电力系统频率及其特性数学模型
电力系统负荷运行特性及数学模型(培训)

补充:负荷预测概述 ---电力部门一项十分重要的基础工作
长期负荷预测 中、短期负荷预测 超短期负荷预测
负荷预测的方法,如弹性系数法、回归法、神 经网络、模糊数学等。
负荷预测与许多因素相关联,如所在地区的规 模、人口、经济水平、负荷结构、地理位置、 气候条件、人们生活习惯、电价政策等等。
补充:工业及民用负荷配电系统
负荷在电网中如何接入?
配电系统分为:TN, IT, TT系统三种。
1、几种配电方式
① TN系统。 电源有一点(通常是中性点)直接接
地,负荷側的建筑物电气装置的外露导电 部分通过保护线与该接地点连接的系统。
a) TN-S系统。整个系统中保护线PE 与中性线N是分开的,见下图
按负荷的构成范围------电网负荷、地区性负荷、 小区负荷、单个负荷等
4、工业用电典型负荷比重(%)
3-1负荷的描述-----负荷曲线
负荷曲线 日负荷曲线 年(最大)负荷曲线 年持续负荷曲线
1、典型日负荷曲线
P (kw)
峰荷 Pmax
2、负荷曲线的描述 日负荷曲线 谷荷 Pmin
3、负荷的分类
按用电设备-----异步电动机、同步电动机、电热 装置、整流装置、照明设备等
按用户性质------工业负荷、农业负荷、交通运输 业负荷、市政及生活用电等
按用户的重要程度------一级负荷、二级负荷、三 级负荷
按负荷的工作特点------连续性负荷、间断性负荷、 冲击负荷等
24
Wd Pdt
0
Pav
Wd 24
1 24 Pdt
24 0
Pmin Pm a x
第二章电力系统各元件的数学模型

试验时小绕组不过负荷,存在归算问题,归算到SN
2) 对于(100/50/100)
2
Pk (12)
P' k (12)
IN 0.5IN
P 4 ' k (12)
2
Pk ( 23)
P' k (23)
IN 0.5IN
P 4 ' k ( 23 )
3) 对于(100/100/50)
2
Pk (13)
P' k (13)
§2.3 电力线路的参数和数学模型
§2.3 电力线路的参数和数学模型
§2.3 电力线路的参数和数学模型
§2.3 电力线路的参数和数学模型
§2.3 电力线路的参数和数学模型
§2.3 电力线路的参数和数学模型
一次整循环换位:
A B
C
换位的目的:为了减 少三相参数的不平衡
§2.3 电力线路的参数和数学模型
Xd
§2.1 发电机的数学模型
受限条件
定子绕组: IN为限—S园弧
转子绕组: Eqn ife 励磁电流为限—F园弧 Xd
原动机出力:额定有功功率—BC直线
其它约束: 静稳、进相导致漏磁引起温升—T弧
进相运行时受定 子端部发热限制 受原动机出力限制
定子绕组不超 过额定电流
励磁绕组不超 过额定电流 留稳定储备
2、由短路电压百分比求XT(制造商已归算,直接用)
U U U U 1 k1(%) 2
k(12) (%) k(13) (%) (%) k(23)
XT1
Uk
1(%
)U2 N
100SN
U U U U 1 k2 (%) 2
k(12) (%) k(23) (%) (%) k(13)
第2章 电力系统稳态分析_电力系统各元件的特性和数学模型

第二节 变压器的参数和数学模型
两绕组变压器的 Γ 型等值电路与参数计算公式
2 2 Pk U N Uk % UN ,X T RT 2 SN 100 S N P0 I0 % SN GT 2 ,BT 2 U 100 U N N k U 1 N / U 2 N
~ S (U d jU q )(I d jI q ) (U d I d U q I q ) j(U q I d U d I q )
P U d I d U q I q Q U q I d U d I q
从而
第一节 发电机组的运行特性和数学模型
P0 GT 2 1000 UN
第二节 变压器的参数和数学模型
3. 变比 k 定义为一次额定电压与二次空载电压之比,可由 空载试验测得或由变压器铭牌查得。 安装在高压绕组上; 对应于额定电压的抽头为主抽头,其余抽头的 电压相对额定电压偏离一定值;
变压器的实际变比=对应于实际 抽头位置的一 次电压与二次电压之比。
一型
第二节 变压器的参数和数学模型
特点:
增加传输能力 减少功率损耗
S 3UI
S L 3I 2 Z ZS 2 / U 2
减少电压降落
