数据处理平台技术方案

合集下载

数据采集处理项目-技术方案

数据采集处理项目-技术方案

数据采集处理项目-技术方案一、项目概述随着互联网时代的到来,数据已经成为企业决策的重要支撑,而数据采集和处理则成为了其中至关重要的一环。

本项目是一款数据采集处理平台,旨在为企业提供定制化的数据采集和处理解决方案,协助企业快速获取目标来源的数据,经过整理和加工后输出满足需求的数据文件,满足企业日常运营和决策所需的数据支持。

二、技术方案(一)、数据采集a)爬虫采用Python开发的多线程爬虫,可以快速爬取特定网站的数据内容,并根据需求提取并整理数据。

同时,爬虫抓取数据的速度也相对较快,加快了数据采集的效率。

b)API接口对于一些网站提供的开放接口,可以采用API接口的方式获取数据。

由于API返回的数据格式相对规范,因此数据分析的效率也更高。

c)数据源过滤筛选对于大量的数据源,我们需要进行逐一筛选和过滤,抓取相关的内容,减小对系统运行带来的压力。

(二)、数据处理a)数据清洗采集来的数据不一定是规范化、结构化好的数据,需要进行清洗整理工作。

实现方式可以采用Python Pandas、Spark等工具。

b)数据存储&导出数据清洗处理后,应该被存储在数据库中进行进一步的分析处理,以支持数据挖掘、可视化等应用场景的实现。

通常情况下选择使用开源数据库进行存储,例如MySQL、PostgreSQL等。

同时,在平台管理者对数据进行加工后,需要将数据以Excel、CSV等常见格式进行导出,以供用户进行操作。

c)异常数据处理由于数据源的多样性、结构的多样性,总会有一些脏数据、噪声数据的干扰,甚至会出现服务停机等问题。

针对这类异常数据,采取监控、索引、去重、文本匹配、数据质量分析、数据异常识别等方法,最终达到数据性能稳定、质量优良的状态。

(三)、平台部署a)开发语言和框架本平台采用Java语言开发,前端采用HTML、CSS、JS等技术,后端采用SpringMVC框架搭建。

b)数据库数据存储采用MySQL数据库,可通过可视化工具或SQL命令进行操作。

大数据平台建设方案

大数据平台建设方案

大数据平台建设方案(项目需求与技术方案)一、项目背景“十三五"期间,随着我国现代信息技术的蓬勃发展,信息化建设模式发生根本性转变,一场以云计算、大数据、物联网、移动应用等技术为核心的“新 IT"浪潮风起云涌,信息化应用进入一个“新常态"。

***(某政府部门)为积极应对“互联网+”和大数据时代的机遇和挑战,适应全省经济社会发展与改革要求,大数据平台应运而生。

大数据平台整合省社会经济发展资源,打造集数据采集、数据处理、监测管理、预测预警、应急指挥、可视化平台于一体的大数据平台,以信息化提升数据化管理与服务能力,及时准确掌握社会经济发展情况,做到“用数据说话、用数据管理、用数据决策、用数据创新",牢牢把握社会经济发展主动权和话语权。

二、建设目标大数据平台是顺应目前信息化技术水平发展、服务政府职能改革的架构平台.它的主要目标是强化经济运行监测分析,实现企业信用社会化监督,建立规范化共建共享投资项目管理体系,推进政务数据共享和业务协同,为决策提供及时、准确、可靠的信息依据,提高政务工作的前瞻性和针对性,加大宏观调控力度,促进经济持续健康发展.1、制定统一信息资源管理规范,拓宽数据获取渠道,整合业务信息系统数据、企业单位数据和互联网抓取数据,构建汇聚式一体化数据库,为平台打下坚实稳固的数据基础。

2、梳理各相关系统数据资源的关联性,编制数据资源目录,建立信息资源交换管理标准体系,在业务可行性的基础上,实现数据信息共享,推进信息公开,建立跨部门跨领域经济形势分析制度。

3、在大数据分析监测基础上,为政府把握经济发展趋势、预见经济发展潜在问题、辅助经济决策提供基础支撑.三、建设原则大数据平台以信息资源整合为重点,以大数据应用为核心,坚持“统筹规划、分步实施,整合资源、协同共享,突出重点、注重实效,深化应用、创新驱动”的原则,全面提升信息化建设水平,促进全省经济持续健康发展。

