有限元基础理论教程 lecture03

合集下载

有限元基础课件

有限元基础课件

0 l
0
q(
x)
x
3dx
ql
Q 均布横向力q:M
yi zi
Q yj
2 ql 2
12 ql
M zj
2 ql 2
12
第3节 单元刚度矩阵旳坐标变换
Re , e ,[k]表示单元在局部坐标系oxy的结点力,结点位移,刚度矩阵 Re , e ,[k]表示单元在整体坐标系oxy的结点力,结点位移,刚度矩阵
bi x
ci
y
(i, j, k)
u Niui N ju j Nkuk Niui v Nivi N jv j Nkvk Nivi
d
u v
Ni I
NjI
Nk I e Ne
I 二阶单位阵,[N] 形函数矩阵
第1节 三角形常应变单元(续2)
三、应变
u
x y
xy
S1
总虚变形功:
U ( x x y y z z yz yz zx zx xy xy )dxdydz
对于平面问题:
(Xu Yv)dxdy (Xu Yv)ds S1
( x x y y xy xy )dxdy
第4节 最小势能原理
最小势能原理
在几何可能旳一切允许位移和形变中,真正旳位移和形变使总势能取 最小值;反之,使总势能取最小值者也必是真正旳位移和形变。
总 势 能: U V
形变势能:U
1 2
( x x y y z z yz yz zx zx xy xy )dxdydz
外力势能:V ( Xu Yv Zw)dxdydz ( Xu Yv Zw)dS
S1
形变势能变分:
U ( x x y y z z yz yz zx zx xy xy )dxdydz

有限元基本理论

有限元基本理论
第1章 预备知识
2、虚应力原理
第1章 预备知识
1.4.4 线弹性力学的变分原理
1、最小位能原理
第1章 预备知识
设:
第1章 预备知识
2、最小余能原理
第1章 预备知识
第1章 预备知识
第2章 弹性力学有限元
2.1 平面问题3结点三角形单元
第2章 弹性力学有限元
2.1.1 单元位移模式及插值函数
第2章 弹性力学有限元
取:
则:
2.3.3 3结点环状单元的等效结点荷载
第2章 弹性力学有限元
例:计算3结点环状单元自重荷载
由面积坐标
第2章 弹性力学有限元
积分
则:
2.4 空间问题有限元
2.4.1 4结点四面体单元
第2章 弹性力学有限元
1、位移函数
第2章 弹性力学有限元
其中:
代入结点坐标得:
有限元基本理论
目 录
第1章 预备知识 第2章 弹性力学有限元 第3章 单元插值函数的构造 第4章 杆件结构力学问题 第5章 平板弯曲问题 第6章 应用中的若干问题 第7章 材料非线性问题
第1章 预备知识
1.1 引言
数值分析方法
有限差分法
微分方程近似解法
有限单元法
几何形状规则
几何形状规则
则两项近似解为:
力矩法
一项近似解,取W1=1(0≤x≤1)
则一项近似解为:

第1章 预备知识
两项近似解,取W1=1,W2=x

则两项近似解为:
伽辽金法
第1章 预备知识
一项近似解,取W1= N1 = x(1-x)

则一项近似解为:
两项近似解,取W1= N1= x(1-x) ,W2= N2 = x2(1-x)

有限元讲义3-2

有限元讲义3-2

y y
A-17
第九节 有限元法分析的步骤
一、单元刚阵的推导 1 写出位移函数; 2 计算单元应变; 3 计算单元应力; 4 根据虚功方程,得出单元刚阵。 二、整体结构的分析 1 建立整体结构的静力平衡方程式; 2 进行边界条件处理; 3 解方程组,求节点位移; 4 根据节点位移求应变、应力。
u ( x, y) Niu i N j u j N k uk Nl ul
令ui 1, u j uk ul 0, 代如上ux, y 式
v( x, y) Ni vi N j v j N k vk Nl vl
u( x, y) Ni
综上对三种单元的分析,可以看出,形状函数是单元一些 可能位移的方程式。 • 二、形状函数的性质
性质1:任一形状函数在各节点处的值或为1或为0
1 Ni 0
在节点i处 在其它节点处
A-5
性质2:单元的各个形状函数之和总是等于1
Ni 1
这两个性质的意义是:第一,形状函数反应了相邻单元在共同节点 处位移的连续性;它反映了单元的刚体位移。 • 三、形状函数的设定的说明 形状函数既然是单元的一些可能产生的位移,因此它们与位移函数 具有相同的特性,可以用插值多项式来设定。设定时要满足上诉形 状函数性质以及连续性和常应变条件。即 1、形状函数应满足
A-15
u x x x v y 0 y xy u v y x y N i x 0 Ni y N j x 0 N j y
A-16
0 Ni y Ni x
ห้องสมุดไป่ตู้
0 N j y N j x