3ZI Z S/ U dU
类型:
单相、三相 两绕组、三绕组 普通、自耦 普通、有载调压、加压调压
第二节 变压器的参数和数学模型
一、双绕组变压器的参数和数学模型
1 U 1ZT 1 NhomakorabeaYT
ZT 2
2
ZT 3
3
U 3
U 2
第二节 变压器的参数和数学模型
电力系统分析第4章 电力网络的数学模型

Vn
I2(1)
•
•
Y (1) n2
V2
Y (1) nn
Vn
I2(1)
式中
Y (1) ij
Yij
Yi1Yj1 Y11
; Ii(1)
I
Yi1 Y11
I1
第四章电力网络的数学模型
4.2 网络方程的解法
➢ 对方程式再作一次消元,其系数矩阵便演变为
Y11
Y (2)
Y12 Y13 Y1n
Y (1) 22
第四章电力网络的数学模型
4.1 节点导纳矩阵
➢一般地,对于有n个独立节点地网络,可以列写n个 节点方程
•
•
•
Y11 V1 Y12 V2 Y1n Vn
•
I1
•
•
•
Y21 V1 Y22 V2 Y2n Vn
•
I2
•
•
• •
Yn1 V1 Yn2 V2 Ynn Vn In
(4-3)
4.1 节点导纳矩阵
➢上述方程经过整理可以写成
•
•
Y11 V1 Y12 V2
0
•
•
•
•
Y21 V1 Y22 V2 Y23 V3 Y24 V4 0
•
•
•
Y32 V2 Y33 V3 Y34 V4 0
•
•
•
Y42 V2 Y43 V3 Y44 V4
•
I
4
(4-2)
第四章电力网络的数学模型
4.1 节点导纳矩阵
➢将电势源和阻抗的串联变 换成电流源和导纳的并联,得 到的等值网络如图所示,其中:
•
•
I 1 y10 E1
1 电力系统各元件数学模型

1 电力系统各元件数学模型1.1 发电机组参数及数学模型发电机组在稳态运行时的数学模型(图1所示)极为简单,通常由两个变量表示,即发出的有功功率P 和端电压U 的大小或发出的有功功率P 和无功功率Q 的大小。
以第一种方式表示时,往往还需伴随给出相应的无功功率限额,即允许发出的最大、最小无功功率max Q 、min Q 。
图 1 发电机数学模型1.2 变压器参数及数学模型1.2.1双绕组变压器Γ型等值电路模型TjX 图2 双绕组变压器Γ型等值电路模型双绕组变压器Γ型等值电路模型如图2所示,电路参数通过以下公式计算。
注意,公式中N U 取不同绕组的额定电压,表示将参数归算到相应绕组所在的电压等级(所得所得阻抗/导纳参数都是等值为Y/Y 接线的单相参数);公式中各参数由变压器厂家提供,采用实用单位。
22020210001001000%100k N T Nk NT N T NN T N P U R S U U X S P G U I S B U ⎧∙=⎪⎪⎪%∙=⎪⎪⎨⎪=⎪⎪⎪=∙⎪⎩(1-1) 其中,k P 为短路损耗,k U %为短路电压百分数,0P 为空载损耗,0%I 为空载电流百分数,N U 为归算侧的额定电压,N S 为额定容量 该电路模型一般用于手算潮流中。
1.2.2 双绕组变压器T 型等值电路模型1jX '图 3 双绕组变压器T 型等值电路模型其中,1R 和1X 为绕组1的电阻和漏抗,'2R ,'2X 为归算到1次侧的绕组2 的电阻和漏抗,m R 和m X 为励磁支路的电阻和电抗。
该电路模型一般用于电机学中加深对一二次侧和励磁支路电阻电抗的理解以及手算潮流计算中。
1.2.2 三绕组变压器Z 图4三绕组变压器的等值电路三绕组变压器的等值电路如图3所示,图中,变压器的励磁支路也以导纳表示。
该电路模型一般用于手算潮流计算中。
三绕组变压器的参数计算如下: 电阻:由短路损耗计算()()()1(12)(31)(23)2(23)(12)(31)3(31)(23)(12)121212k k k k k k k k k P P P P P P P P P P P P ---------⎧=+-⎪⎪⎪=+-⎨⎪⎪=+-⎪⎩(1-2) 211222233100010001000k N T Nk N T Nk NT N P U R S P U R S P U R S ⎧∙=⎪⎪⎪∙⎪=⎨⎪⎪∙⎪=⎪⎩(1-3) 其中,k P 为短路损耗,N U 为归算侧的额定电压,N S 为额定容量对于容量比为100/100/50和100/50/100的变压器,厂家提供的短路损耗是小容量绕组达到自身额定电流()/2N