1、统筹规划、分步实施。

数据交换平台方案

数据交换平台方案
二、需求分析
1.数据整合需求:不同业务系统间存在数据格式、标准不一的问题,需通过数据交换平台实现统一整合。
2.数据共享需求:跨部门、跨业务场景下的数据共享需求日益增多,需建立高效的数据交换机制。
3.安全性需求:数据交换过程中需保障数据安全,防止泄露、篡改等风险。
4.合规性需求:遵守国家数据安全法律法规,确保数据交换活动合法合规。
六、总结
本数据交换平台方案旨在实现跨部门、跨系统、跨业务的数据整合与共享,提高数据处理效率,降低数据冗余,确保数据一致性。同时,遵循相关法律法规,保障数据交换过程的合法合规。通过本方案的实施,将为我国信息化建设提供有力支持。
第2篇
数据交换平台方案
一、引言
信息技术的飞速发展,促使各类业务系统在日常运营中产生大量数据。为实现数据的有效利用,降低信息孤岛现象,提高组织决策效率,本方案提出构建一套数据交换平台,以实现数据的无缝整合与共享。本方案将严格遵循相关法律法规,确保数据交换的合法性与合规性。
4.建立完善的日志记录和审计制度,对数据交换过程进行监控和追溯。
五、项目实施与保障
1.组织实施:成立项目组,明确分工,制定详细的项目进度计划。
2.技术保障:选用成熟的技术和产品,确保项目顺利推进。
3.人员培训:对项目相关人员开展技术培训,提高业务能力。
4.质量管理:建立质量管理体系,确保项目质量。
5.风险防控:加强风险识别和评估,制定应对措施。
(4)数据安全策略:采用加密、认证、权限控制等技术,确保数据交换过程的安全性。
3.核心模块
(1)数据交换模块:实现不同业务系统之间的数据交换,支持多种数据格式和传输协议。
(2)数据清洗模块:对交换数据进行清洗、校验、转换等操作,确保数据质量。

大数据解决方案

大数据解决方案

大数据平台技术解决方案目录第1章技术解决 (4)1.1大数据采集 (4)1.1.1概述 (4)1.1.2数据来源 (4)1.1.3数据现状 (5)1.1.4技术支撑 (6)1.1.5价值体现 (10)1.1.6解决工具 (10)1.2大数据存储 (11)1.2.1概述 (11)1.2.2技术支持--Hadoop概论 (11)1.2.3价值体现 (19)1.3大数据治理 (20)1.3.1概述 (20)1.3.2数据治理现状 (20)1.3.3数据治理概念 (21)1.3.4数据治理主要内容 (22)1.3.5技术实现 (28)1.3.6价值体现 (32)1.3.7解决工具 (34)1.4大数据分析 (34)1.4.1概述 (34)1.4.2大数据分析方法 (35)1.4.3数据分析的类型 (40)1.4.4数据分析步骤 (40)1.4.5价值体现 (41)1.4.6大数据分析应用 (42)1.4.7解决工具 (44)1.5大数据可视化 (44)1.5.1概述 (44)1.5.2大数据可视分析的概念 (45)1.5.3大数据可视化分析的方法 (45)1.5.4价值体现 (48)第1章技术解决1.1大数据采集1.1.1概述随着大数据时代的到来,数据正呈现出爆炸式的增长趋势。

随着IT技术的不断发展,无论是传统的业务系统数据,还是新型的非结构化数据,我们能够利用并转化为有用信息的数据变得越来越多。

表格1-1 传统数据采集与大数据数据采集对比1.1.2数据来源按照数据来源划分,大数据的三大主要来源分为商业数据、互联网数据与物联网数据。

1.商业数据商业数据是指来自企业ERP系统,各种POS终端以及网上支付系统等业务系统的数据,商业数据是现在最主要的数据来源渠道。

2.互联网数据互联网数据是指网络空间交互过程中产生的大量数据,包括通信记录及QQ、微信、微博等社交媒体产生的数据,其数据复杂且难以被利用。

3.物联网数据物联网是指在计算机互联网的基础上,利用射频识别、传感器、红外感应器、无线数据通信等技术,构造一个覆盖世界上万物互联的The Internet of Things。

