高中数学简单几何图形与表面积公式

合集下载

8.3.1棱柱、棱锥、棱台的表面积和体积课件(人教版)

8.3.1棱柱、棱锥、棱台的表面积和体积课件(人教版)
(1) 共得到多少个棱长为1cm的小立方体? (2) 三面是红色的小立方体有多少个?它们的表面积之和是多少? (3) 两面是红色的小立方体有多少个?它们的表面积之和是多少? (4) 一面是红色的小立方体有多少个?它们的表面积之和是多少? (5) 六面均没有颜色的小立方体有多少个?它们的表面积之和是多少?它 们占有多少立方厘米的空间?
解:(3) 两面是红色的小立方体有24个, 表面积之和是144cm2. (4) 一面是红色的小立方体有24个, 表面积之和是144cm2.
(5) 六面均没有颜色的小立方体有8个, 表面积之和是 32cm2,它们占有的空间是8cm3.
练习
- - - - - - - - - - 教材116页
4. 求证:直三棱柱的任意两个侧面的面积和大于第三个侧面的面积.
3
课堂小结
棱柱、棱锥、棱台的表面积
棱柱、棱锥、棱台都是多面体,表面积就是围成多面体各个面的面积的和.
棱柱、棱锥、棱台的体积
棱柱
棱锥
棱台
底面积为 S ,高为 h V棱柱 Sh
底面积为 S ,高为 h
V棱锥
1 3
Sh
上底面积为 S ,下底面积
为 S ,高为 h
V棱台
1 3
h(S
SS S)
如图已知棱长为a的正四面体P-ABC,求它的体积.
多面体的表面积就是围成多面体各个面的面积的和.棱柱、棱锥、棱 台的表面积就是围成它们的各个面的面积的和. 例1 如图已知棱长为a,各面均为等边三角形的四面体P-ABC,求它的表面积.
P
【解析】因为△PBC是正三角形,其边长为a,
所以
1 SPBC 2 a a sin 60
3 a2. 4
A

8.3简单几何体的表面积与体积-【新教材】人教A版(2019)高中数学必修第二册同步讲义

8.3简单几何体的表面积与体积-【新教材】人教A版(2019)高中数学必修第二册同步讲义
【详解】
如图所示:
设外接球和内切球的半径分别为R,r,由于正四面体是中心对称图形,
所以外心和内心重合,球心O在高线上,底面中心为 ,
因为正四面体棱长为2,
所以 ,
在 中, ,即 ,
解得 ,
因为正四面体的体积为 ,
所以 ,
解得
9、在直三棱柱 中, , , , .
(1)求三棱锥 的表面积;
(2)求 到面 的距离.
故选:
题型七表面积、体积与函数
例7 底面半径为2,高为 的圆锥有一个内接的正四棱柱(底面是正方形,侧棱与底面垂直的四棱柱).
(1)设正四棱柱的底面边长为 ,试将棱柱的高 表示成 的函数.
(2)当 取何值时,此正四棱柱的表面积最大,并求出最大值.
【答案】(1) ;(2) , .
【分析】
(1)根据轴截面的三角形的比例关系,列式求函数;(2)根据 ,列出正四棱柱的表面积,并利用二次函数求最大值.
下底面面积:S下底=πr2
侧面积:S侧=πl(r+r′)
表面积:S=π(r′2+r2+r′l+rl)
2、体积公式
(1)柱体:柱体的底面面积为S,高为h,则V=Sh.
(2)锥体:锥体的底面面积为S,高为h,则V= Sh.
(3)台体:台体的上,下底面面积分别为S′,S,高为h,则V= (S′+ +S)h.
【详解】
(1)过圆锥及其内接圆柱的轴作截面,如图所示,
因为 ,所以 .从而 .
(2)由(1) ,因为 ,
所以当 时, 最大,
即圆柱的高为圆锥高的一半时,圆柱的侧面积最大.
1、已知正方体外接球的体积是 ,那么该正方体的内切球的表面积为_____________.
【答案】

高中数学学考公式大全

高中数学学考公式大全

高中数学学考公式大全高中数学学考常用公式及结论必修1:一、集合1、含义与表示:集合中元素具有确定性、互异性和无序性。

集合可以分为有限集和无限集。

集合可以用列举法、描述法和图示法表示。

2、集合间的关系:若对于任意的x∈A,都有x∈B,则称A是B的子集,记作A⊆B。

若A是B的子集,且在B中至少存在一个元素不属于A,则A是B的真子集,记作A⊂B。

若A⊆B且B⊆A,则A=B。

3.元素与集合的关系:属于∈,不属于∉,空集为∅。

4、集合的运算:并集由属于集合A或属于集合B的元素组成的集合叫并集,记为A∪B;交集由集合A和集合B中的公共元素组成的集合叫交集,记为A∩B;补集在全集U中,由所有不属于集合A的元素组成的集合叫补集,记为A'或C。

