4.3电力系统的频率特性

合集下载

电力系统频率调节

电力系统频率调节
上一页 下一页 返回
第一节 安全用电知识
二、安全距离 为了保证电气工作人员在电气设备运行操作、维护检修时不致误碰带
电体,规定了工作人员离带电体的安全距离;为了保证电气设备在正常运 行时不会出现击穿短路事故,规定了带电体离附近接地物体和不同相带 电体之间的最小距离。安全距离主要有以下几方面: 1.设备带电部分到接地部分和设备不同相部分之间的距离,如表7-1所 示; 2.设备带电部分到各种遮栏间的安全距离,如表7-2所示; 3.无遮栏裸导体到地面间的安全距离,如表7-3所示; 4.电气工作人员在设备维修时与设备带电部分间的安全距离,如表7-4 所示。
由上式可知,要控制发电机频率就得控制机组转速。 在稳态电力系统,机组发出的功率与整个系统的负荷功率加上系统总损
耗之和是相等的。
下一页 返回
4. 1电力系统的频率特性
当系统的负荷功率增加时,系统就出现了功率缺额。此时,机组的转速 下降,整个系统的频率降低。
可见,系统频率的变化是由于发电机的负荷功率与原动机输入功率之间 失去平衡所致,因此调频与有功功率调节是分不开的。
流 可达正常电流的几十倍甚至上百倍,产生的热量(正比于电流的平方)是 温度上升超过自身和周围可燃物的燃点引起燃烧,从而导致火灾。 (2)过载引起电气设备过热选用线路或设备不合理,线路的负载电流量 超过了导线额定的安全载流量,电气设备长期超载(超过额定负载能力), 引起线路或设备过热而导致火灾。
(1)具有足够大的容量和可调范围。 (2)允许的出力调整速度满足系统负荷变化速度的要求。 (3)符合经济运行原则。 (4)联络线上交换功率的变化不致影响系统安全运行。
上一页 下一页 返回
4. 1电力系统的频率特性
水轮发电机组的出力调整范围大,允许出力变化速度快,一般宜选水电 厂担任调频。

电力系统的频率特性

电力系统的频率特性

第一节 电力系统的频率特性
例3-1 某电力系统中,与频率无关的负荷占30 %,与频率一次方成比例的负荷占40%,与 频率二次方成比例的负荷占10%,与频率三 次方成比例的负荷占20%。求系统频率由 50Hz下降到47Hz时,负荷功率变化的百分数 及其相应的值。
第一节 电力系统的频率特性
解 由(3-3)式可求出当频率下降到 47Hz 时 系统的负荷为
∆PL % 7 = = 1.17 K L* = ∆f % 6
第一节 电力系统的频率特性
, 例 3-2 某电力系统总有功负荷为 3200MW(包括电网的有功损耗) 系统的频率为 50Hz,若 K L* = 1 .5 ,求负荷频率调节效应系数 K L 值。 解 : K L = K L* ×
3200 Pl e = 1 .5 × = 96 fe 50
第一节 电力系统的频率特性
系统频率稳定在 f :
1
f A C 2 ∆ P2 fe f1 ∑ PL ∆ P1 ∑P' P2 P
' P2
1 号机组的负荷增加了 ∆ P1 2 号机组的负荷增加了 ∆ P 2 两台机组增量之和等于 ∆ P L 可得
B 1
∆ P1* R 2* = ∆ P 2 * R 1*
P2 o
1.电力系统中负荷的功率频率特性(负荷的静态频率特性) 1.电力系统中负荷的功率频率特性(负荷的静态频率特性) 电力系统中负荷的功率频率特性
当系统频率变化时, 也要随之改变, 当系统频率变化时,整个系统的负荷功率PL 也要随之改变,即
PL= F(f)
这种有功负荷随频率而改变的特性叫做负荷的功率—频率特性,是 负荷的静态频率特性,也称作负荷的调节效应 负荷的调节效应。 负荷的调节效应