I 时的试验数据,计算时应首先将短路损耗折算为对应于变压器额定电流()N I 的值例如,对于100/100/50型变压器,厂家提供的是未经折算的短路损耗'(23)k P -,'(31)k P -,'(12)k P -首先应进行容量归算'(23)(23)'(31)(31)44k k k k P P P P ----⎧=⎪⎨=⎪⎩(1-4) 按新标准,厂家仅提供最大短路损耗max k P ,按以下公式计算电阻:2max (100%)2(50%)(100%)20002k N T N T T P U R S RR ⎧=⎪⎨⎪=⎩(1-5) 其中max k P 为最大短路损耗,N U 为归算侧的额定电压,N S 为额定容量 电抗:由短路电压百分数计算()()()1(12)(31)(23)2(12)(23)(31)3(23)(31)(12)1%%%%21%%%%21%%%%2k k k k k k k k k k k k U U U U U U U U U U U U ---------⎧=+-⎪⎪⎪=+-⎨⎪⎪=+-⎪⎩(1-6) 211222233100100100k N T Nk N T N k NT N U U X S U U X S U U X S ⎧%=⎪⎪⎪%⎪=⎨⎪⎪%⎪=⎪⎩(1-7) 其中,k U %为短路电压百分数,N U 为归算侧的额定电压,N S 为额定容量 注意,厂家提供的短路电压是经过额定电流折算后的数据。
电力系统频率及其特性数学模型

5/32
2、原动机——汽轮机
•气阀位置 X B 的改变会导致进气量的变化,使汽轮机输入功率变 动 PT,因而引起发电机功率的变化 PG
•汽轮机的调节阀门和第一级喷嘴之间有一定的空间,开启/关 闭气门使进入气门的蒸汽量有所改变,但是这个空间的压力 不能立即改变,这样就形成了机械功率滞后于气门开度变化, 也就是“汽容影响”。
可以用惯性环节来描述: GTs X PTBss1 K T TTs
对于再热式汽轮机要考 虑再热段充气时延
G Ts X P T B s s(1 K T T 1 Ts )K 1r T T rs rs
2020/5/12
North China Electric Power University
6/32
4/32
X
B
s
Kn 1 sTn
Pc
s
1 R
F
s
Kn
K2 K4
T
n
1 K3K 4
R
K2 K1
Gn
s
Kn 1sTn
XBsG nsP csR 1Fs
表示了原动机调节量与控制指令信号Pcs及系
统频率Fs间的动态特性
2020/5/12
North China Electric Power University
第三节 电力系统的频率调节系统及其特性
1、调速器
B X B
E
进汽 PT
数学建模
C
f (X A )
2、原动机
D
F
X D
PC
G~
PG 系 统
发电机
汽轮机
调节指令
3、区域系统
数学分析 物理系统
物理映射
2020/5/12
电力系统模型

电力系统模型(PSM)电力系统模型应当与实际电力系统相似,其目的是模拟电力系统的机电特性,它包括网络模型和设备模型。
电力系统模型模拟了输变电系统、保护及自动装置。
DTS能够正确描述电网主控室中所观察到的现象,关键在于电力系统模型。
动态潮流DTS中的潮流是EMS中调度员潮流的拓展。
DTS中的潮流利用了EMS中的调度员潮流的基本模型外,还要实现与网络模型的联合求解。
准确的模拟系统的响应过程。
这种算法的基本思想是:1.1.忽略电网中机组的震荡,仅描述事故后的稳态,假定全网频率统一。
2.2.忽略原动机出力变化,假定发电机机械力矩按原动机特性变化,或机械力矩不变。
3.3.不模拟快速的机电暂态过程及计及锅炉、核反应堆等的中长期过程。
在一般情况下,常规潮流中功率平衡条件不能得到满足,系统中总存在净加速功率。
动态潮流就是将总的净加速(净减速)功率按一定分配因子分配给各台机组,而不是由平衡母线完全承担。
分配因子可以根据用户需要定为惯性常数、机组容量或某种分配因子。
对于动态潮流,在计算过程中采用牛顿——拉夫逊法进行求解,系统中包含若干个平衡节点,但只有一个γδ节点。
动态潮流中包含N-1个有功功率方程,N-1-γ个无功平衡方程,N为系统节点数,γ为Pγ节点数。
继电保护和自动装置的仿真保护仿真电力系统保护设备是保证电网安全运行、保护电气设备的主要装置。
