ANSYS CFD Multiphase 多物理场耦合分析

合集下载

ansys多物理场耦合技术和方法

ansys多物理场耦合技术和方法

ANSYS是一种广泛应用于工程领域的仿真软件,它提供了多物理场耦合分析的能力,用于模拟和解决多个物理现象相互作用的问题。

以下是ANSYS多物理场耦合技术和方法的一些常见应用:1. 结构-热耦合(Thermo-Structural Coupling):这种耦合方法用于分析结构在热载荷下的变形和应力响应。

它可以考虑热传导、热辐射、温度梯度等对结构性能的影响,并通过结构和热传导方程之间的相互作用来解决这些问题。

2. 结构-电磁耦合(Electromagnetic-Structural Coupling):这种耦合方法用于研究结构在电磁场作用下的响应。

它可以考虑电磁场的电流、磁场、电磁感应等对结构的影响,并通过结构和电磁场方程之间的相互作用来解决这些问题。

3. 流体-结构耦合(Fluid-Structure Interaction, FSI):这种耦合方法用于模拟流体和结构之间的相互作用。

它可以考虑流体力学中的压力、速度、湍流、流体-固体界面等对结构的影响,以及结构对流体的阻力、振动等反馈作用。

4. 流体-热耦合(Fluid-Thermal Coupling):这种耦合方法用于模拟流体和热传导之间的相互作用。

它可以考虑流体在流动过程中的热对流、辐射等对热传导的影响,以及热传导对流体温度分布的影响。

5. 电磁-热耦合(Electromagnetic-Thermal Coupling):这种耦合方法用于模拟电磁场和热传导之间的相互作用。

它可以考虑电磁能量的吸收、热产生和热扩散等对系统温度分布的影响,以及温度对电磁特性的影响。

以上只是ANSYS多物理场耦合技术和方法的一些例子,实际中还有其他类型的耦合分析,如声-结构耦合、声-流体耦合等。

通过使用这些耦合技术和方法,工程师可以更准确地模拟和分析不同物理场之间的相互作用,从而更好地优化设计和解决实际问题。

ANSYSapdl命令流笔记16-------耦合场分析基础

ANSYSapdl命令流笔记16-------耦合场分析基础

ANSYSapdl命令流笔记16-------耦合场分析基础耦合场分析概述前⾔耦合场分析,也称为多物理场分析,分析不同的物理场的相互作⽤以解决⼀个全局性的⼯程问题。

例如,当⼀个场分析的输⼊依赖于从另⼀个分析的结果,那么分析就会被耦合。

耦合⽅式有:单向耦合:前⼀个分析的结果作为载荷施加给下⼀个分析,⽽下⼀个分析的结果不会影响前⼀个场的分析结果。

例如,在热应⼒问题中,温度场会在结构场中引⼊热应变,但是结构应变通常不会影响温度分布。

因此,⽆需在两个现场解决⽅案之间进⾏迭代。

双向耦合:两个物理场的结果会相互影响。

例如,⾮线性材料的感应加热中,谐波电磁分析计算出焦⽿热,该热在瞬态热分析中⽤于随时间变化的温度解,⽽温度的变化会反过来影响电磁场材料属性的变化,从⽽改变电磁分析结果。

⼀、耦合场分析类型1.直接耦合场分析直接⽅法通常只包含⼀个分析,它使⽤⼀个包含所有必需⾃由度的耦合单元类型,通过计算包含所需物理量的单元矩阵或单元载荷向量的⽅式进⾏耦合。

具有直接耦合功能的单元有:SOLID5 ---------3-D 耦合场实体单元 (电磁矩阵的推导,耦合效应)PLANE13---------⼆维耦合场实体单元 (电磁矩阵的推导,耦合效应)FLUID29 ---------⼆维声学流体 单元(声学矩阵的推导)FLUID30 ---------3-D 8 节点声学流体单元 (声学矩阵的推导)LINK68------------热电耦合杆单元SOLID98----------四⾯体耦合场实体单元 (电磁矩阵的推导,耦合效应)FLUID116---------热流体耦合管单元CIRCU124--------电路单元TRANS126-------机电转换器单元(电容计算,耦合机电⽅法)SHELL157--------热电耦合壳单元FLUID220---------3-D 20 节点声学流体单元FLUID221---------3-D 10 节点声学流体单元PLANE222--------⼆维 4 节点耦合场实体单元PLANE223--------⼆维 8 节点耦合场实体单元SOLID226---------3-D 20 节点耦合场实体单元SOLID227---------3-D 10 节点耦合场实体单元PLANE233--------⼆维 8 节点电磁耦合单元(电磁矩阵的推导,电磁场评估)SOLID236--------3-D 20 节点电磁耦合单元(电磁矩阵的推导,电磁场评估)SOLID237--------3-D 10 节点电磁耦合单元(电磁矩阵的推导,电磁场评估)优点:1.允许解决通常的有限元⽆法解决的问题。

