分离工程名词解释
化工分离工程01

化工分离工程 011. 引言化工分离工程是化工领域的重要分支之一,它涉及到物质的分离、净化和纯化等工艺过程。
本文将介绍化工分离工程的基本概念、分类、应用领域、工艺流程以及一些常用的分离技术。
2. 分离工程的基本概念分离工程是指根据物质的物理性质、化学性质或者两者的组合,将混合物中的组分进行分离的过程。
分离工程的基本任务是提高混合物中目标组分的纯度,并且尽可能地提高分离效率。
3. 分离工程的分类分离工程可以按照不同的分类标准来进行分类。
根据物质的性质,分离工程可以分为物理分离和化学分离两大类。
物理分离是根据物质的物理性质进行分离,包括蒸馏、吸附、萃取等技术;化学分离是根据物质的化学性质进行分离,如化学反应、化学析出等技术。
4. 分离工程的应用领域4.1 化工生产中的应用化工分离工程在化工生产中起着至关重要的作用。
通过分离工程,可以将原材料中的有用组分与杂质分离开来,从而提高产品的质量和产量。
例如,在石油炼制过程中,通过蒸馏工艺可以将原油中的轻质烃类和重质烃类分离出来,得到汽油、柴油等产品。
4.2 环境保护中的应用分离工程也广泛应用于环境保护领域。
例如,在废水处理过程中,可以通过吸附、离子交换等分离技术,将废水中的污染物与清水进行分离,从而净化废水,保护环境。
4.3 生物医药领域的应用化工分离工程在生物医药领域也有广泛的应用。
例如,在药物研发过程中,可以通过分离工程将混合物中的有效药物分离出来,提高药物的纯度和活性,从而提高药物的疗效。
5. 分离工程的工艺流程分离工程一般包括前处理、主分离和后处理等环节。
前处理是指对混合物进行预处理,如去除杂质、调整溶剂比例等;主分离是指将混合物中的目标组分与杂质分离开来;后处理是指对分离后的产物进行处理,如晶体过滤、溶剂回收等。
不同的分离工程可以采用不同的工艺流程,具体的流程可以根据混合物的特性和目标要求进行设计。
6. 常用的分离技术6.1 蒸馏蒸馏是一种基于组分的挥发性差异进行分离的技术。
分离工程知识点总结

分离工程知识点总结一、分离工程概述1.1 分离工程的定义分离工程是指利用特定的设备和工艺将混合物中的不同组分分离出来,以实现材料的纯化、浓缩或者提取等目的的工程过程。
分离工程广泛应用于化工、制药、食品等行业中,是一项重要的工业过程。
1.2 分离工程的分类根据不同的分离原理和分离过程,分离工程可以分为物理分离和化学分离两大类。
物理分离包括过滤、离心、蒸馏、结晶等;化学分离包括萃取、吸附、电泳、凝聚等。
1.3 分离工程的应用分离工程在化工生产中扮演着重要的角色,比如原料的提取、产品的纯化、废水的处理等都离不开分离工程。
此外,分离工程也被广泛应用于制药、食品、环保等领域。
二、分离工程的原理与设备2.1 过滤过滤是利用过滤介质将混合物中的固体颗粒分离出来的物理分离方法。
常见的过滤设备包括板框压滤机、真空过滤机、滤筒式过滤器等。
2.2 离心离心是利用离心力将混合物中的不同密度的组分分离出来的物理分离方法。
离心设备有离心机、离心沉降机等。
2.3 蒸馏蒸馏是利用液体的沸点差异将混合物中的不同组分分离的方法。
蒸馏设备包括塔式蒸馏装置、蒸馏锅、蒸馏塔等。
2.4 结晶结晶是利用物质溶解度的差异将混合物中的组分分离的物理分离方法。
结晶设备包括结晶器、结晶槽等。
2.5 萃取萃取是利用溶解度的差异将混合物中的组分分离的化学分离方法。
萃取设备包括萃取塔、萃取槽等。
2.6 吸附吸附是利用吸附剂将混合物中的组分吸附的化学分离方法。
常用的吸附剂有活性炭、沸石等。
2.7 电泳电泳是利用电场作用将混合物中的带电粒子分离的化学分离方法。
2.8 凝聚凝聚是利用沉淀剂将混合物中的悬浮物分离出来的方法。