共分为两类:一类称为继电保护设备;另一类称为安全自动装置设备。
在电力系统运行中,可能发生两种对系统产生危害的运行状态:一类是设备发生短路和线路断线等故障;另一类是电气元件的正常工作遭到破坏,单没有发生故障,属于不正常运行状态,如电压和频率过高、过低和设备过载等。
继电保护的作用是快速判断故障类型和地点并及时切除故障元件,主要作用于单一的电气设备;安全自动装置则是根据电压、频率和设备的异常情况,按照事先设定的方案投切某些元件和负荷,消除设备异常现象。
继电保护设备元件主要用于暂态过程分析、短路、断线故障计算等软件。
电力系统各元件的特性和数学模型课件

变压器的主要参数
额定电压
变压器能够长期正常工作的电压值。
额定容量
变压器的最大视在功率,表示变压器的输出 能力。
额定电流
变压器能够长期通过的最大电流值。
效率
变压器传输的功率与输入的功率之比,表示 变压器的能量转换效率。
变压器数学模型
变压器数学模型通常采用传递函数的 形式来表示,可以描述变压器在不同 工作状态下的输入输出关系。
THANKS FOR WATCHING
感谢您的观看
配电系统是电力系统的重要组成部分,主要负责将电能从发电厂或上级电网分配给 终端用户。
配电系统的工作原理包括电压变换、电流变换和功率传输等过程,通过变压器、开 关设备和输配电线路等设备实现。
配电系统通常分为高压配电、中压配电和低压配电三个层次,以满足不同用户的需 求。
配电系统的主要参数
电压
配电系统的电压等级通常在1kV至35kV之间,其 中1kV以下为低压配电,35kV以上为高压配电。
电力系统的控制策略
电力系统的控制策略包括发电机的励磁控 制、调速控制等,这些控制策略对电力系
统的稳定性起着至关重要的作用。
电力系统的运行状态
电力系统的运行状态对稳定性有直接影响 ,如负荷的大小和分布、发电机的出力、 电压和频率等。
外部环境因素
外部环境因素包括自然灾害、战争、恐怖 袭击等,这些事件可能导致电力系统受到 严重干扰,影响其稳定性。
04
负荷:消耗电能的设备或设施。
电力系统元件的分类
一次元件
包括发电机、变压器、输电线路等,是构成电力系统的主体 部分。
二次元件
包括继电器、断路器、测量仪表等,用于控制、保护和监测 电力系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汽轮机
进汽
调节指令
F (s)
PT
P Ts P G s1 K T n ns1 K T T Ts P cs
1 R
Pc(s) — +
GnT (s)
1
PT (s)
(1 sTn )(1 sTT )
2021/4/17
电力系统频率及其特性数学模型
North China Electric Power University
•气阀位置 X B 的改变会导致进气量的变化,使汽轮机输入功率变 动 PT,因而引起发电机功率的变化 PG
•汽轮机的调节阀门和第一级喷嘴之间有一定的空间,开启/关 闭气门使进入气门的蒸汽量有所改变,但是这个空间的压力 不能立即改变,这样就形成了机械功率滞后于气门开度变化, 也就是“汽容影响”。
可以用惯性环节来描述: GTs X PTBss1 K T TTs
2
I
1
1
1
XA
A
XD D
接主轴
IV
电力系统频率及其特性数学模型
2021/4/17
North China Electric Power University
4/32
X XEA
K1'XA k1f
K2' XDK4XB
机械杠杆反馈
机械加法器 B
开度反馈
蒸汽 调节
XDk2Pc
(同步器输出) 转速给定
主要内容
• 电力系统的频率调节系统及其特性
– 调节系统的传递函数
• 调速器 • 原动机——汽轮机
– 汽轮发电机组的传递函数 – 单区域系统
• 多区域闭环调节系统 • 电网的频率调节特性
– 单区域电网的频率特性 – 多区域电网的频率特性
电力系统频率及其特性数学模型
2021/4/17
North China Electric Power University
1/32
第三节 电力系统的频率调节系统及其特性
1、调速器
B X B
进汽 PT
C
f (X A )
E
D
2、原动机
F
X D
PC
G~
PG 系 统
发电机
汽轮机
调节指令
3、区域系统
数学分析
数学建模
物理映射
物理系统
电力系统频率及其特性数学模型