有限元教程课件 第三讲

有限元教程课件 第三讲

第§三5-2章三角平形面常问应题变单有元限分单析元法
二、平面问题的常应变单元—三结点三角形单元
两类平面问题:区别仅在于弹性矩阵
平面应力:如膜、薄板等
D
E
1
1
0 0
1 2 0
0
1
2
平面应变:如水坝、挡土墙等
1
D'
E1 1 1 2
1
1 1
0
0
1 2
0
0 21
第§三5-2章三角平形面常问应题变单有元限分单析元法
二、变分原理与里兹法
变分原理的三种表述:
U A( Xu Yv )dxdy S ( Xu Yv )ds
应变能变分等于外力功变分 — 位移变分方程
A( x x y y xy xy )dxdy A( Xu Yv )dxdy S ( Xu Yv )ds
— 虚功方程
(U V ) 0
ui uj
xi xj
yi yj
um xm ym
1
2
1 2A
1
ui uj
yi yj
1 um ym
1
3
1 2A
1
xi xj
ui uj
1 xm um
1 xi yi 2A 1 xj yj
1 xm ym
单元编码 i, j, m 应逆时针转向, 可使A(三角形面积)>0。
如果令:
ai
xj xm
yj ym
x j ym xm y j ;
第§三5-2章三角平形面常问应题变单有元限分单析元法
一、有限元分析的主要步骤(位移元)
根据基本未知量的不同,有限元法中的单元可分为位移元、 应力元和混合元。 以结点位移为基本未知量的单元为位移单元。

Ansoft HFSS的有限元理论基础

Ansoft HFSS的有限元理论基础

(2.21)
再在(2.21)式中加入边界条件 V1 0和V3 100 ,则有最 终的矩阵方程: 1 0 0 V 0 1 1 10 1 V 0 (2.22) 2 7 21 3 0 0 1 100 3 V 很方便的可以解出V2 70 。
k

n 1 n
i
i
式中,n为单元的序号,N为总的单元数。
注意到在离散化子域上有:
1 1 ˆ ˆ V x x p q x V x q V i i i i i x l l i 1 , 2 i 1 , 2
(2.17) (2.18)
A B
(2.24)
方程(2.23)是确定型的,它是从非齐次微分方程或非齐次 边界条件或从它们两者兼有的问题中导出的。在电磁学中, 确定性方程组通常与散射、辐射以及其它存在源或激励的确 定性问题有关。而方程(2.24)是本征值型的,它是从齐次 微分方程和齐次边界条件导出的。在电磁学中,本征值方程 组通常与诸如波导中波传输和腔体中的谐振等无源问题有关。 f L 在这种情形下,已知向量 为零,矩阵 可以写成 的形式,这里λ表示未知的本征值。这两种方程组 A B 的解法是不同的,我们会在2.4节中具体介绍。
(2)插值函数的选择。在每一个离散单元的结点上的值是我 们要求的未知量,在其内部的其它点上的值是依靠结点值对其 进行插值。我们在以上的一维例子中选择了线性插值,很多复 杂的问题中如果选用高阶多项式插值精度应该更高,但是公式 也更复杂。Ansoft HFSS软件中有两种插值方式可供选择,我 们将在下节中的介绍。
如果我们假设在单元内部电位函数按照线性规律变化,也 就是对于单元内部的函数进行一阶插值:

《有限元基础》课件

《有限元基础》课件
广泛适用性
有限元方法可以应用于各种物理问题和工程领域 ,如结构力学、流体力学、热传导、电磁场等。
高效性
有限元方法采用分块逼近的方式,将整体问题分 解为多个子问题,从而大大降低了问题的规模和 复杂度,提高了计算效率。
精度可控制
通过选择足够小的离散元尺寸和足够多的元数目 ,可以控制求解的精度,使得结果更加精确可靠 。
有限元方法对初值和边界条件 的选取比较敏感,不同的初值 和边界条件可能导致截然不同 的结果。
高阶偏微分方程的离散化 困难
对于一些高阶偏微分方程,有 限元方法的离散化过程可能会 变得相当复杂和困难。
有限元方法的发展趋势
并行化和高性能计算
随着计算机技术的发展,有限元方法的计算效率和精度得到了极大的提高。未来,随着并行化和高性能计算技术的进 一步发展,有限元方法的计算效率将会得到进一步提升。
02
有限元的数学基础
线性代数基础知识
向量与矩阵
介绍向量的基本概念、向量的运算、矩阵的表示和基 本运算。
线性方程组
阐述线性方程组的基本概念、解法以及在有限元分析 中的应用。
特征值与特征向量
介绍特征值和特征向量的概念、计算方法以及在有限 元分析中的应用。
变分法基础知识
变分法的基本概念
阐述变分法的基本思想、定义和定理,以及在 有限元分析中的作用。
弱收敛与弱*收敛
03
介绍弱收敛和弱*收敛的概念、性质以及在有限元分析中的应用