三、分离工程的工艺流程3.1 分离工程的基本流程分离工程的基本流程包括进料、分离、收集和处理废物四个步骤。
进料是将混合物送入分离设备,分离是利用特定的原理将混合物中的组分分离,收集是将分离出来的组分进行收集,处理废物是处理分离工程产生的废弃物。
分离工程

1、 简述分离工程的定义、应用领域、重要作用。
定义:将一混合物转变为组成不相同的两种或两种以上产物的操作。
应用:分离过程除了在化工、环保及能源领域、冶金行业(矿物中金属的提取和精制)、食品工业(食物脱水、果汁提纯)、核工业(同位素分离)、生化行业(生物分离,培养液和发酵液的分离)等。
作用:分离操作在环境保护和充分利用资源方面,在提高生产过程的经济效益和产品质量中起举足轻重的作用。
2、 什么是分离因子,其数学表达式是什么?影响分离因子的主要因素是什么? 任何一种分离过程中任意两组分间能够达到的分离程度称为分离因子或分离因数。
数学表达式:分离因子反映组成差别及传递速率的不同,与分离设备的结构及流体流动的情况也有关。
3、 说出分离剂的种类并就每类分离剂列举出3个以上的实例。
分离剂是能量(热量、冷量或功等),称为能量分离剂, 分离剂是物质(或另一种原料),成为质量分离剂,分离剂还可以是某种强制力(如压力梯度、温度梯度、电场力、磁场力)及特殊膜等。
4、 简述分离过程的分类,每类列举出5个以上的实例,并说明其分离机理。
(1)分离过程按所加分离剂的不同可以分为:A.能量分离剂的平衡过程:这类过程的共同点是所加的分离剂均为能量(热量、冷量、减压等)。
简单冷凝、简单蒸发、部分冷凝、部分蒸发、节流、减压精馏等。
B.质量分离剂的平衡过程:吸收(以不挥发性液体作为分离剂)、气提(以不凝性气体作分离剂),吸附和离子交换(分别以固体吸附剂和树脂作分离剂)及萃取(以不互溶液体做分离)等属于这类过程。
C.使用一个以上分离剂的平衡过程:萃取精馏和恒沸精馏过程就是同时使用能量和质量分离剂(加入热量和适当液体)速率控制过程:有些过程通过某种介质,在压力、温度、组成、电势或其他梯度所造成的强制力的推动下,依靠传递速率的差别而操作,叫速率控制过程。
电渗析、反渗透、膜分离等(2)分离过程分为机械分离过程和传质分离过程两大类。
A.机械分离过程是指分离装置所接受的是多于一个相的非均相进料,只要简单地分相就可以。
分离工程各名词解释

萃取1、分配定律分配常数分配系数萃取因子2、1)溶剂萃取:原理:利用化合物在两种互不相溶(或微溶)的溶剂中的溶解度或分配系数的不同,使化合物从一种溶剂内转移到另一种溶剂中,经反复多次萃取,部分化合物提取出来。
优点:(1)操作连续化,速度快,生产周期短;(2)对热敏物质破坏少;(3)采用多级萃取时,溶质浓缩倍数大,纯化度高。
缺点:(1)由于有机溶剂使用量大,对设备和安全要求高。
需要各项防火防水措施;(2)溶剂萃取会产生乳化现象。
2)双水相萃取原理:当两种分子聚合物之间存在相互排斥作用时,即一种聚合物分子的周围将聚集同种分子而排斥异种分子,当达到平衡时,即形成分别富含不同聚合物的两相。
优点:(1)两相间的界面张力小,易于分相,有利于强化相际间的的物质传递,操作条件温和,在常温常压下进行,对于生物活性物质的提纯,有助于保持生物活性和强化相际传质;(2)自然分相时间段,传质与平衡过程速度快,回收率高,能耗低;(3)含水量高,在接近生理环境的体系中进行萃取,不易造成生活活性物质失活或变性。
(4)易于连续操作,设备简单,并且可直接与后续提纯工序相连接(5)一般不存在有机溶剂残留问题,对环境污染小。
缺点:成相聚合物成本较高,大多数年度较大,不一定量控制,水溶相聚化合物难以挥发,使得需要反萃取,高聚合物回收困难。
