界大气压p0=105Pa, 活塞重G=100N. 现将气缸倒过来竖直放置, 设温度保持不变, 气缸足够长. 求气缸倒转后气体的体积是倒转前的几倍?10、如图所示, 一端封闭横截面积均为S、长为b的细管弯成L形, 放在大气中, 管的竖直部分长度为a, 大气压强为P0, 现在开口端轻轻塞上质量为m, 横截面积也为S的小活塞。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年高考物理100考点最新模拟题千题精练(物理实验)第三部分热学,机械振动和光学实验专题3.2 气体实验定律实验1.(2020年4月北京西城模拟)某同学用如图所示装置探究气体做等温变化的规律。
(1)在实验中,下列哪些操作不是必需的。
A.用橡胶塞密封注射器的下端B.用游标卡尺测量柱塞的直径C.读取压力表上显示的气压值D.读取刻度尺上显示的空气柱长度(2)实验装置用铁架台固定,而不是用手握住玻璃管(或注射器),并且在实验中要缓慢推动活塞,这些要求的目的是。
(3)下列图像中,最能反映气体做等温变化的规律的是。
【参考答案】(1)B (2)防止玻璃管内的空气温度升高(或保持玻璃管内的空气温度不变)(3)C 【名师解析】(1)由于玻璃管粗细均匀,因此用游标卡尺测量柱塞的直径的操作不需要,选择B。
(2)不是 用手握住玻璃管(或注射器),并且在实验中要缓慢推动活塞,这些要求的目的是防止玻璃管内的空气温度升高(或保持玻璃管内的空气温度不变)。
(3)根据气体等温变化,压强与体积成反比可知最能反映气体做等温变化的规律的是图像C 。
2. (2020年6月北京海淀二模)(6分)如图12所示,用气体压强传感器探究气体等温变化的规律,操作步骤如下:① 在注射器内用活塞封闭一定质量的气体,将注射器、压强传感器、数据采集器和计算机逐一连接起来;② 移动活塞至某一位置,记录此时注射器内封闭气体的体积V 1和由计算机显示的气体压强值p 1; ③ 重复上述步骤②,多次测量并记录;④ 根据记录的数据,作出相应图象,分析得出结论。
(1)关于本实验的基本要求,下列说法中正确的是 (选填选项前的字母)。
A .移动活塞时应缓慢一些 B .封闭气体的注射器应密封良好 C .必须测出注射器内封闭气体的质量 D .气体的压强和体积必须用国际单位(2)为了能最直观地判断气体压强p 与气体体积V 的函数关系,应作出 (选填“p - V ”或“1p V-”)图象。
对图线进行分析,如果在误差允许范围内该图线是一条 线,就说明一定质量的气体在温度不变时,其压强与体积成反比。
(3)在不同温度环境下,另一位同学重复了上述实验,实验操作和数据处理均正确。
环境温度分别为T 1、T 2,且T 1>T 2。
在如图13所示的四幅图中,可能正确反映相关物理量之间关系的是______(选填选项的字母)。
【参考答案】(6分)(1)AB (2分,选对但选不全的得1分) (2)1p V-,过原点的斜直(或正比例函数直) (2分) (3)AC (2分,选对但选不全的得1分)【名师解析】(1)用气体压强传感器探究气体等温变化的规律,移动活塞时应缓慢一些,以保持气体图12图13B1VC1VDA温度不变,封闭气体的注射器应密封良好,以保持气体质量不变,选项AB 正确;不需要测出注射器内封闭气体的质量,由于气体的压强和体积成反比关系,所以只要单位相同即可,选项CD 错误。
(2)由于气体的压强和体积成反比关系,为了能最直观地判断气体压强p 与气体体积V 的函数关系,应作出 “1p V-”图象。
对图线进行分析,如果在误差允许范围内该图线是一条过原点的斜直线,就说明一定质量的气体在温度不变时,其压强与体积成反比。
(3)环境温度分别为T 1、T 2,且T 1>T 2。
可能正确反映相关物理量之间关系的p - V 图像是A ;由pV/T=C ,可知“1p V-”图象的斜率与热力学温度T 成正比,所以可能正确反映相关物理量之间关系的p – 1/V 图像是C 。
3.(10分)(2020上海宝山期末)在“用DIS 研究温度不变时,一定质量的气体压强与体积的关系”的实验中: (1)所需的实验器材有:注射器、计算机、__________和 __________。
实验中移动活塞要缓慢,这是为了_____________________。
(2)某同学将注射器活塞置于中间刻度处,然后将注射器连接压强传感器并开始实验,气体体积V 每减小2ml 测一次压强p ,实验数据记录在下表中:观察表中p 和V 的乘积pV ,发现随着气体体积的减小,pV 逐渐__________,造成这个结果的可能原因有:___________________________________________________。
(3)若实验时不小心在注射器中混有异物,而在输入体积值时未考虑这个因素,则实验结果的p -V 图线可能为( )(图中实线是实验所得图线,虚线是考虑异物体积后得到的一根双曲线)。
(A )pO(B )pO(C )pO(D )pO【参考答案】(1)数据采集器(1分);压强传感器(1分);保持气体的温度不变(2分)(2)减小(2分);输入气体体积时未加上注射器与压强传感器连接部位的气体体积或实验时注射器内的气体向外发生了泄漏。
(每说对1一种可能性得1分,共2分)(3)A(2分)【名师解析】(1)所需的实验器材有:注射器、计算机、数据采集器和压强传感器。
实验中移动活塞要缓慢,这是为了保持气体的温度不变。