大数据解决方案和技术方案

大数据解决方案和技术方案

大数据解决方案和技术方案引言随着信息时代的到来,数据量不断增长,传统的数据处理方式已经难以满足企业的需求。

如何高效地处理、存储和分析海量数据成为了企业面临的重要问题。

在这样的背景下,大数据解决方案和技术方案应运而生。

本文将介绍大数据解决方案的定义、优势以及常用的技术方案。

什么是大数据解决方案大数据解决方案是指通过利用各种技术和工具,对规模庞大、高速生成、多样化的数据进行全面分析、加工和应用的一种解决方案。

它包括了数据采集、存储、处理、分析和可视化等环节,并提供相应的技术和工具支持。

大数据解决方案的优势提供全面的数据分析大数据解决方案可以帮助企业对海量数据进行全面深入的分析。

通过分析这些数据,企业可以洞察市场趋势、发现潜在机会、优化业务流程等。

传统的数据处理方式往往只能处理结构化数据,而大数据解决方案能够处理结构化数据和非结构化数据,包括文本、图片、音频、视频等。

支持快速的数据处理大数据解决方案采用分布式计算和存储技术,可以在短时间内对大量数据进行处理。

相比传统的单机处理方式,大数据解决方案可以并行处理数据,大幅提高数据处理的速度。

实时数据分析大数据解决方案支持对实时数据进行分析。

企业可以通过实时数据分析,及时发现问题并进行调整。

例如,电商企业可以根据用户实时行为数据进行个性化推荐,提高用户体验。

常用的大数据技术方案HadoopHadoop是一个开源的大数据处理平台,它采用分布式存储和计算的方式,能够对大量数据进行高效的处理和分析。

Hadoop使用HDFS(Hadoop DistributedFile System)来存储数据,并通过MapReduce来进行数据处理。

Hadoop生态系统还包括Hive、HBase、Spark等组件,能够满足不同场景下的数据处理需求。

SparkSpark是另一个流行的大数据处理框架。

相比于Hadoop,Spark拥有更快的速度和更强的实时处理能力。

Spark提供了丰富的API,支持分布式数据处理、机器学习、图计算等多种应用场景。

大数据平台工作实施方案

大数据平台工作实施方案

大数据平台工作实施方案一、背景。

随着信息化时代的到来,大数据技术已经成为企业发展的重要支撑。

大数据平台的建设和实施对于企业的发展至关重要。

因此,制定一套科学合理的大数据平台工作实施方案,对于企业的发展具有重要意义。

二、目标。

1. 提高数据处理和分析的效率。

2. 构建稳定可靠的大数据平台。

3. 实现数据的准确、及时、可视化分析。

4. 降低数据管理和维护成本。

5. 支持企业业务发展和决策制定。

三、实施方案。

1. 确定需求,首先,需要明确大数据平台的需求,包括数据存储、计算能力、数据处理和分析的需求等。

通过与业务部门的沟通,明确业务需求,为后续的平台设计和建设提供依据。

2. 平台架构设计,根据需求确定大数据平台的架构设计,包括硬件设备、软件平台、网络架构等方面。

要充分考虑平台的扩展性、稳定性和安全性,确保平台能够满足未来业务发展的需求。

3. 技术选型,在平台建设过程中,需要进行技术选型,选择适合企业实际需求的大数据处理和分析技术。

同时,要考虑技术的成熟度、开发和维护成本,以及与现有系统的集成情况。

4. 数据采集和存储,建立数据采集和存储体系,确保数据的完整性和安全性。

同时,要考虑数据的备份和恢复机制,以应对意外情况。

5. 数据处理和分析,建立数据处理和分析平台,实现数据的清洗、加工和分析。

同时,要提供可视化的数据展示和报表功能,为业务部门提供决策支持。

6. 平台测试和优化,在平台建设完成后,需要进行全面的测试和优化工作,确保平台的稳定性和性能。

同时,要建立监控系统,及时发现和解决平台运行中的问题。

7. 运维管理,建立完善的大数据平台运维管理体系,包括日常维护、安全管理、性能优化等方面。

同时,要建立故障处理和应急响应机制,确保平台的稳定运行。

四、总结。

大数据平台的建设和实施是一个复杂的工程,需要综合考虑技术、业务和管理等多方面因素。

只有制定科学合理的实施方案,才能确保大数据平台能够真正发挥作用,为企业的发展提供有力支撑。

大数据平台技术方案(大数据平台技术解决方案) 大数据平台技术方案 大数据平台技术方案(大数据平台技术

大数据平台技术方案(大数据平台技术解决方案) 大数据平台技术方案 大数据平台技术方案(大数据平台技术

大数据平台技术方案(大数据平台技术解决方案) 大数据平台技术方案大数据平台技术方案(大数据平台技术解决方案)主要包括以下几个方面:数据采集:通过各种数据采集工具和技术,将各种形式的数据从不同的数据源(如数据库、文件、传感器等)中获取到大数据平台中。