3)液膜萃取:原理:是由水溶液或有机溶剂构成的液体薄膜,将与之不相溶的液体分隔开来,是其中一侧中的液体中的溶质选择性透过液膜进入另一侧,从而实现溶质间的分离,做到萃取和反萃取,及目标产物的分离和回收。
优点:(1)集成萃取和反萃取过程;(2)提高分离速度;(3)降低设备投资和操作成本。
缺点:(1)液膜结构独特,操作投资大;(2)影响因素多,难以控制。
4)反胶团萃取;原理:是利用表面活性剂在有机相中形成的反胶团,从而在有机相内形成分散的亲水性微环境,使生物分子在有机相(萃取相)内存在于反胶团的亲水微环境中,消除了微生物分子,特别是蛋白类生物活性物质难溶解在有机相或有机相中发生不可逆变性的现象。
化学工程中的分离工程

分离工程在化学工业中扮演着至关重要的角色,它涉及到各 种化学物质的制备、提纯和精制,是实现物质分离与纯化的 关键环节。分离工程技术的进步对于提高产品质量、降低能 耗和减少环境污染等方面具有重要意义。
分离工程的基本原理
相平衡理论
相平衡理论是分离工程的基本原理之一,主要研究物质在不同相之间的平衡分配 关系。通过相平衡理论,可以了解物质在两相之间的溶解度、分配比等参数,为 实现物质的分离提供理论依据。
离子液体是一种新型的绿色溶剂,具有优异的物理化学性质,在分离工程中具有广泛的应用前景。
详细描述
离子液体在分离工程中主要应用于萃取、吸附、精馏等领域。离子液体作为萃取剂可以有效地分离不同种类的物 质,同时具有较高的选择性和分离效果。此外,离子液体还可以作为吸附剂用于气体和液体的分离和纯化。
人工智能在分离工程中的应用
然气分离、油品精制等方面。分离工程技术用于将石油和天然气中的不
同组分进行有效的分离和提纯。
02
制药工业
制药工业中,分离工程技术用于药物的制备、提纯和质量控制。通过分
离工程技术,可以获得高纯度的药物成分,提高药物的治疗效果和安全
性。
03
环境工程
环境工程中,分离工程技术用于处理各种工业废水、废气和固体废弃物
环保性原则
在设计和实施分离过程时,应 尽量减少对环境的负面影响。
经济性原则
在满足工艺要求的前提下,应 尽量降低投资和运行成本。
可靠性原则
分离过程应具有较高的可靠性 和稳定性,以确保生产过程的
连续性和产品质量。
分离过程的优化方法
数学模拟与优化
实验设计与优化
利用数学模型和计算机模拟技术,对分离 过程进行模拟和优化。
生化分离工程名词解释

生化分离工程:为提取生物产品时所需的原理、方法、技术及相关硬件设备的总称,指从发酵液、动植物细胞培养液、酶反应液和动植物组织细胞与体液等中提取、分离纯化、富集生物产品的过程。
富集因子concentration factor:富集后浓度与富集前浓度之比。
分离因子separative factor:产物与杂质富集因子之比。
回收率recovery:产物料中的浓度与原始料中的浓度之比。
纯化因子purification factor:对于具有生物活性的蛋白质或酶,分离前后目标产物的比活之比。
电泳electrophoresis:在电场的作用下,带电粒子在基质中向符号相反的电极移动的现象。
区带电泳Zone electrophoresis:在支持物上电泳后分离的各组分因迁移速度不同被多孔的凝胶或固体等支持物所稳定分布成区带的电泳技术。
电渗:在电场的影响下,带电荷的液体对携带相反电荷的固定介质进行相对运动的现象。
离子淌度:在一定溶剂中单位电场强度下离子的迁移速率,单位是m2s-1V-1。
等速电泳Isotachophoresis:将样品置于含有慢离子和快离子的缓冲液中电泳,快离子的电泳迁移率大于其他所有的离子,使其后面的离子浓度降低,形成一个低电势到高电势的梯度区,减慢了快离子的迁移速度,并促使后面的离子加速向前移动;而慢离子电泳迁移率小于其他所有的离子,同理会加速向前移动去靠近比它迁移快的离子;结果所有的离子都被压缩在慢离子和快离子之间,以几乎相等的速度迁移。