电力系统频率及有功功率的自动调节

电力系统频率及有功功率的自动调节

例1: a0 30% a1 40% a2 10% a3 20%
计算负荷的频率调节效应系数以及频率由50Hz下降1Hz时负荷功率变化。
* KL a1 2a2 f * 3a3 f *2 40% 2 10% 3 20% 1.2 1 * * * PL K L f 1.2 0.024 50 50 1 * f 0.98 50 * PL 30% 40% 0.98 10% 0.982 20% 0.983 0.9763 * P 1 0.9763 * * L P KL 1 . 186 L 0.9763 1 0.0237 * 6 f 1 / 50
R
1 1 1 1 R1 R2 Rn
f RnPcn 0
若系统增加负荷
1 1 1 f PL f R R R R 2 n 1
PL
R Pci PL Ri i 1,2,, n
15
f R PL 0
fdt K
若系统增加负荷
n
集中制积差调频:
集中由一个地方(如调度部门)高精度测 频和计算频差积分,然后通讯传送给各调频厂, 不过要占用远方通讯通道
Pcn 0
分散制积差调频:
由各调频厂高精度测频和计算频差积分, 不过难以保证各调频厂测量值一样,易混乱
1 1 1 PL K K K fdt 2 n 1
电力系统电压调整:就地无功平衡,分别调节节点电压 频率调整:全系统必须统一调整,另外还要考虑经济运行 最终是
f 0
13
主调频厂的选择:
具有足够的调频容量和调整范围 具有与负荷变化相适应的调整速度 调整出力符合安全及经济运行原则

第四章 电力系统的正常运行与控制(二)

第四章 电力系统的正常运行与控制(二)

3. 主调频厂的选择
按照是否承担二次调整可将电厂分为:
主调频厂:一般是1~2个电厂,负责全系统的频率调整(即二次 调整); 辅助调频厂:只在系统频率超过某一规定的偏移范围时才参与调 整,一般也只有少数几个; 非调频厂:在系统正常运行情况下则按预先给定的负荷曲线发电。 主调频厂的选择应考虑 (1)要有足够的调整容量及调整范围 (2)具有与负荷变化速度相适应的调整速度 (3)符合安全及经济原则 安全性:各点电压是否超出范围,联络线是否过负荷 经济性:是指全系统的经济性
PGi K Gi f
n台机组的功率总增量
(i 1,2, n)
PG PGi KGi f K G f
i 1 i 1
n
n
所以n台机组的等值单位 调节功率为
KG KGi KGi*
i 1 i 1
n
n
PGiN fN
P
若把n台机组用一台等值 机来代表
有功功率负荷的变化及调整
频率维持 额定
发电机的转速 保持额定
发电机输入和输 出功率相等
输入
输出
原动机
发电机
负荷
问题:原动机 功率变化相对 迟缓
发电机功率 随着变化
负荷随时间 不断地变化
通过调整和控制,我们设法使这种变化在一定的范围内, 使频率的偏差越小越好。
分析负荷的变化性质,进行负荷追踪!
P
第一种
PD
2
3
PDN

fN
f
在额定频率附近,近似用直线表示
K D tg
PD K D* f
PD f
MW Hz
K D K D* PDN fN
PDN fN

电力系统有功功率与频率调整

电力系统有功功率与频率调整

.郑州电力职业技术学院毕业生论文题目:_浅谈电力系统有功功率与频率调整系别___电力工程系____专业_继电保护及自动化班级___15继电3班____学号__15401020341姓名____张高原____论文成绩答辩成绩综合成绩指导教师主答辩教师答辩委员会主任. 1.浅谈电力系统有功功率与频率调整摘要本文首先介绍了电力系统有功功率与频率调整的基本知识,有功功率的应用、意义及;频率调整的必要性,电压频率特性,频率的一二次调整,以及互联系统中的频率的一二次调整,调频与调压的关系,以及电力系统频率调整在个类电厂中得作用。