5.集合{a1,a2,…,an}的子集个数共有2^n个;真子集有2^n–1个;非空子集有2^n–1个。

6.常用数集:自然数集N,正整数集N*,整数集Z,有理数集Q,实数集R。

二、函数的奇偶性1、定义:若对于任意的x∈定义域,有f(–x) =–f(x),则称函数f为奇函数;若对于任意的x∈定义域,有f(–x) =f(x),则称函数f为偶函数。

2、性质:(1)奇函数的图象关于原点成中心对称图形;(2)偶函数的图象关于y轴成轴对称图形;(3)如果一个函数的图象关于原点对称,那么这个函数是奇函数;(4)如果一个函数的图象关于y轴对称,那么这个函数是偶函数.三、函数的单调性1、定义:对于定义域为D的函数f(x),若任意的x1,x2∈D,且x1f(x2)时,称f(x)为减函数。

2、复合函数的单调性:同增异减。

四、二次函数y=ax2+bx+c(a≠0)的性质1、顶点坐标公式:顶点坐标为(-b/2a,f(-b/2a)),对称轴为x=-b/2a,最大(小)值为f(-b/2a)。

2、二次函数的解析式的三种形式:一般式f(x)=ax2+bx+c(a≠0);顶点式f(x)=a(x-h)2+k(a≠0);两根式f(x)=a(x-x1)(x-x2)(a≠0)。

高中数学几何公式大全

高中数学几何公式大全

高中数学几何公式大全在高中数学中,几何学是一门重要的数学分支。

几何学研究的是空间中的图形和形状的性质、变换以及其关系。

几何学的公式是解决几何问题的基础,本文将为您介绍一些高中数学几何公式。

1.平面几何公式1.1.面积公式-矩形面积公式:面积=长×宽-正方形面积公式:面积=边长×边长-三角形面积公式:面积=(底边长×高)/2-任意多边形面积公式:如果已知多边形所有顶点的坐标,可以使用行列式的方法计算面积。

1.2.周长公式-矩形周长公式:周长=2×(长+宽)-正方形周长公式:周长=4×边长-三角形周长公式:周长=边1+边2+边3-任意多边形周长公式:周长=边1+边2+...+边n1.3.直角三角形公式-勾股定理:a²+b²=c²,其中a、b为直角边,c为斜边。

- 正弦定理:a/sinA=b/sinB=c/sinC,其中a、b、c为三角形边长,A、B、C为对应的角度。

- 余弦定理:c²=a²+b²-2ab*cosC,其中a、b、c为三角形边长,C为对边的角度。

2.立体几何公式2.1.体积公式-立方体体积公式:体积=边长³-球体体积公式:体积=(4/3)πr³,其中r为球的半径-圆柱体体积公式:体积=πr²h,其中r为底面半径,h为高度-锥体体积公式:体积=(1/3)πr²h,其中r为底面半径,h为高度2.2.表面积公式-立方体表面积公式:表面积=6边长²-球体表面积公式:表面积=4πr²- 圆柱体表面积公式:表面积=2πrh+2πr²,其中r为底面半径,h为高度- 锥体表面积公式:表面积=πrl+πr²,其中r为底面半径,l为斜高以上只是高中数学几何公式的一部分,还有许多其他公式未在此列出。

掌握这些公式可以帮助高中生更好地解决几何问题,提高几何学习的效果。

高中数学公式大全立体几何与空间向量

高中数学公式大全立体几何与空间向量

高中数学公式大全立体几何与空间向量高中数学公式大全:立体几何与空间向量一、立体几何立体几何是数学中研究三维空间中的几何图形及其性质的分支,对于高中生来说,常见的立体几何包括了体积、表面积等方面的内容。