等电聚焦电泳isoelectric focusing:在凝胶内中添加两性电解质,阳极用酸,阴极用碱,形成均匀的pH梯度,蛋白质或核酸在电场中迁移到等于其等电点(pI)的pH处,最后形成稳定的区带。
反应界面:凝胶电泳中酸碱相互反应形成的界面。
二维凝胶电泳:第一相是等电聚焦电泳,第二相是SDS凝胶电泳,两者组合在一起的电泳方法。
自由电泳:不使用支持介质而用缓冲液来作为分离介质的电泳方法。
化工分离工程正文

化工分离工程正文绪论一:分离工程在工业生产中的地位和作用:1.分离工程定义:将混合物分成组成互不相同的两种或几种产品的操作 2.化工生产装置:反应器+分离设备+辅助设备(换热器、泵) 3.分离工程重要性:(1)纯化原料:清除对反应或催化剂有害的杂质,减少副反应、提高收率。
(2)纯化产品:使未反应物质循环。
(3)环境治理工程:去除污染物。
4.分离工程发展现状:5.分离过程在清洁生产中的地位和作用:废物减少(分离系统有效分离和再循环)废物直接再循环+进料提纯+除去分离过程中加入的附加物质+附加分离与再循环系统二:传质与分离过程的分类和特征: 1.过程:(1)机械分离:两相以上的混合物分离(过滤、沉降、离心分离、旋风分离、静电分离)(2)传质分离:均相混合物分离(精镏、吸收、结晶、膜分离、场分离、萃取、干燥、浸取、升华)△平衡分离过程:分离媒介(热、溶剂、吸附剂)使均相混合物变为两相体系,再以混合物中各组分在处于平衡的两相分配关系的差异实现分离。
(精镏、吸收、结晶、萃取、干燥、浸取、升华)△速率分离过程:推动力(浓度差、压力差、温度差、电位差),组分选择性透过膜,各组分扩散速度的差异实现分离(膜分离、场分离)三:分离过程的集成化:新型1.反应过程与分离过程的耦合:化学吸收、化学萃取、催化精镏、膜反应器2.分离过程与分离过程的耦合:萃取结晶、吸附蒸馏、电泳萃取3.过程的集成:传统分离过程的集成(共沸精镏—萃取、共沸精镏—萃取精镏)传统分离过程与膜分离的集成(渗透蒸发—吸附、渗透蒸发—吸收、渗透蒸发—催化精镏)膜过程集成(微滤—超滤—纳滤—反渗透)第一章蒸馏与精馏§1—1 概述一:蒸馏定义和特点:1.定义:混合物中各组分挥发度差异进行分离提纯。
2.特点:工艺流程短、使用范围广、工艺成熟;但能耗大(汽相再冷凝)二:分类:1.蒸馏方式:闪蒸、简单蒸馏、精馏、特殊精馏、反应精馏 2.操作压力:加压蒸馏、常压蒸馏、真空蒸馏 3.混合物组分:两组分精馏、多祖分精馏 4.操作流程:间歇蒸馏、连续蒸馏三:精馏操作流程:精馏段精馏段提馏段图:连续精馏操作流程图:间歇精馏操作流程1—精镏塔 2—再沸器 3—冷凝器 1—精镏塔 2—再沸器 3—全凝器 4—观察罩 5—贮槽§1—2 简单蒸馏和闪蒸组分挥发度相差较大、分离要求低——预分离一:工艺流程:图:简单蒸馏图:平衡蒸馏(闪蒸)1—蒸馏釜 2—冷凝器 3—接受器 1—加热器 2—节流阀 3—分离器1.简单蒸馏:一次进料,馏出液连续出料(出料浓度逐渐降低),釜残液一次排放——压力恒定、温度变化 2.平衡蒸馏:连续进料,连续出料(出料浓度恒定)——压力、温度恒定混合液→加热器→温度>料液泡点(分离器压力下)→节流阀(降压)→分离器→料液部分汽化、并在分离器中汽液分离(相平衡)二:原理:1.前提条件:理想物系——液相为理想溶液(拉乌尔定律);汽相为理想气体(道尔顿分压定律) 2.原理:汽液共存区饱和蒸汽线(露点线)过热蒸汽区饱和液体线(泡点线)液相区图:苯—甲苯混合液的t—x—y图图:苯—甲苯混合液的x—y图图:简单蒸馏t—x—y图图:平衡蒸馏t—x—y图(1)简单蒸馏:任何瞬间,蒸汽与液相处于平衡。
分离工程