03
有限元方法的基本步骤
问题的离散化
总结词
将连续的问题离散化,将连续体划分为有限个小的单元,每个单元称为有限元 。
详细描述
在有限元方法中,首先需要对实际问题进行离散化,即将连续的问题划分为有 限个小的单元,每个单元称为有限元。离散化的目的是将连续的物理量近似为 离散的数值,以便进行数值计算。

数学有限元基础PPT课件

数学有限元基础PPT课件

back
• C点的位移为杆件①和②的总伸长量,即 • 则归纳以上结果完整的解答为
第36页/共73页
• 讨论:1.以上完全按照材料力学的方法,将对象进行分解来获得 问题的解答,它所求解的基本力学变量是力(或应力),由于 以上问题非常简单,而且是静定问题,所以可以直接求出,但 对于静不定问题,则需要变形协调方程(compatibility equation), 才能求解出应力变量,在构建问题的变形协调方程时,则需要 一定的技巧;2.若采用位移作为首先求解的基本变量,则可以使 问题的求解变得更规范一些,下面就基于A、B、C三个点的位 移来进行以上问题的求解。
22
第22页/共73页
典型例题1 一个一维函数的两种展开方式的比较
• 设有一个一维函数f (x),x∈[x0,xl]分析它的展开与逼近形式。
• 首先考虑基于全域的展开形式,如采用傅立叶级数(Fourier series)展开,则有:
• f(x)≈c0.φ0( x∈[x0,xl])+ c1.φ1( x∈[x0,xl])+….
19
第19页/共73页
• 有限元分析的目的:针对具有任意复杂几何形状变形体,完整获取在复杂外力作用下它内部的准确力学信 息,即求取该变形体的三类力学信息(位移、应变、应力)。
• 在准确进行力学分析的基础上,设计师就可以对所设计对象进行强度(strength)、刚度(stiffness)等方面 的评判,以便对不合理的
3
第3页/共73页
1.2有限元方法的历史
• 有限元方法的思想最早可以追溯到古人的“化整为零”、“化圆为直”的作法,如“曹冲称象”的典故, 我国古代数学家刘徽采用割圆法来对圆周长进行计算;这些实际上都体现了离散逼近的思想,即采用大量 的简单小物体来“冲填”出复杂的大物体。

有限元课件ppt

有限元课件ppt
整体刚度矩阵
将所有单元的刚度矩阵依照一定的方式组合起来,形成整体的刚度 矩阵。
载荷向量与束缚条件
载荷向量
表示作用在结构上的外力,包括集中力和散布力。
束缚条件
表示结构在某些结点上的位移受到限制,常见的束缚有固定束缚、 弹性束缚等。
载荷向量和束缚条件的引入
在建立整体刚度矩阵后,需要将载荷向量和束缚条件引入到整体刚 度矩阵中,形成完全的线性方程组。
并行计算
采取并行计算技术,提高计算效率。
算法改进
优化算法,提高计算精度和效率。
06 有限元分析软件 介绍
ANSYS
01
功能特点
ANSYS是一款功能强大的有限元分析软件,广泛应用于结构、流体、
电磁等多种工程领域。它提供了丰富的建模工具和求解器,能够处理复
杂的工程问题。
02
优点
ANSYS具有友好的用户界面和强大的前后处理功能,使得建模和网格
有限元法的应用领域
结构分析
有限元法在结构分析中应用最 为广泛,可以用于分析各种类 型的结构,如桥梁、建筑、机
械零件等。
热传导
有限元法可以用于求解温度场 的问题,如热传导、热对流和 热辐射等问题。
流体动力学
有限元法在流体动力学领域也 有广泛应用,可以用于求解流 体流动和流体传热等问题。
其他领域
除了上述领域外,有限元法还 广泛应用于电磁场、声场、化
学反应等领域。
02 有限元的数学基 础
线性代数基础
向量与矩阵
01
介绍向量的基本概念、向量的运算、矩阵的表示和运算规则等

线性方程组
02
论述线性方程组的解法,包括高斯消元法、LU分解等。
特征值与特征向量
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档