常用的数据采集技术包括ETL(抽取、转换、加载)、日志收集、实时数据采集等。

数据存储:在大数据平台中,通常需要使用分布式存储技术来存储庞大的数据量。

常用的数据存储技术包括Hadoop分布式文件系统(HDFS)、分布式数据库(如HBase、Cassandra、MongoDB等)等。

数据处理:大数据平台中的数据处理需要使用一些计算和分析技术。

常用的数据处理技术包括Hadoop MapReduce、Spark、Flink等,这些技术能够对大规模的数据进行并行计算和分析。

数据挖掘与分析:在大数据平台中,数据挖掘和分析是非常重要的一环。

通过使用各种数据挖掘和分析技术,可以从海量的数据中挖掘出有价值的信息和洞见。

常见的数据挖掘和分析技术包括机器学习、数据可视化、数据建模等。

数据治理与安全:在大数据平台中,为了保证数据的质量和安全性,需要进行数据治理和安全管理。

数据治理包括数据质量管理、元数据管理、数据资产管理等;数据安全包括数据加密、权限管理、身份认证等。

数据可视化与展示:为了方便用户对数据进行查询和分析,大数据平台需要提供可视化和展示的功能。

常见的数据可视化和展示技术包括数据仪表盘、报表生成、数据探索工具等。

以上是大数据平台技术方案的一些关键技术和组成部分。

根据具体的需求和场景,可以选择适合的技术和工具来搭建大数据平台。

在实际应用中,还需要考虑平台的性能和可扩展性,以及与其他系统的集成等因素。

数据中台技术方案

数据中台技术方案

数据中台技术方案本技术方案主要明确公司数据中台建设目标、建设原则、能力框架、技术要求和演进策略等内容,为公司数据中台建设提供技术指导。

一、建设背景(一)建设现状当前公司信息内网建成了覆盖公司总部及27家省(市)公司的两级全业务统一数据中心分析域,初步具备了数据接入、数据存储计算、数据分析应用相关能力,实现公司核心业务系统数据的接入及整合汇聚,支撑了各专业数据分析类应用的构建。

在数据接入方面:通过OGG、ETL等技术实现业务系统结构化数据接入至分析域贴源区,通过采集量测数据接入工具实现采集量测数据接入大数据平台。

在数据存储方面:贴源历史层采用分布式关系型数据库(SG-RDB-MS)实现各业务系统贴源数据的存储。

数据仓库层采用MPP数据库(GBase8a),基于统一数据模型(SG-CIM)实现部分数据标准化存储。

数据集市层采用关系型数据库(SG-RDB-PG)实现分析计算后结果数据存储;采集量测数据采用大数据平台分布式列式数据库(Hbase)进行存储。

在数据计算方面:针对小规模数据计算分析需求,通过MPP数据库(Gbase8a)并行计算技术实现。

针对大批量的离线计算需求通过大数据平台批量计算组件(MapReduce)实现。

针对实时数据计算需求,通过大数据平台实时消息队列(kafka)、内存计算(Spark)、流计算(Storm)等组件实现。

在数据应用方面:针对大数据分析应用需求,通过自助式分析工具、Tableau等工具实现。

(二)存在问题当前分析域在各单位分析应用中发挥了一定的作用,但从应用角度来看仍存在技术门槛高、数据难读懂、数据获取难等问题,具体如下:1.技术组件多样,应用难度大。

分析域主要包括数据接入、数据存储、数据计算等方面的21个技术组件,涉及厂商多,技术体系性差,组件之间技术集成复杂,相关工具友好性不足,对专业能力要求高,应用难度大。

2.找数据困难,数据应用门槛高。

一是当前分析域未形成完整的数据资源目录,数据资源检索困难;二是分析域目前尚未构建数据服务,数据应用复用性差,增加数据应用难度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据处理平台技术方案2016年06月目录1.项目说明........................................................... 错误!未定义书签。