2021/4/17
North China Electric Power University
(1 sTn )(1 sT电T )力系统频率及其特性数学模型
2021/4/17
North China Electric Power University
9/32
汽轮机与无限大系统并联运行
B X B
C
E
D
f (X A )
发电机的功率变化对 系统的频率没有影响
F
X D
PC
G~
PG 系 统
发电机
F s 0 PG PT
•当迅速关小导向叶片的开度,导管中的水压力会急 剧上升;当迅速开大导向叶片的开度,导管中的水压 力会急剧下降。这就是水锤现象。
•水轮机的功率不能随着开度的变化而有一个时滞
Gn
s
1TW 0.5TWs
s 1
电力系统频率及其特性数学模型
2021/4/17
North China Electric Power University
转
放行
机
速
大
反馈
电力系统频率及其特性数学模型
2021/4/17
North China Electric Power University
3/32
1、调速器
只讨论小偏离的情况,假定:
1、系统稳态时的频率为 f N ,对应的原动机汽阀位置为 X B ,发 电机输出功率为 PG 。
2、D点移动微小距离X D,正比于发生增加功率指令 PC ,DPC
对于再热式汽轮机要考 虑再热段充气时延
G Ts X P T B s s(1 K T T 1 Ts )K 1r T T rs rs
电力系统频率及其特性数学模型
2021/4/17
North China Electric Power University
7/32
3、原动机——水轮机
•在水流的稳态情况下,水的流速是一定的。
10/32
P Ts P G s1 K T n ns1 K T T Ts P cs
施加一个阶跃变化 Pc
P Ts P G s1 K T nns1 K T T Ts s P c
P G lis m P G s K n K T P c s 0
+ D
-E -
放大执行 气阀 (错油门,油动机)开度
X E s K 1 F s K 2 P c s K 4 X B s
汽阀 汽轮机
转速
(汽轮机主轴)
假定流入油压机的油量与
A
转速反馈
导油阀的位置 X E 成正比
dXB dt
K3XEXBsK3XsEs飞 Nhomakorabea测速机械
XB
B XE E
XC C
F
2
2/32
一、调节系统的传递函数
•进入原动机的动力元素是由调速器控制的,它是电力系统频率和 有功功率调节系统的基本组成部分。
•不论汽轮机或者是水轮机,调速器的执行环节都是利用液压放大 原理控制气门(或者导水叶)的开度,尽管调速器构成各异,但 是他们主要部件的方程式的型式是相同的。
整定
进气
测
积
量
分执
汽
8/32
4、汽轮发电机组的传递函数
XBsG nsP csR 1Fs GTs X PTBss1 K T TTs
F (s)
F(s)
1/ R
Pc(s)
—
+
Gn (s)
GT (s)
K n XB(S) K T PT (s)
1 sTn
1 sTT
调速器
汽轮机
1
R
Pc(s) — +
GnT (s)
1
PT (s)
3、当D点升高时,引起E点降低 X E ,通过错油门作用,使B点
升高 X B,从而原动机的输入功率增加PT,稳态时两者相等。
4、由于发电机功率增加,使系
统频率发生微小变化 f ,引起调
速器响应,使A点向上移动 ,
正比X于A f。
X A
5、正方向如图中所标柱。 进汽
XB
B XE E
III
II
XC C
F
T
n
1 K3K 4
R
K2 K1
Gn
s
Kn 1sTn
XBsG nsP csR 1Fs
表示了原动机调节量与控制指令信号Pcs及系
统频率Fs间的动态特性
电力系统频率及其特性数学模型
2021/4/17
North China Electric Power University
6/32
2、原动机——汽轮机
I
1
1
1
XA
A
XD D
接主轴
XB s K2PcKs4K K s31F 电力s系统频率进 及汽 其特性数学模型III
II
IV
2021/4/17
North China Electric Power University
5/32
X
B
s
Kn 1 sTn
Pc
s
1 R
F
s
Kn
K2 K4