下面是一些常用的立体几何公式:1. 立方体体积公式立方体是一种边长相等的六个正方形围成的立体。

其体积公式为:V = 边长³。

2. 正方体体积公式正方体是一种六个面都是正方形的立体。

其体积公式为:V = 底面积 ×高。

3. 长方体体积公式长方体是一种六个面都是矩形的立体。

其体积公式为:V = 长 ×宽×高。

4. 圆柱体积公式圆柱体是一种底面为圆形的立体。

其体积公式为:V = π × 半径² ×高。

5. 圆锥体积公式圆锥体是一种底面为圆形,顶点和底面中心连线垂直于底面的立体。

其体积公式为:V = 1/3 × π × 半径² ×高。

6. 球体积公式球体是一种所有点到球心的距离都相等的立体。

其体积公式为:V= 4/3 × π × 半径³。

7. 棱柱表面积公式棱柱是一种顶面和底面是平行的多边形,侧面是平行四边形的立体。

其表面积公式为:S = 底面积 + 侧面积。

8. 棱锥表面积公式棱锥是一种底面为多边形,侧面是由底面上的点和顶点连线形成的三角形的立体。

其表面积公式为:S = 底面积 + 侧面积。

二、空间向量空间向量是指具有大小和方向的箭头,可以表示空间中的位移、速度、加速度等物理量。

在高中数学中,空间向量常用于解决线性相关、平面垂直、平面平行等问题。

下面是一些常用的空间向量公式:1. 两点之间的距离公式设空间中的两点为A(x₁, y₁, z₁)和B(x₂, y₂, z₂),则两点之间的距离公式为:AB = √((x₂ - x₁)² + (y₂ - y₁)² + (z₂ - z₁)²)。

高中数学立体几何知识点总结(详细)

高中数学立体几何知识点总结(详细)

高中数学立体几何知识点总结一 、空间几何体 (一) 空间几何体的类型1 多面体:由若干个平面多边形围成的几何体。

围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。

2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。

其中,这条直线称为旋转体的轴。

(二) 几种空间几何体的结构特征 1 、棱柱的结构特征1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

棱柱的分类棱柱四棱柱平行六面体直平行六面体长方体正四棱柱正方体性质:Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等;棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是四边形1.3 棱柱的面积和体积公式ch S =直棱柱侧(c 是底周长,h 是高)S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h2 、棱锥的结构特征2.1 棱锥的定义(1) 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。

2.2 正棱锥的结构特征Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形; 正棱锥侧面积:1'2S ch =正棱椎(c 为底周长,'h 为斜高) 体积:13V Sh =棱椎(S 为底面积,h 为高) 正四面体:对于棱长为a 正四面体的问题可将它补成一个边长为a 22的正方体问题。

高中数学体积面积公式大全

高中数学体积面积公式大全

以下是一些常见的高中数学中使用的体积和面积公式的大全:
平面图形的面积公式:
矩形的面积:$A = l \times w$,其中$l$ 为矩形的长度,$w$ 为矩形的宽度。

正方形的面积:$A = s^2$,其中$s$ 为正方形的边长。

三角形的面积(海伦公式):$A = \sqrt{s(s-a)(s-b)(s-c)}$,其中$s$ 为半周长,$a$、$b$、$c$ 为三角形的边长。

任意形状的多边形的面积:可以使用分割成三角形或梯形等简单形状的方法计算。

立体图形的体积公式:
直方体的体积:$V = l \times w \times h$,其中$l$、$w$、$h$ 分别为直方体的长度、宽度和高度。

正方体的体积:$V = s^3$,其中$s$ 为正方体的边长。

圆柱体的体积:$V = \pi r^2 h$,其中$r$ 为圆柱体的底面半径,$h$ 为圆柱体的高度。

圆锥体的体积:$V = \frac{1}{3} \pi r^2 h$,其中$r$ 为圆锥体的底面半径,$h$ 为圆锥体的高度。

球体的体积:$V = \frac{4}{3} \pi r^3$,其中$r$ 为球体的半径。

这些公式只是一些常见的示例,实际上数学中还有很多其他的体积和面积公式,具体取决于不同的几何图形和问题。

记住在使用这些公式时,确保使用正确的单位和适当的数值代入。

高中数学必修2知识点总结归纳 整理

高中数学必修2知识点总结归纳 整理

高中数学必修2知识点总结归纳整理高中数学必修二空间几何体1.1 空间几何体的结构棱柱棱柱是由两个平行的底面和若干个四边形侧面组成的几何体。

底面多边形的边数不同,可以分为三棱柱、四棱柱、五棱柱等。

棱柱可以用各顶点的字母表示,例如五棱柱ABCDE或用对角线的端点字母表示,例如ABCDE。

棱柱的几何特征是:两底面是对应边平行的全等多边形;侧面和对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