背景 ............................................................. 错误!未定义书签。

术语定义及说明 ................................................... 错误!未定义书签。

2.建设目标和原则..................................................... 错误!未定义书签。

建设目标 ......................................................... 错误!未定义书签。

建设和完善数据处理流程 ......................................... 错误!未定义书签。

建设和完善管理平台 ............................................. 错误!未定义书签。

建立良好的容错机制 ............................................. 错误!未定义书签。

设计原则 ......................................................... 错误!未定义书签。

可靠性 ......................................................... 错误!未定义书签。

易用性 ......................................................... 错误!未定义书签。

扩展性 ......................................................... 错误!未定义书签。

3.功能需求........................................................... 错误!未定义书签。

需求概述 ......................................................... 错误!未定义书签。

功能模块 ......................................................... 错误!未定义书签。

数据收集 ....................................................... 错误!未定义书签。

数据清洗 ....................................................... 错误!未定义书签。

数据存储 ....................................................... 错误!未定义书签。

对外输出 ....................................................... 错误!未定义书签。

流程监控 ....................................................... 错误!未定义书签。

管理平台 ....................................................... 错误!未定义书签。

其他需求 ......................................................... 错误!未定义书签。

性能需求 ....................................................... 错误!未定义书签。

可靠性要求 ..................................................... 错误!未定义书签。

进度计划 ....................................................... 错误!未定义书签。

故障处理要求 ................................................... 错误!未定义书签。

4.方案总体设计....................................................... 错误!未定义书签。

技术路线选择 ..................................................... 错误!未定义书签。

总体架构 ......................................................... 错误!未定义书签。

架构介绍 ....................................................... 错误!未定义书签。

数据处理流程 ................................................... 错误!未定义书签。

5.安全设计........................................................... 错误!未定义书签。

数据的备份和恢复系统 ............................................. 错误!未定义书签。

管理层安全 ....................................................... 错误!未定义书签。

1.项目说明1.1背景因项目数据拆分,***将要创建一套完备的数据管理体系,替换原有的数据处理方式。

为用户提供更高效、便捷的服务。

1.2术语定义及说明2.建设目标和原则2.1建设目标2.1.1建设和完善数据处理流程基于原有的处理流程,采用新技术架构,重构现有处理平台,彻底解决现有平台的问题。

2.1.2建设和完善管理平台建设和完善管理平台,可以为运维人员提供更好的维护管理的工具,并且能够让管理员可以根据多种数据的不同要求设置出适应数据的处理规则。

2.1.3建立良好的容错机制建立良好的容错机制,设置更优的数据处理规则,为数据处理提供优质服务。

2.2设计原则2.2.1可靠性随着系统的建成,必然各平台之间的信息传递对系统的依赖程度将变得很高,系统失效所造成的影响也就越大。

因此,系统的设计必须,从系统结构、技术措施、设备选型以及厂商的技术服务和维修响应能力等方面综合考虑,以确保系统运行的可靠性和稳定性。

2.2.2易用性我们系统设计必须考虑到使用者和以后的维护的方便容易。

所以,在系统的设计中要求系统架构易于理解,系统管理方便简洁,系统维护自动容易。

2.2.3扩展性平台的建设是一项长期的工程,要充分考虑其将来潜在的需求。

科学的设计思想应着眼于目前的应用系统及现有的技术,并考虑以最小的代价来适应网络技术不断的发展,使现有系统能够与需求同步增长,使系统在元数据不断增加的基础上,维护者能够很方便的扩充平台功能。

3.功能需求3.1需求概述实现对不同来源的多种数据类型文件进行收集、存储、到最终业务的统一处理,实现数据实时对接,并具有扩展性。

1) 数据收集:2) 数据整理:3) 数据存储:4) 业务接口:5)监控:3.2功能模块3.2.1数据收集~~~~~~~~~~~3.2.2数据清洗~~~~~~~~~~~~~3.2.3数据存储经估算,每天的数据约有9-10G,在如此数据量的情况下,要对数据进行存储,同时应用缓存,提高输出效率。

3.2.4对外输出为保证原有外部用户正常使用,数据输出与原有输出保持一致。

3.2.5流程监控针对整个流程进行数据监控监控原始数据站点缺失、监控非法数据。

以便反馈给原始数据提供方,后期优化。

3.2.6管理平台管理平台需要有如下功能:3.3其他需求3.3.1性能需求3.3.2可靠性要求3.3.3进度计划待定3.3.4故障处理要求软件故障:如操作系统死机、崩溃、数据库管理系统过载或其他原因崩溃,通过自动或手动重新启动系统解决,如重新启动不能解决问题,可以切换至备用服务器;硬件故障:如硬盘故障,采取措施是定期进行数据库备份,一旦出现硬件故障,可以使用备份文件恢复数据库。

4.方案总体设计4.1技术路线选择4.2总体架构4.2.1架构介绍4.2.2数据处理流程5.安全设计5.1数据的备份和恢复系统在安全建设中必不可少的一个环节就是数据的常规备份和历史保存。

一般在生产本地的备份目的主要有两个:一是生产系统的业务数据由于系统或人为误操作造成损坏或丢失后,可及时在生产本地实现数据的恢复;另一个目的是在发生地域性灾难(地震、火灾、机器毁坏等)时,可及时在本地或异地实现数据及整个系统的灾难恢复。

5.2管理层安全网络安全架构的最高层就是管理平台内部网进行操作、维护和到使用的内部人员进行管理。

对人员的管理和安全制度的制订是否有效,直接影响这一层的安全问题。

制定用户权限划分级别,不同权限人员,分管权限内的功能等。

相关文档
最新文档