ANSYS-CFD-Multiphase-多物理场耦合分析PPT

ANSYS-CFD-Multiphase-多物理场耦合分析PPT
• 在椭球区域或变形区域, 液滴或空泡以螺旋形路径上升
20 © 2011 ANSYS, Inc.
June 22, 2020
Release 14.0
Drag Coefficient
• 对单个粒子而言, 拽力与流体和颗粒间的相对速度有关, 以拽力系数表示 CD:
FD
1 2
CD
rf
Ap
Ur
Ur
Ur Uf - Up
Ap
d
2 p
4
• 通常来说, 拽力系数减少粒子雷诺数(particle Reynolds number):
Rep
rf
Ur
f
dp
确切的关系与相的形态和流动属性有关. 大多数情况下, 可援引经验系数CD.
21 © 2011 ANSYS, Inc.
June 22, 2020
Release 14.0
Interphase Mass Transfer
空泡.
18 © 2011 ANSYS, Inc.
June 22, 2020
Release 14.0
Distorted Droplets and Bubbles
• Small bubbles - spherical • Larger bubbles - ellipsoidal
• As bubble size increases, spherical caps may be formed
• Environment – Fog – Rain – Erosion – Emission
• Biomedical – Blood flows – Eyes – Lungs
Release 14.0
Examples of Multiphase Flows

ANSYS 高级技术分析:耦合场分析定义

ANSYS 高级技术分析:耦合场分析定义

ANSYS非线形分析指南基本过程第四章耦合场分析耦合场分析的定义耦合场分析是指在有限元分析的过程中考虑了两种或者多种工程学科物理场的交叉作用和相互影响耦合例如压电分析考虑了结构和电场的相互作用它主要解决由于所施加的位移载荷引起的电压分布问题反之亦然其他的耦合场分析还有热-应力耦合分析热-电耦合分析流体-结构耦合分析磁-热耦合分析和磁-结构耦合分析等等耦合场分析的类型耦合场分析的过程取决于所需解决的问题是由哪些场的耦合作用但是耦合场的分析最终可归结为两种不同的方法序贯耦合方法和直接耦合方法序贯耦合解法序贯耦合解法是按照顺序进行两次或更多次的相关场分析它是通过把第一次场分析的结果作为第二次场分析的载荷来实现两种场的耦合的例如序贯热-应力耦合分析是将热分析得到的节点温度作为体力载荷施加在后序的应力分析中来实现耦合的直接耦合解法直接耦合解法利用包含所有必须自由度的耦合单元类型仅仅通过一次求解就能得出耦合场分析结果在这种情形下耦合是通过计算包含所有必须项的单元矩阵或单元载荷向量来实现的例如利用单元SOLID5PLANE13或SOLID98可直接进行压电分析何时运用直接耦合解法或序贯耦合解法对于不存在高度非线性相互作用的情形序贯耦合解法更为有效和方便因为我们可以独立的进行两种场的分析例如对于序贯热-应力耦合分析可以先进行非线性瞬态热分析再进行线性静态应力分析而后我们可以用热分析中任意载荷步或时间点的节点温度作为载荷进行应力分析这里耦合是一个循环过程其中迭代在两个物理场之间进行直到结果收敛到所需要的精度直接耦合解法在解决耦合场相互作用具有高度非线性时更具优势并且可利用耦合公式一次性得到最好的计算结果直接耦合解法的例子包括压电分析伴随流体流动的热传导问题以及电路-电磁场耦合分析求解这类耦合场相互作用问题都有专门的单元供直接选用第1页。