棱锥棱锥是由一个多边形底面和若干个三角形侧面组成的几何体。

底面多边形的边数不同,可以分为三棱锥、四棱锥、五棱锥等。

棱锥可以用各顶点的字母表示,例如五棱锥P-ABCDE。

棱锥的几何特征是:侧面和对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

棱台棱台是由一个平行于底面的平面截取棱锥而成的几何体。

底面多边形的边数不同,可以分为三棱台、四棱台、五棱台等。

棱台可以用各顶点的字母表示,例如四棱台ABCD-A'B'C'D'。

棱台的几何特征是:上下底面是相似的平行多边形;侧面是梯形;侧棱交于原棱锥的顶点。

圆柱圆柱是由一个矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。

圆柱的几何特征是:底面是全等的圆;母线与轴平行;轴与底面圆的半径垂直;侧面展开图是一个矩形。

圆锥圆锥是由直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。

圆锥的几何特征是:底面是一个圆;母线交于圆锥的顶点;侧面展开图是一个扇形。

圆台圆台是由一个平行于圆锥底面的平面截取圆锥而成的几何体。

圆台的几何特征是:上下底面是两个圆;侧面母线交于原圆锥的顶点;侧面展开图是一个弓形。

球体球体是由半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体。

球体的几何特征是:球的截面是圆;球面上任意一点到球心的距离等于半径。

1.2 空间几何体的三视图和直观图1.中心投影与平行投影中心投影是指把光由一点向外散射形成的投影。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4、应用本节所学公式解决具体的问题。
作业:P45页 3,4题
.
侧面积.
A1
C1
O1 D1
B1
A
C
O E D
B
课后思考题:柱体之间、锥体之间、
台体之间的侧面积有什么联系?
.
小结
1、圆柱, 圆锥, 圆台,直棱柱, 正棱锥, 正 棱台的平面展开图形,侧面积公式以及公 式间的转换关系。 2、柱、锥、台的侧面积和表面积的关系:
S表面积=S侧面积 + S底面积
3、将空间图形的问题转化为平面图形的问题, 是解立体几何问题基本、常用的方法。
.
圆柱、圆锥、圆台的侧面积公式之间 有何关系,如何转化?
r1 r2 r
r1 0, r2 r
S圆柱侧=2rl S圆台侧 (r1 r2 )l S圆锥侧 rl
.
直棱柱、正棱锥、正棱台的侧面积 公式之间有何关系,如何转化?
c c
c 0
h h
S ch 直棱柱侧
其中 c 为底面周长,h为高。
.
三、锥体的侧面积
锥体
把圆锥(正三棱锥)的侧面分别沿着一
条母线(侧棱)展开成平面图形,分别得到
什么图形?

R扇=lBiblioteka 锥扇形ll扇=
nl
180
r
S圆锥侧=S扇=
nl 2
360

1 2 l扇l
rl
.
正 三 棱 锥
h' h'
锥体
S正


侧=
1 2
ch'
其中 c 为底面周长,
h' 为斜高.
.
四、台体的侧面积
台体
把圆台(正三棱台)的侧面分别沿着 一条母线(侧棱)展开成平面图形,分别 得到什么图形?
s


扇环
A
r 01 1 l
r 02
2
S圆 台. 侧=S扇 环=(r1 r2 )l
正 三 棱 台
h' h'
台体
S正


侧=
1(c 2

c'
)h'
其中 c, c为上、下底面周长, h 为斜高.
4. 柱、锥、台体的侧面积和表面积的 关系:S表面积=S侧面积 + S底面积
.
柱体
二、柱体的侧面积
把圆柱(正三棱柱)的侧面分别沿着一 条母线(侧棱)展开成平面图形,分别得到 什么图形?
r

l
长方形
宽= l

长 =2r
S圆 柱 侧 S长 方 形=2rl
.


棱h

db a
柱体
h
h
a
b
d
S直棱柱侧 ch
1.7.1 简单几何体 的侧面积
.
一、有关概念
1. 简单几何体:柱体(圆柱、直棱柱)、 锥体(圆锥、正棱锥)、台体(圆台、 正棱台)。 2. 把柱、锥、台的侧面沿着它们的一条 母线或侧棱剪开后展开在一个平面上,展 开图形的面积就是它们的侧面积。
.
3. 初中已经学过正方体的表面积,正 方体的展开图的面积就是其表面积。
S正棱台侧

1 2
c'ch'
1
S 正棱锥侧

ch' 2
.
四、例题讲解
例1:圆台的上、下底半径分别是10cm和
20cm,它的侧面展开图的扇环的圆心角是180o, 那么圆台的侧面积是多少?(结果中保留π)
s
10 A
20 .
O
B
例2:一个正三棱台的上、下底面边长分
别是3cm和6cm,高是3/2cm,求三棱台的
相关文档
最新文档