分离工程1 分离技术的诞生与发展 最早的分离技术可以追朔到中国夏,商朝的酿酒业中的蒸酒技术;古人制糖和盐 掌握了蒸发浓缩和结晶技术;用蒸馏方法从煤焦油中提取油品。
十八世纪英国工业革 命,使化学工业这个巨人真正诞生和发展起来,随之分离工程也诞生并发展起来。
1901 年英国学者戴维斯在其著作《化学工程手册》中首先确定了分离操作的概念, 1923 年美国学者刘易斯和麦克亚当斯合著出版了《化工原理》,从而确立了分离工程 理论。
2 分离工程简介 分离工程就是使混合物得以分离成为二种或 二种以上的较纯物质的—门工程技术、 它是化学工 程学科的一个重要分支。
分离过程可分为机械分离 和传质分离两大类。
2.1 机械分离 机 械分 离过程 的对 象都是 两相 或两相 以上 的 非均相混合物,只要用简单的机械方法就可将两相分离,而两相间并无物质传递现象 发生常见的机械分离有过滤、沉降、离心分离等。
过滤:用滤纸或其他多孔材料分离悬浮在液体或气体中固体颗粒、有害物质的一 种方法。
2.2 传质分离 传质分离过程的特点是相间传质,可以 在均相中进行,也可以在非均相中进行。
传 质分离可分为: 1)平衡分离过程如精馏、吸收、萃取、 结晶、吸附等,借助分离剂使均相混合物系 统变成两相系统,再利用混合物中各组分在 处于相平衡的两相中的不等同分配而实现分 离。
精馏:一种利用回流使液体混合物得到 高纯度分离的蒸馏方法,是工业上应用最广的液体混合物分离操作,广泛用于石油、 化工、轻工、食品、冶金等部门 吸收:物质从一种介质相进入另一种介质相的现象。
萃取:利用化合物在两种互不相溶 (或微溶 )的溶剂中溶解度或分配系数的不同,使 化合物从一种溶剂内转移到另外一种溶剂中而提取出来的过程。
物理吸附吸附:当流体与多孔 固体接触时, 流体中某一 组 分 或 多 个 组 分 在 固 体表 面处产生积蓄, 此现象称 为 吸 附 。
吸 附 方 式 有 物理 吸附和化学吸附。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、名词解释
1、分离过程: 将一混合物转变为组成互不相同的两种或几种产品的那些操作。
2、分离工程: 研究分离过程中分离设备的共性规律,分离与提纯的科学。
3、传统分离过程的绿色化:对过程(如蒸馏、干燥、蒸发等)利用系统工程的方法,充分考虑过程对环境的影响,以环境影响最小(或无影响)为目标,进行过程集成。
4、传质分离过程:一类以质量传递为主要理论基础、用于各种均相混合物分离的单元操作。
可分为平衡分离过程和速率分离过程两大类,遵循物质传递原理。
5、平衡分离过程:大多数扩散分离过程是不相溶的两相趋于平衡的过程,而两相在平衡时具有不同的组成,这些过程称为平衡分离过程。
6、速率控制分离过程:是通过某种介质,在压力,温度,组成,电势或其它梯度所造成的强制力的推动下,依靠传递速率的的差别来操作,这类过程称为速率控制分离过程。
7、泡点温度:是指液体在恒定的外压下,加热至开始出现第一个气泡时的温度。
8、露点温度:在恒压下冷却气体混合物,开始凝聚出第一个液滴时的温度。
9、汽化率:液体汽化所减少的质量占原液体质量的比率。
10、液化率:e=液化量/总加入量=L/F
11、分离因子:表示任一分离过程所达到的分离程度
表示组分i及j之间没有被分离
表示组分i富集于1相,而组分j富集于2相
表示组分i富集于2相,而组分j富集于1相
12、分离剂:在两种相同的或不同的材料之间、材料与模具之间隔离膜,使二者间不发生粘连,完成操作后易于分离的液剂。
种类为:(1)石膏分离剂(2)树脂分离剂(3)蜡分离剂(4)其他分离剂如硅油、凡士林等。
13、固有分离因子:
αij称为固有分离因子,也称相对挥发度,它不受分离设备的影响。
14、机械分离过程:分离对象为两相以上的混合物,通过简单的分相就可以分离,而相间并无物质传递发生。