ANSYS分析指南精华:耦合场分析

ANSYS分析指南精华:耦合场分析

第四章耦合场分析耦合场分析的定义耦合场分析是指在有限元分析的过程中考虑了两种或者多种工程学科(物理场)的交叉作用和相互影响(耦合)。

例如压电分析考虑了结构和电场的相互作用:它主要解决由于所施加的位移载荷引起的电压分布问题,反之亦然。

其他的耦合场分析还有热-应力耦合分析,热-电耦合分析,流体-结构耦合分析,磁-热耦合分析和磁-结构耦合分析等等。

耦合场分析的类型耦合场分析的过程取决于所需解决的问题是由哪些场的耦合作用,但是,耦合场的分析最终可归结为两种不同的方法:序贯耦合方法和直接耦合方法。

序贯耦合解法序贯耦合解法是按照顺序进行两次或更多次的相关场分析。

它是通过把第一次场分析的结果作为第二次场分析的载荷来实现两种场1的耦合的。

例如序贯热-应力耦合分析是将热分析得到的节点温度作为“体力”载荷施加在后序的应力分析中来实现耦合的。

直接耦合解法直接耦合解法利用包含所有必须自由度的耦合单元类型,仅仅通过一次求解就能得出耦合场分析结果。

在这种情形下,耦合是通过计算包含所有必须项的单元矩阵或单元载荷向量来实现的。

例如利用单元SOLID5,PLANE13,或SOLID98可直接进行压电分析。

何时运用直接耦合解法或序贯耦合解法对于不存在高度非线性相互作用的情形,序贯耦合解法更为有效和方便,因为我们可以独立的进行两种场的分析。

例如,对于序贯热-应力耦合分析,可以先进行非线性瞬态热分析,再进行线性静态应力分析。

而后我们可以用热分析中任意载荷步或时间点的节点温度作为载荷进行应力分析。

这里耦合是一个循环过程,其中迭代在两个物理场之间进行直到结果收敛到所需要的精度。

直接耦合解法在解决耦合场相互作用具有高度非线性时更具优势,并且可利用耦合公式一次性得到最好的计算结果。

直接耦合解法的例子包括压电分析,伴随流体流动的热传导问题,以及电路-电磁2场耦合分析。

求解这类耦合场相互作用问题都有专门的单元供直接选用。

3。

ANSYS Multiphysics

ANSYS Multiphysics

多物理场应用实例
● 流固耦合 - 汽车燃料喷射器,控制阀,风扇,水泵 - 航天飞机机身及推进系统及其部件 - 可变形流动控制设备,生物医学上血流的导管及阀门,人造心脏瓣膜 - 纸处理应用,一次性尿布制造过程 - 喷墨打印机系统
● 压电应用 - 换能器,应变计,传感器 - 麦克风系统 - 喷墨打印机驱动系统
在ANSYS Workbench平台中对短路母排进行热电耦 合分析(短路电流为150kA,材料属性与温度有关)
射频MEMS开关静电-流体-结构耦合分析模型 (左上角为压力分布,右上角为位移分布)
ANSYS多场求解器
A N S Y S多物理场求解器使用户能够使用自动序列耦合的方式将多个单 物理场模型耦合到统一的仿真分析中,从而求解多物理场的问题。在求解过 程中的每个时间点,每个物理学科顺序求解并得到学科之间的收敛结果,学 科之间的这种反复耦合迭代,ANSYS多物理场求解器使用起来都很简便。 ANSYS多物理场耦合基于用户化定制进程间的数据交换流程,不需要第三 方耦合软件。
ANSYS多物理场方案带来的好处
ANSYS公司处于CAE行业领先地位,其多物理场解决方案能够提供高 保真仿真,足以应付今日苛刻的产品开发要求所带来的挑战。ANSYS多物 理场解决方案提供了软件产品组合,能够为分析人员提供强大的仿真工具来 解决业界最棘手的多物理场问题。多物理场带来更多好处: ● 针对所有物理场的高品质求解器:结构力学、热传递、流体流动和电磁场 ● 统一的多物理场仿真环境 ● 全参数化分析,支持针对多物理场的实验设计、鲁棒设计和优化设计 ● 快速高效、符合现实
ANSYS Multiphysics 0101
ANSYS Multiphysics
多物理场仿真——ANSYS独特技术

ANSYS Workbench 17·0有限元分析:第19章-多物理场耦合分析

ANSYS Workbench 17·0有限元分析:第19章-多物理场耦合分析

第19章多物理场耦合分析本章首先对多物理场的概念进行简要介绍,并通过典型案例详细讲解了电磁热耦合的操作步骤。

★ 了解多物理场的基本概念及19.1多物理场耦合分析概述在自然界中存在4种场:位移场、电磁场、温度场、流场。

这4种场之间是互相联系的,现实世界不存在纯粹的单场问题,遇到的所有物理场问题都是多物理场耦合的,只是受到硬件或者软件的限制,人为地将它们分成单场现象,各自进行分析。