关键词:有功功率频率调整互联系统.2.目录1电力系统有功功率与频率调整的意义 (1)2频率调整的必要性 (1)2.1频率变化的危害 (1)2.2电力系统负荷变动规律 (1)3电力系统的频率特性 (2)3.1负荷的有功功率-频率静态特性3.2电源的有功功率-频率静态特性3.2.1同步发电机组的调试系统 (2) (4) (4)3.2.2调速系统框图 (4)3.2.3同步发电机组的有功功率-频率静态特性 (4)4电力系统的频率调整 (6)4.1频率的一次调整 (6)4.1.1基本原理 (6)4.1.2基本关系 (6)4.1.3多机系统的一次调频 (7)4.2频率的二次调整 (9)4.2.1基本原理 (9)4.2.2基本关系: (10)4.2.3基本理论: (10)4.3互联系统的(二次)频率调整 (10)4.3.1基本关系 (10)4.3.2注意要点: (10)4.4调频与调压的关系 (11)4.4.1频率变化对电压的影响4.4.2电压变化会频率的影响 (11) (11)4.4.3注意 (11)5电力系统的有功平衡与备用容量 (12)5.1有功平衡关系 (12)5.2备用容量 (12)6电力系统负荷在各类发电厂的合理分配 (12)6.1火力发电厂的主要特点6.2水力发电厂的主要特点 (12) (13)6.3抽水蓄能水电厂的主要特点 (13)6.4核能发电厂的主要特点 (13)总结 (14)致谢 (15)参考书籍 (16).3.1电力系统有功功率与频率调整的意义发电机的输出电压和输出电流是有限制的,发电机的负荷是以伏安计算的(即电流有效值乘以电压有效值,视在功率),当负载的功率因数为全部转换成有功功率输出。

第五章电力系统频率及有功功率的自动调节

第五章电力系统频率及有功功率的自动调节
•若系统负荷增长到3650MW时,则有
•KL = 1.5 × ( 3650 / 50 ) = 109.5 ( MW / HZ )
•* 由此可知, KL的数值与系统的负荷大小有关.
第五章电力系统频率及有功功率的自 动调节
三、发电机组的功率——频率特性
第五章电力系统频率及有功功率的自 动调节
三、发电机组的功率——频率特性
•f
•PL = f(f)
•PL1 = f(f)
•fN
•a
•d
•f2 •f3
•b
•c •ΔPL
•PG=f(f)
•无调速 •有调速
•到状态b,PL未变,PG没增 加
•ΔPL2 •ΔPL1
•到状态c,再调可以到状态d
•PL
•PL2•PL1
•P
•调速器的调节作用被称为一次调节。 第五章电力系统频率及有功功率的自 动调节
•4 电液转换及液压系统 •电液转换器把调节量由电量转换成非电量油压。液 压系统由继动器、错油门和油动机组成。
•5 调速器的工作
第五章电力系统频率及有功功率的自 动调节
•三 数字式电液调速器
•控制电路部分的功能用微机实现。
第五章电力系统频率及有功功率的自 动调节
• • 主机根据采集到的实时信息,按预先确定的控制 规律进行调节量计算,计算结果经过D/A变换输 出去控制电/液压转换,再由液压伺服系统控制原 动机的输入功率,完成调速或调频的任务。
第五章电力系统频率及有功功率的自 动调节
•第三节 电力系统频率调节系统及其特性
•一 调节系统的传递函数
▪ 传递函数是分析调节系统性 能的重要工具,电力系统的 频率和有功功率调节系统, 主要是由调速器、发电机与 原动机和电网环节组成,传 递函数分别讨论如下:

第四章电力系统有功功率和频率调整

第四章电力系统有功功率和频率调整

PGN = PG (标幺值)
fN
f
KG
PGN fN
KG
KG和KG:发电机组的单位调节功率
汽轮机:KG =25 : 16.7
水轮机:KG =50 : 25
2020/5/20
电力系统有功功率与频率调整
25
4.2.2 发电机组的有功-频率静态特性
发电机组的功频静态特性—对于调速器
➢ 在实际计算过程中:
2020/5/20
电力系统有功功率与频率调整
16
4.2.1 系统负荷的有功-频率静态特性
负荷的静态频率性质
➢ 在实际计算过程中:
PD
KD
PDN
fN
f
有功负荷的静态频率特性
KD
tan
PD f
PDN fN
PD f
(MW / Hz)
KD
PD f
PDN = PD (标幺值) fN f
KD
PDN fN
转速n
电磁功率PE 等于
负荷功率PLD
机械功率PT
2020/5/2结0 论:负荷经常变化电力,系统频有功率功率偏与频移率调不整 可避免,如何调整 5
4.1.3 有功功率负荷的变化及其调整
有功功率负荷的变化
P
曲线分解 1 2
实际负荷 幅度小、周期短 幅度较大、周期较长
2020/5/20
3
幅度很大、变化缓慢、
最大发电负荷
PM PLDmax PLmax
0
系统备用容量
8760 t/h
2020/5/20
电力系统有功功率与频率调整
9
4.1.4 有功功率平衡及备用容量
备用容量—按性质分
➢ 负荷备用 (2%-5%)PM

电力系统分析第四章-新

电力系统分析第四章-新

试确定当总负荷分别为400MW、700MW时,发电厂间功率
的经济分配(不计网损的影响)?
4.2 电力系统有功功率的最优分配
解:(1) 按所给耗量特性可得各厂的微增耗量特性为:
dF1 λ1 = = 0.3 + 0.0014PG1 dPG1 dF2 λ2 = = 0.32 + 0.0008PG2 dPG2 dF3 λ3 = = 0.3 + 0.0009PG3 dPG3
t
活、气象等引起,三次调频)
4.1 电力系统有功功率的平衡
2、有功平衡和频率调整: 根据负荷变动的分类,有功平衡和频率调整也相应分为三类: a. 一次调频:由发电机调速器进行; b. 二次调频:由发电机调频器进行; c. 三次调频:由调度部门根据负荷预测曲线进行最优分配。 ☆ 前两种是事后的,第三种是事前的。 ☆ 一次调频时所有运行中的发电机组都可以参加,取决于发 电机组是否已经满负荷发电,这类发电厂称为负荷监视厂; 二次调频是由平衡节点来承担;
有功功率电源的最优组合 有功功率负荷的最优分配
2、主要内容
要求在保证系统安全的条件下,在所研究的周期内,以小
时为单位合理选择电力系统中哪些机组应该运行、何时运行
及运行时各机组的发电功率,其目标是在满足系统负载及其 它物理和运行约束的前提下使周期内系统消耗的燃料总量或
总费用值为最少。
4.2 电力系统有功功率的最优分配
三次调频则属于电力系统经济运行调度的范畴。
4.1 电力系统有功功率的平衡
三、有功功率平衡和备用容量
1、有功功率平衡:
P
Gi
= PLDi + ΔPLoss,Σ
即保证有功功率电源发出有功与系统发电负荷相平衡。 2、相关的一些基本概念: 有功功率电源:电力系统各类发电厂的发电机; 系统电源容量(系统装机容量):系统中所有发电厂机组
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.3电力系统的频率特性
4.3.1发电机组自动调速系统工作原理
调整系统频率的主要手段是发电机组原动机的自动调节转速系统,或简称自动调速系统,特别是其中的调速器和调频器(又称同步器)。