15、膜分离:是利用液体中各组分对膜的渗透速率的差别而实现组分分离的单元操作,是用天然或人工合成膜,以外界能量或化学位差或电位差作推动力,对混合物进行分离、提纯和富集的方法。
16、关键组分:在设计或操作控制中,有一定分离要求,且在塔顶、塔釜都有一定数量的组分称为关键组分。
17、轻关键组分(LK):指在塔釜液中该组分的浓度有严格限制,并在进料液中比该组分轻的组分及该组分的绝大部分应从塔顶采出。
18、重关键组分(HK): 指在塔顶液中该组分的浓度有严格限制,并在进料液中比该组分重的组分及该组分的绝大部分应从塔釜采出。
19、非分配组分:在最小回流比下,对那些只在塔的一端产品中出现的非关键组分常称为非分配组分。
1
=
s
ij
α
1
>
s
ij
α
1
<
s
ij
α
20、分配组分:在塔顶和塔釜产品中均出现的组分则称之为分配组分。
21、恒沸精馏:是在原溶液中添加恒沸剂S使其与溶液中至少一个组分形成最低(最高)恒沸物,以增大原组分间相对挥发度的非理想溶液的多元精馏——形成的恒沸物从塔顶(塔釜)采出,塔釜(塔顶)引出较纯产品,最后将恒沸剂与组分分离。
22、恒沸物:是指在一定压力下,汽液相组成与沸腾温度始终不变的这一类溶液。
23、萃取精馏:向相对挥发度接近于1或等于1的体系加入一个新组分,加入的新组分不和原物系中的组分形成恒沸物,只改变组分间的相对挥发度,而其沸点比物系中其它组分的沸点高,从精馏塔的塔釜引出,所加入的新组分称为萃取剂。
24、吸收:吸收是利用液体处理气体混合物,根据气体混合物中各组分在液体中溶解度的不同,而达到分离目的传质过程。
25、吸收剂:分离的介质是某一种液体溶剂,称为吸收剂,被吸收的气体混合物称为溶质。
26、解吸:解吸操作是将溶质从吸收液中驱赶出来,吸收剂与被吸收的易溶组分一起从吸收塔底排出后一般要把吸收剂与易溶组分分离开,即解吸过程。
27、单组分吸收:只有一个组分在吸收剂中具有显著的溶解度,其它组分的溶解度均小到可以忽略不计。
28、多组分吸收:气体混合物中具有显著溶解度的组分不止一个吸收目的产物的同时也吸收了其他组分。
29、吸收因子:在计算吸收设备时,需要对吸收组分作气、液两相的物料衡算,所得出在气、液相浓度的关系式称为操作线方程。
另外还须求得两相的相平衡方程式。
把操作线方程的斜率与相平衡方程的斜率之比定义为吸收因子。
30、解吸因子:吸收因子的倒数称解析因子。
31、吸附:利用多孔性固体吸附剂处理流体混合物,使其中所含的一种或数种组分被吸附在固体表面上,以达到分离的目的。
当气体或液体与某些固体接触时,气体或液体的分子会积聚在固体表面上,这种现象称之为吸附。
32、吸附平衡:在一定条件下,当流体(气体或液体)与固体吸附剂接触时,流体中的吸附质将被吸附,经过足够长的时间,吸附质在两相中的浓度不再变化,达到吸附平衡。
33、吸附等温线:吸附平衡关系通常用等温下吸附剂中吸附质的含量与流体相中吸附质的浓度或分压(或相对压力p/p0)间的关系表示,称为吸附等温线。
34、离子交换剂:一种含有可解离基团的物质,常用做离子交换层析介质,其解离基团能与溶液中的其他离子起交换作用。
多为不溶性,可以是天然的或人工合成的,有的是有机高分子化合物,有的是无机物。
35.萃取剂的选择性:加入萃取剂溶液组分的相对挥发度与原溶液组分的相对挥发度之比。
36.超临界萃取:超临界流体萃取是利用流体在临界点附近所具有的特殊溶解性能进行萃取的一种化工分离技术。
37.反渗透:反渗透又称逆渗透,一种以压力差为推动力,从溶液中分离出溶剂的膜分离操作。
因为它和自然渗透的方向相反,故称反渗透。
根据各种物料的不同渗透压,就可以使用大于渗透压的反渗透压力,即反渗透法,达到分离、提取、纯化和浓缩的目的。