有时这种分离是可以接受的,但对于许多问题,这样计算将得到错误结果。

因此,在条件允许时,应该进行多物理场耦合分析。

多物理场耦合分析是考虑两个或两个以上工程学科(物理场)间相互作用的分析,例如流体与结构的耦合分析(流固耦合)、电磁与结构耦合分析、电磁与热耦合分析、热与结构耦合分析、电磁与流体耦合分析、流体与声学耦合分析、结构与声学耦合分析(振动声学)等。

以流固耦合为例,流体流动的压力作用到结构上,结构产生变形,而结构的变形又影响了流体的流道,因此流固耦合是流体与结构相互作用的结果。

耦合分析总体来说分为两种:单向耦合与双向耦合。

单向耦合:以流固耦合分析为例,如果结构在流道中受到流体压力产生的变形很小,忽略掉亦可满足工程计算的需要,则不需要将变形反馈给流体,这样的耦合称为单向耦合。

双向耦合:以流固耦合分析为例,如果结构在流道中受到的流体压力很大,或者即使压力很小也不能被忽略掉,则需要将结构变形反馈给流体,这样的耦合称为双向耦合。

ANSYS Workbench还可与ANSOFT Simplorer软件集成在一起实现场路耦合计算。

场路耦合计算适用于电机、电力电子装置及系统、交直流传动、电源、电力系统、汽车部件、汽车电子与系统、航空航天、船舶装置与控制系统、军事装备仿真等领域的分析。

第19章多物理场耦合分析在ANSYS Workbench中,多物理场耦合分析可以分析基本场之间的相互耦合,其应用场合包括以下几个方面。

1. 流固耦合汽车燃料喷射器、控制阀、风扇、水泵等。

ansys中耦合的作用以及详细解释(经典)

ansys中耦合的作用以及详细解释(经典)

节点耦合可以模拟螺栓连接,他表示两者并不是一体,但某一方向的运动是一致的当需要迫使两个或多个自由度(DOFs)取行相同(介未知)值,可以将这些自由度耦合在一起。

耦合自由度集包含一个主自由度和一个或多个其他自由度。

耦合只将主自由度保存在分析的矩阵方程里,而将耦合集内的其他自由度删除。

计算的主自由度值将分配到耦合集内的所有其他自由度中支。

耦合的用途主要有以下几种:●在两重复节点间形成万向节、铰链、销钉以及滑动连接。

其原理是仅仅耦合三个平动自由度(ux,uy,uz)为铰接,耦合三个平动(ux,uy,uz)和两个转动(如RotX,RotY)则等于释放一个转动自由度为销接,其他情形如此类推。

●耦合自由度用于施加循环对称约束条件或重复循环对称约束条件,保证截面始终保持原始形状。

例如在循环对称模型中,将圆盘扇区模型的两个对称边界上的对应节点,在各个自由度上耦合;在锯齿形模型的半齿形模型(重复循环对称)中,需要将一侧边上所有节点的每个自由度进行耦合处理。

●实现小位移条件下的无摩擦接触面模型,仅仅耦合接触面在垂直于接触变面方向上的节点自由度,切线方向自由度不耦合●如果将模型中局部区域内的一部分节点都耦合起来,等于在该局部区域形成一个局部刚体(类似于约束方程中的刚性区)。