以下,就从自动调速系统的作用开始,讨论频率调整。

自动调速系统的种类很多,以下介绍的是一种相当原始的机械调速系统—离心飞摆式。

这种调速系统比较直观,但它的调节机理又和新型调速系统(如电液式调速系统)没有很大差别。

离心飞摆式调速系统的示意图如图4-7。

图4-7离心飞摆式调速系统
其作用原理如下:
调速器的飞摆由套筒带动转动,套简则为原动机的主铀所带动。

单机运行时,因机组负荷的增大,转速下降,飞摆由于离心力的减小,在弹簧的作用下向转轴靠拢,使A点向下移动到A``。

但因油动机活塞两边油压相等,B点不动,结果使杠杆AB绕B点逆时针转动到A``B。

在调频器不动作的情况下,D点也不动,因而在A点下降到A``时,杠杆DE绕D点顺时针转动到DE`,E点向下移动到E`。

错油门活塞向下移动,使油管a、b的小孔开启,压力油经油管b进入油动机活塞下部,而活塞上部的油则经油管a经错油门上部小孔溢出。

在油压作用下,油动机活塞向上移动,使汽轮机的调节汽门或水轮机的导向叶片开度增大,增加进汽量或进水量。

与油动机活塞上升的同时,杠杆AB绕A点逆时针转动,将连结点C从而错油门活塞提升,使油管a、b 的小孔重新堵住。

油动机活塞又处于上下相等的油压下,停止移动。

由于进汽或进水量的增加,机组转速上升,A点从A``回升到A`。

调节过程结束。

这时杠杆AB的位置为A`CB`。

分析杠析AB的位置可见,杠杆上C 点的位置和原来相同,因机组转速稳定后错油门活塞的位置应恢复原状;B`位置较B高,A`的位置较A略低;相应的进汽或进水量较原来多,机组转速较原来略低。

这就是频率的“一次调整”作用。

对应负荷的增大,发电机输出功率增加,频率略低于原来值;如果负荷降低,调速器调整作用将使输出功率减小,频率略高于原来值。

这就是频率的一次调整,频率的一次调整由调速器自动完成的。

调整的结果,频率不能回到原来值,因此一次调整为有差调节。

为使负荷增加后机组转速仍能维持原始转速,要求有“二次调整”。

“二次调整”是借调频器完成的。

调频器转动蜗轮、蜗杆,将D点抬高。

D点上升时,杠杆DE绕F点顺时针转动,错油门再次向下移动,开启小孔。

在油压作用下,油动机活塞再次向上移动,进一步增加进汽或进水量。

机组转速上升,离心飞摆使A 点由A`向上升。

而在油动机活塞向上移动时,杠杆AB又绕A逆时针转动,带动C、F、E点向上移动,再次堵塞错油门小孔,再次结束调节过程。

如D点的位移选择得恰当,A点就有可能回到原来位置。

这就是频率的“二次调整”作用。

由于调整的结果,频率能回到原来值,因此二次调整为无差调节。

4.3.2发电机组的有功功率—频率静态特性
将上述调节过程中发电机组的有功功率与频率关系用发电机组的功频静特性或频率特性表示。

图4-8中直线的斜率称为发电机的单位调节功率(或发电机组功频静特性系数),
(4-2)
其数值表示为频率发生单位变化时,发电机输出功率的变化量,负号表示二者变化方向相反,即发电机输出功率增加,频率是降低的。

用标幺值表示为
发电机组的调差系数是指机组由空载到满载时,转速(频率)变化与发电机输出功率变化之比,即
(4-3)
用标幺值表示为:
汽轮发电机组:
水轮发电机组:
若机组负荷升高使转速下降,可以通过伺服电动机来提高转速,调整的结果使原来的功频静特性2平行右移为特性1。

若机组负荷降低使转速升高高,则可通过伺服电动机来降低机组转速,调整的结果使原来的功频静特性2平行左移为特性3.
图4-8功频静态特性的平移
4.3.3有功负荷的频率静态特性
根据所需的有功功率与频率的关系可将负荷分成以下几类:
不受频率影响的负荷;与频率成正比的负荷;与频率的二次方成比例的负荷;与频率的高次方成比例的负荷。

根据统计资料,系统负荷以第二类占多数,因此负荷的静态频率特性可近似表示为一条直线,如图4-9所示。

图4-9有功负荷的频率静态特性
系统处于运行稳态时,系统中有功负荷随频率的变化特性称为负荷的静态频率特性。

所谓联结容量,是指频率、电压等于额定值时,接在电网上的用电设备的实际容量。

如果联结容量改变,静态特性曲线将上下移动。

图4-9中直线的斜率为:
(4-4)
用标幺值表示为:
K D,K D*称为负荷的频率调节效应系数,或简称为负荷的频率调节效应。

它反映了系统负荷对频率的自动调整作用。

相关文档
最新文档