(2)观察表中p和V的乘积pV,发现随着气体体积的减小,pV逐渐减小,造成这个结果的可能原因有:输入气体体积时未加上注射器与压强传感器连接部位的气体体积或实验时注射器内的气体向外发生了泄漏。
(3)若实验时不小心在注射器中混有异物,而在输入体积值时未考虑这个因素,则实验结果的p-V图线可能为图A。
4.(10分)(2020上海崇明一模)“用DIS研究在温度不变时,一定质量气体压强与体积关系”的实验装置如图所示。
(1)保持温度不变,封闭气体的压强p用传感器测量,体积V由读出。
实验前是否需要对传感器进行调零?(选填:“是”或“否”)(2)(单选)某次实验中,数据表格内第2次~第8次压强没有点击记录,但其它操作规范。
根据表格中第1次和第9次数据,推测出第7次的压强p7,其最接近的值是次数 1 2 3 4 5 6 7 8 9压强p/kPa 100.1 p7179.9体积V/cm318 17 16 15 14 13 12 11 10 A.128.5kPa B.138.4kPa C.149.9kPa D.163.7kPa(3)(单选)若考虑到连接注射器与传感器的软管内气体体积V0不可忽略,则封闭气体的真实体积为。
从理论上讲p﹣图象可能接近下列哪个图?【思路分析】(1)由实验原理,结合实物图,即可判定;(2)根据一定质量气体,等温变化下,压强与体积的乘积不变,即可求解;(3)在软管内气体体积△V不可忽略时,分别分析两个状态下的状态参量,根据等温变化可列出方程,利用极值法即可得知所要的结果。
【名师解析】(1)根据实验原理,结合实验设计,在保持温度不变情况,用压强传感器测量气体的压强;用注射器刻度来读作,气体的体积,记作V;压强传感器需要校准,不需要调零。
(2)根据玻意耳定律,一定质量气体,压强与体积成反比;而实验数据,第1次和第9次数据,它们的压强与体积乘积,也正好近似相等,因此第7次的压强p7=kPa=150kPa,故C正确;(3)在软管内气体体积△V不可忽略时,被封闭气体的初状态的体积为V0+△V,压强为P0,末状态的体积为V+△V,压强为P,由等温变化有:P0(V0+V)=P(V0+V′)解得:P=P0()当式中的V趋向于零时,有:P=P0()即该双曲线的渐近线方程是:P=P0(),故D正确,ABC错误;【参考答案】(1)压强;注射器刻度;否;(2)C;(3)V0+V;D。
【关键点拨】学习中要注意掌握气体的状态方程,熟悉应用状态方程解答问题的一般步骤及注意事项,解答问题时,首先要确定气体的状体,分析状态参量,选取合适的方程进行解答。
在涉及到的实验中,要明确实验的要求和注意事项,像该试验,为了保证气体的温度不发生变化,就应注意两点,一是不能用手握住注射器的前端,二是推拉活塞时要缓慢。
5.(2020上海青浦模拟)(10分)为了测量所采集的某种植物种子的密度,一位同学进行了如下实验:(1)取适量的种子,用天平测出其质量,然后将几粒种子装入注射器内;(2)将注射器和压强传感器相连,然后缓慢推动活塞至某一位置,记录活塞所在位置的刻度V,压强传感器自动记录此时气体的压强p;(3)重复上述步骤,分别记录活塞在其它位置的刻度V和记录相应的气体的压强p;(4)根据记录的数据,作出﹣V图线,并推算出种子的密度。
(1)根据图线,可求得种子的总体积约为 5.6 (±0.2)ml(即cm3)。
(2)如果测得这些种子的质量为7.86×10﹣3kg,则种子的密度为 1.40×103(±0.2×103)kg/m3。
(3)如果在上述实验过程中,由于操作不规范,使注射器内气体的温度升高,其错误的操作可能是手握住了注射器内的封闭气体部分、没有缓慢推动活塞。
这样操作会造成所测种子的密度值偏小(选填“偏大”、“偏小”或“不变”)。
【思路分析】(1)注射器中的气体发生的是等温变化,根据玻意耳定律,PV=C,所以气体体积趋向于0时,P趋向于无穷大。
从﹣V图象知,横轴截距表示种子的体积;(2)根据密度公式求出密度;(3)当气体温度升高,气体的体积趋于膨胀,更难被压缩,所作的﹣V图线与横轴的交点将向右平移,V V0 1/p 0 1/p图(a ) 图(b )所测种子体积偏大,密度偏小。
【名师解析】(1)根据玻意耳定律,PV =C ,当趋向于0,则气体体积趋向于0,从﹣V 图象知,横轴截距表示种子的体积为:5.6 (±0.2)ml 。
(2)密度为:ρ===1.40×103kg/m 3ρ=1.40×103(±0.2×103)kg/m 3(3)注射器内气体的温度升高,其错误的操作可能是:手握住了注射器内的封闭气体部分、没有缓慢推动活塞;当气体温度升高,气体的体积趋于膨胀,更难被压缩,所作的﹣V 图线与横轴的交点将向右平移,所测种子体积偏大,密度偏小。
【参考答案】:(1)5.6 (±0.2);(2)1.40×103(±0.2×103);(3)手握住了注射器内的封闭气体部分;没有缓慢推动活塞;偏小。
【点评】解决本题的关键是掌握图象截距的含义,如在此图中,横轴截距就表示种子的体积。
6.(10分)(2020上海长宁区质检)“用DIS 研究在温度不变时,一定质量的气体压强与体积的关系”实验中,实验装置如右图。
(1)保持温度不变,封闭气体的压强p 用____________测量,其体积V 由________读出。
(2)小红按实验步骤开始实验,但最后得到p 和V 的乘积逐渐增大。
①由此可推断,她的实验结果可能为下图__________。