Couple DOFs:耦合节点间的单个自由度,用该命令生成一个耦合节点集之后,通过执行一个另外的耦合操作(保证用相同的参考编号集)将更多节点加到耦合集中来。

也可用选择逻辑来耦合所选节点的全部耦合。

可用CP命令输入负的节点号来删除耦合集中的节点。

要修改一耦合自由度集(即增、删节点或改变自由度标记)可用CPNGEN命令(不能由GUI直接得到CPNBGEN命令)。

操作方法是:选择该子菜单,弹出拾取节点对话框,用鼠标选取参与耦合的节点,至少两个节点以上,单击OK按钮弹出图所示定义耦合对话框,在Set reference number 项输入唯一的没有占用的新耦合序列号,在Degree-of-freedom label下拉列表中选中某个自由度或者ALL(表示所有自由度),然后单击OK按钮执行耦合操作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Release 14.0
Free Surface Flows
• 例子
– 两个连续相 – 浇模(Mold filling) – 溃坝(Dam break) – 注油(Filling of a gasoline tank) – 液面晃动(Sloshing of a surface in a container) – 明渠流动(Open flow in a channel) – 处理方法:homogeneous , 相和相之间分享同样
Power GenerationCoal combustion
• Condensation & boiling
• Fuel cells
• Cavitation 3
© 2011 ANSYS, Inc.
4/20/2020
• Oil and Gas – Oil wells – Pipelines
大小的空气泡泡在水中的分布情况, 需要四相的欧拉方法进行计算
• Eulerian-Lagrangian
– 在这个方法中, 以追踪一定数量通过流体域的有代表性粒子的离散轨迹的方法进行模
拟. 可轻松获得粒子大小(particle sizes )的分布.
的速度和场变量(volume fraction除外)
10 © 2011 ANSYS, Inc.
4/20/2020
Release 14.0
Different Multiphase Flow Regimes
• 多相流(MPF)没有一个统一模型!
• 右图中的多相流在气体流量逐渐增 加的情况下,从左到右有在连续相 中分布均匀的空泡流, 到节涌流 (slug flow, 又名活塞流 ), 到环状流
Release 14.0
Multiphase Flows
• 多相流模拟指.
– 含有超过一种流体 – 每种流体由其自有流场变量描述
(u, v, w, p, r, T)
• 相或流体之间在微观层面上是混合的. 混合尺度小雨求解尺度, 但大于分子 尺度.
• 在微尺度(分子)上的混合用质量分数的方法模拟(多组分流方法).
• Environment – Fog – Rain – Erosion – Emission
• Biomedical – Blood flows – Eyes – Lungs
Release 14.0
Examples of Multiphase Flows
Horizontal Bubble Reactor (Bubbly Flow)
8
© 2011 ANSYS, Inc.
4/20/2020
Release 14.0
Continuous-Dispersed Multiphase
•一相是离散粒子(discrete particles), 液滴(droplets), 或空泡(bubbles)散 布在连续相中 • 例如:
–雨: air + water (droplet flow) –软饮料: Liquid + bubbles (bubbly flow) –泥浆: Water + sand (particulate flow) –含尘空气: (particulate flow) –一液体里含有不能融合的另一种液滴, 如. 醋里的油滴.
4/20/2020
Release 14.0
Modeling Approaches
多相流模拟的两个基本方法:
• Eulerian-Eulerian
– 两相之间连续的相互作用. 假定相由流体计算域流出. – 一般来说, 每个相的体分数和流场变量单独求解. – 每个Eulerian dispersed phase具有单一直径的特征. 用标准的欧拉方法模拟三种不同
•若在空间上不连续, 则该相为离散相. 否则为连续相. • 允许大的密度差存在 (rc/ rd=1000, rc/ rd=10-3) • 允许大差异的速度场. •通常的例子如空泡塔器 (bubble columns)和流化床(fluidized beds).
9
© 2011 ANSYS, Inc.
4/20/2020
Release 14.0
Multiphase Applications
Chemical and Process Industry
• Gas cleaning • Fluidized bed reactors • Bubble columns • Polymer production • Mixers • Dryers
6
© 2011 ANSYS, Inc.
4/20/2020
Release 14.0
Examples of Multiphase Flows • Injection and Breakup of Liquid Droplets from a Nozzle
7
© 2011 ANSYS, Inc.
4/20/2020
Lecture 6 ANSYS CFD Multiphase
1
© 2011 ANSYS, Inc.
4/20/2020
Introduction to ANSYD CFD
Release 14.0
Multiphase in ANSYS CFX
2
© 2011 ANSYS, Inc.
4/20/2020
Introduction to ANSYD CFD
(annular flow). • 模拟对不同区域(regimes)相间相互
作用的方法, (drag laws, interfacial area, etc.) 可能大不相同 • 模型的选择, 经验很重要!
Gas-Liquid Flow in a Vertical Pipe
11 © 2011 ANSYS, Inc.
4
© 2011 ANSYS, Inc.
4/20/2020
Release 14.0
Examples of Multiphase Flows
Cavitation (Phase Change)
5
© 2011 ANSYS, Inc.
4/20/2020
Release 14.0
Examples of Multiphase Flows • Free Surface Flow (Dam Break)
相关文档
最新文档